ull a Ei d Section 3.5 Derivative of Trigonometric Functions 2 Lectures Dr .A bd Dr. Abdulla Eid College of Science MATHS 101: Calculus I Dr. Abdulla Eid (University of Bahrain) Trigonometric functions 1/1 Review of the trigonometric functions (Pre–Calculus). 2 Limits involving trigonometric functions. 3 Derivative of the basic trigonometric functions. 4 Derivative of the functions that involve trigonometric functions. Dr. Abdulla Eid (University of Bahrain) Dr .A bd ull a Ei d 1 Trigonometric functions 2/1 3 - Derivative of the trigonometric functions Theorem d (sin x ) = cos x dx f 0 (x ) f 0 (x ) f 0 (x ) Dr. Abdulla Eid (University of Bahrain) Ei Dr .A bd h →0 ull a f (x + h ) − f (x ) sin(x + h ) − sin x = lim h →0 h h sin x cos h + cos x sin h − sin x = lim h →0 h sin x (cos h − 1) + cos x sin h = lim h →0 h sin x (cos h − 1) cos x sin h = lim + lim h →0 h →0 h h (cos h − 1) sin h = sin x · lim + cos x lim h →0 h →0 h h = sin x · 0 + cos x · 1 = cos x f 0 (x ) = lim f 0 (x ) d Proof: Let f (x ) = sin x Trigonometric functions 3/1 Homework Exercise Dr .A bd ull a Ei d d (cos x ) = sin x dx Dr. Abdulla Eid (University of Bahrain) Trigonometric functions 4/1 Theorem d (tan x ) = sec2 x dx sin x cos x d Proof: Let f (x ) = tan x = Ei (denominator)derivative of numerator − (numerator)(derivative of de (denominator)2 cos x · cos x − sin x · (− sin x ) = (cos x )2 2 cos x + sin2 x = cos2 x 1 = cos2 x = sec2 x Dr .A bd ull a f 0 (x ) = Dr. Abdulla Eid (University of Bahrain) Trigonometric functions 5/1 Homework Exercise Dr .A bd ull a Ei d d (cot x ) = csc2 x dx Dr. Abdulla Eid (University of Bahrain) Trigonometric functions 6/1 Theorem d (sec x ) = sec x tan x dx 1 cos x Ei d Proof: Let f (x ) = tan x = (denominator)derivative of numerator − (numerator)(derivative of de (denominator)2 cos x · 0 − 1 · (− sin x ) = (cos x )2 1 · sin x 1 · sin x = = 2 cos x cos x · cos x 1 sin x = · cos x cos x = sec x tan x Dr .A bd ull a f 0 (x ) = Dr. Abdulla Eid (University of Bahrain) Trigonometric functions 7/1 Homework Exercise Dr .A bd ull a Ei d d (csc x ) = − csc x cot x dx Dr. Abdulla Eid (University of Bahrain) Trigonometric functions 8/1 d Summary ull a Ei (Derivative of the Trigonometic function) (cos x )0 = − sin x Dr .A bd (sin x )0 = cos x (tan x )0 = sec2 x (cot x )0 = − csc x (sec x )0 = sec x tan x (csc x )0 = − csc x cot x Dr. Abdulla Eid (University of Bahrain) Trigonometric functions 9/1 4 - Derivative of the functions that involve the trigonometric functions Example d Differentiate y = x 2 − cos x. Ei Solution: Example Dr .A bd ull a y 0 = 2x + sin x Find y 0 for y = x 5 sin x. Solution: y 0 = (derivative of first)(second) + (first)(derivative of second) y 0 = 5x 4 sin x + x 5 cos x Dr. Abdulla Eid (University of Bahrain) Trigonometric functions 10 / 1 Example Differentiate y = xe x + tan x + 7. Solution: d y 0 = (derivative of first)(second) + (first)(derivative of second) ull a 4 cos x + Solution: Dr .A bd Example Find y 0 for y = Ei y 0 = e x + xe x + sec2 x 5 tan x . y = 4 sec x + 5 cot x y 0 = 4 sec x tan x − 5 csc2 x Dr. Abdulla Eid (University of Bahrain) Trigonometric functions 11 / 1 Example Differentiate y = (sin x + cos x ) sec x. Solution: Example Dr .A bd y 0 = sec2 x ull a Ei d y = sin x sec x + cos x sec x 1 1 y = sin x · + cos x · cos x cos x y = tan x + 1 Find y 0 for y = tan x cot x. Solution: sin x cos x · cos x sin x y =1 y= y0 = 0 Dr. Abdulla Eid (University of Bahrain) Trigonometric functions 12 / 1 Example Differentiate y = sec x 1+sec x . Ei d Solution: Dr .A bd ull a (denominator)derivative of numerator − (numerator)(derivative of deno (denominator)2 (1 + sec x ) sec x tan x − sec x · sec x tan x y0 = (1 + sec x )2 sec x tan x + sec2 x tan x − sec2 x tan x y0 = (1 + sec x )2 sec x tan x y0 = (1 + sec x )2 y0 = Dr. Abdulla Eid (University of Bahrain) Trigonometric functions 13 / 1 Example Ei π 4? ull a differentiable at x = π 4 π 4 d For which value(s) is the function defined by ( ax + b, x> f (x ) = cos x, x≤ Dr .A bd Solution: We find f ( π4 + h ) − f ( π4 ) f (h ) 0 π f = lim = lim h →0 h →0 h 4 h We need to compute the left and right limit and we make them equal. π− π 1 π+ f = sin = √ f =a 4 4 4 2 so we have a = √12 .Now since the function is continuous, then we must have the right limit equal the left limit and so we have π π lim+ f (x ) = lim− f (x ) → √ + b = cos → b = 4 x →0 x →0 4functions 2 Dr. Abdulla Eid (University of Bahrain) Trigonometric 14 / 1 Exercise Ei π 6? Dr .A bd ull a differentiable at x = π 6 π 6 d For which value(s) is the function defined by ( ax + b, x> f (x ) = tan x, x≤ Dr. Abdulla Eid (University of Bahrain) Trigonometric functions 15 / 1
© Copyright 2026 Paperzz