Measurement of GMR in unstable nuclei and the determination of nuclear matter incompressibility E. Khan K∞ J.Li et al, PRC78(2008)064303 E. Khan PRC80(2009)011307(R) G. Colo et al, PRC70(2004)024307 Is the method well defined ? Z.Y. Ma et al, NPA686(2001)173 J.P. Blaizot, Phys. Rep.64(1980)171 Determination of K∞ Microscopic (CHF) Sn Pairing Relativistic data Microscopic (RPA) Pairing effects on the incompressibility Exp. E. Khan, J. Margueron, G. Colo, K. Hagino, H. Sagawa, PRC82(2010)024322 Nuclear incompressibility vs. pairing 112-132Sn isotopes, SkM* , CHFB • Cooper pairs favor compressibility • Incompressibility of superfluid nuclear matter: K∞(Δ) ? E. Khan, PRC80(2009)011307;057302 Density dependence of the incompressiblity Saturation density: ρ0 = 0.16 fm-3 <ρ> = 0.12 ± 0.04 fm-3 The mean value of the density in a nuclei is NOT the saturation density • K(ρ) is probed when measuring the GMR in a nucleus : not only K∞ • K(ρ): large variations around ρ0 Why K∞ ? • Liquid drop expansion not valid (Blaizot) for incompressibilities • EOS: K(ρ) more relevant than K∞ Give up K∞ as a specific experimental point (used in the design of the functionals) Measure K(ρ): needs for GMR measurements on several nuclei Measurement of the GMR in unstable nuclei 56Ni @ 50 MeV/A (GANIL - SISSI) 5.104 pps July 2005 68Ni @ 50 MeV/A (GANIL - LISE) 105 pps Sept 2010 Ionisation Drift chamber chamber Au foil 56Ni Si wall Moving flap CsI wall Diamond (5.104 pps) 50 A.MeV + contaminants Beam shield MAYA recoiling d kinematics Results 56Ni excitation energy spectrum GMR+GQR C. Monrozeau et al., PRL100(2008)042501 Preliminary results on 68Ni M. Vandebrouck, PhD Solving puzzles ? • GMR in nuclei (KA) are probing K(ρ) (variation of several ten’s of MeV) • This may explains: • Puzzle1: different K∞ values obtained within the same nuclei between R (260 MeV) and NR (230 MeV) models K∞ is not the only part of the functional probed by the GMR measurement. K at different ρ are also involved. A compensation between K∞ and different density dependencies allows to reproduce the same data R Κ(ρ) NR ρSn ρPb ρ0 Κ(ρ) • Puzzle2: different K∞ values obtained within the same model between Pb and Sn nuclei ρ ∂3E/∂ρ3 =? Pb data Sn data Nuclei have different density fluctuations around ρ0 (skin, …). Only a functional with the correct K(ρ) may allow to describe both data. ρSn ρPb ρ0 ρ Conclusions • Role of density dependence and pairing in the determination of the incompressibility • Interpretation: K(ρ) is probed when measuring the GMR in a nucleus : not only K∞ and Ksym (in progress) • Need for several measurements (isotopic chain) : mapping of K(ρ,δ) through the GMR using a microscopic method Importance to follow up the Sn chain, especially until doubly magic 132Sn GMR measurements on Pb isotopic chain (unstable nuclei) Collaboration (Exp) C.Monrozeau1, E.Khan1, Y. Blumenfeld1, C-E.Demonchy3,W. Mittig5, P.Roussel-Chomaz5 D.Beaumel1, M.Caamaño2,D.Cortina-Gil2,J.P. Ebran1, N.Frascaria1, U.Garg4, M.Gelin5, A.Gillibert6, D.Gupta1, N. Keeley6, F.Maréchal7, A.Obertelli6, J-A.Scarpaci1 1 Institut de Physique Nucléaire (IN2P3/CNRS), 91406 Orsay Cedex, France 2 Univ. Santiago de Compostela, E-15706 Santiago de Compostela, Spain 3 Univ. of Liverpool, Dep. of Physics, Olivier Lodge Lab., Liverpool L69 7ZE, U.K. 4 Univ. of Notre-Dame, Dep. of Physics, Notre Dame, IN 46556 USA 5 GANIL (DSM/CEA, IN2P3/CNRS), BP 5027, 14076 Caen Cedex 5, France 6 CEA/DSM/DAPNIA/SPhN, Saclay, 91191 Gif-sur-Yvette Cedex, France 7 Institut de Recherches Subatomiques (IN2P3/CNRS), BP 28, 67037 Strasbourg, France Collaboration (Exp)
© Copyright 2026 Paperzz