Motivation Using Mathematica Using Mathematica for: Strong Conservation Form and Grid Generation in Nonsteady Curvilinear Coordinates Harald Höller Unterstützung zu M1 mit Schwerpunkt Computeralgebra und Wiki 23.06.2010 Harald Höller Using Mathematica for: Motivation Using Mathematica Astrophysical Motivation Numerical and Mathematical Motivation 1 Motivation Astrophysical Motivation Numerical and Mathematical Motivation 2 Using Mathematica Computeralgebra as interstage Playground Harald Höller Using Mathematica for: Motivation Using Mathematica Astrophysical Motivation Numerical and Mathematical Motivation 1 Motivation Astrophysical Motivation Numerical and Mathematical Motivation 2 Using Mathematica Computeralgebra as interstage Playground Harald Höller Using Mathematica for: Motivation Using Mathematica Astrophysical Motivation Numerical and Mathematical Motivation What we want Solve Equations of Radiation Hydrodynamics (RHD) RHD describe physics of the weather, stars and cars Figure: Cat’s Eye Nebula, Source (Link) Harald Höller Using Mathematica for: Motivation Using Mathematica Astrophysical Motivation Numerical and Mathematical Motivation What we want Solve Equations of Radiation Hydrodynamics (RHD) RHD describe physics of the weather, stars and cars RHD is system of coupled partial differential equations Figure: Cat’s Eye Nebula, Source (Link) Harald Höller Using Mathematica for: Motivation Using Mathematica Astrophysical Motivation Numerical and Mathematical Motivation What we want Solve Equations of Radiation Hydrodynamics (RHD) RHD describe physics of the weather, stars and cars RHD is system of coupled partial differential equations RHD contains non differentiable solutions (weak solutions) Harald Höller Using Mathematica for: Figure: Cat’s Eye Nebula, Source (Link) Motivation Using Mathematica Astrophysical Motivation Numerical and Mathematical Motivation What we want Solve Equations of Radiation Hydrodynamics (RHD) RHD describe physics of the weather, stars and cars RHD is system of coupled partial differential equations RHD contains non differentiable solutions (weak solutions) Problem oriented geometries Harald Höller Using Mathematica for: Figure: Cat’s Eye Nebula, Source (Link) Motivation Using Mathematica Astrophysical Motivation Numerical and Mathematical Motivation What we want Solve Equations of Radiation Hydrodynamics (RHD) RHD describe physics of the weather, stars and cars RHD is system of coupled partial differential equations RHD contains non differentiable solutions (weak solutions) Problem oriented geometries Parallel supercomputers VS implicit methods Harald Höller Using Mathematica for: Figure: Cat’s Eye Nebula, Source (Link) Motivation Using Mathematica Astrophysical Motivation Numerical and Mathematical Motivation How RHD looks like Continuity Equation ∂t ρ + div (uρ) = 0 Equation of motion 4π ∂t ρu + div ρuu + P − σ − ρG − χR H = 0 c Equation of Internal Energy ∂t ρǫ + div ρǫu + P − σ · u − 4πχP (J − S) = 0 Equation of Radiation Energy ∂t J + div uJ + c div H + K : grad u − cχP J − S = 0 Radiation Flux Equation ∂t H + div uH + c div K + H · grad u + cχR H = 0 Poisson Equation ∆φ = 4πG ρ Harald Höller Using Mathematica for: Motivation Using Mathematica Astrophysical Motivation Numerical and Mathematical Motivation How we do that Solve Equations of Radiation Hydrodynamics (RHD) Solve PDEs numerically Figure: Slightly non-orthogonal polar grid Harald Höller Using Mathematica for: Motivation Using Mathematica Astrophysical Motivation Numerical and Mathematical Motivation How we do that Solve Equations of Radiation Hydrodynamics (RHD) Solve PDEs numerically Temporal and spatial discretization equations formulated on a grid Figure: Slightly non-orthogonal polar grid Harald Höller Using Mathematica for: Motivation Using Mathematica Astrophysical Motivation Numerical and Mathematical Motivation How we do that Solve Equations of Radiation Hydrodynamics (RHD) Solve PDEs numerically Temporal and spatial discretization equations formulated on a grid 2DO: Write a (Fortran, C, Java . . . ) code, that solves the equations of RHD Figure: Slightly non-orthogonal polar grid Harald Höller Using Mathematica for: Motivation Using Mathematica Astrophysical Motivation Numerical and Mathematical Motivation How we do that Solve Equations of Radiation Hydrodynamics (RHD) Solve PDEs numerically Temporal and spatial discretization equations formulated on a grid 2DO: Write a (Fortran, C, Java . . . ) code, that solves the equations of RHD . . . so what do we need Mathematica for? Figure: Slightly non-orthogonal polar grid Harald Höller Using Mathematica for: Motivation Using Mathematica Astrophysical Motivation Numerical and Mathematical Motivation What we had 1D Implicit Method Figure: Betelgeuse, Source (Link) Harald Höller Using Mathematica for: Motivation Using Mathematica Astrophysical Motivation Numerical and Mathematical Motivation What we had 1D Implicit Method Question: Can we generate a method to solve the equations of RHD in generalized multidimensional geometries? Figure: Betelgeuse, Source (Link) Harald Höller Using Mathematica for: Motivation Using Mathematica Astrophysical Motivation Numerical and Mathematical Motivation Non-Spherically Symmetric Astrophysical Problems Spherical symmetry is a major constriction and comes into conflict with . . . Flattening by rotation Figure: Betelgeuse, Source (Link) Harald Höller Using Mathematica for: Motivation Using Mathematica Astrophysical Motivation Numerical and Mathematical Motivation Non-Spherically Symmetric Astrophysical Problems Spherical symmetry is a major constriction and comes into conflict with . . . Flattening by rotation Rotation-induced mixing Figure: Betelgeuse, Source (Link) Harald Höller Using Mathematica for: Motivation Using Mathematica Astrophysical Motivation Numerical and Mathematical Motivation Non-Spherically Symmetric Astrophysical Problems Spherical symmetry is a major constriction and comes into conflict with . . . Flattening by rotation Rotation-induced mixing Coupled pulsation modes Figure: Betelgeuse, Source (Link) Harald Höller Using Mathematica for: Motivation Using Mathematica Astrophysical Motivation Numerical and Mathematical Motivation Non-Spherically Symmetric Astrophysical Problems Spherical symmetry is a major constriction and comes into conflict with . . . Flattening by rotation Rotation-induced mixing Coupled pulsation modes Convection Figure: Betelgeuse, Source (Link) Harald Höller Using Mathematica for: Motivation Using Mathematica Astrophysical Motivation Numerical and Mathematical Motivation Non-Spherically Symmetric Astrophysical Problems Spherical symmetry is a major constriction and comes into conflict with . . . Flattening by rotation Rotation-induced mixing Coupled pulsation modes Convection Accretion discs Figure: Betelgeuse, Source (Link) Harald Höller Using Mathematica for: Motivation Using Mathematica Astrophysical Motivation Numerical and Mathematical Motivation Non-Spherically Symmetric Astrophysical Problems Spherical symmetry is a major constriction and comes into conflict with . . . Flattening by rotation Rotation-induced mixing Coupled pulsation modes Convection Accretion discs (Galactic) winds Figure: Betelgeuse, Source (Link) ... Harald Höller Using Mathematica for: Motivation Using Mathematica Astrophysical Motivation Numerical and Mathematical Motivation 1 Motivation Astrophysical Motivation Numerical and Mathematical Motivation 2 Using Mathematica Computeralgebra as interstage Playground Harald Höller Using Mathematica for: Motivation Using Mathematica Astrophysical Motivation Numerical and Mathematical Motivation The Numerical Approach RHD numerics - the status quo Conventional stellar evolution codes are 1D - spherically symmetric Figure: 3D Convection, H. Muthsam, Source (Link) Harald Höller Using Mathematica for: Motivation Using Mathematica Astrophysical Motivation Numerical and Mathematical Motivation The Numerical Approach RHD numerics - the status quo Conventional stellar evolution codes are 1D - spherically symmetric 2D and 3D RHD Codes often emphasize on temporally and spatially small scales (convection) Figure: 3D Convection, H. Muthsam, Source (Link) Harald Höller Using Mathematica for: Motivation Using Mathematica Astrophysical Motivation Numerical and Mathematical Motivation The Numerical Approach RHD numerics - the status quo Conventional stellar evolution codes are 1D - spherically symmetric 2D and 3D RHD Codes often emphasize on temporally and spatially small scales (convection) Explicit codes are parallelizable but time steps are limited by CFL-condition Harald Höller Figure: 3D Convection, H. Muthsam, Source (Link) Using Mathematica for: Motivation Using Mathematica Astrophysical Motivation Numerical and Mathematical Motivation The Numerical Approach RHD numerics - the status quo Conventional stellar evolution codes are 1D - spherically symmetric 2D and 3D RHD Codes often emphasize on temporally and spatially small scales (convection) Explicit codes are parallelizable but time steps are limited by CFL-condition Special non Euclidean geometries demand problem-oriented grids Harald Höller Figure: 3D Convection, H. Muthsam, Source (Link) Using Mathematica for: Motivation Using Mathematica Astrophysical Motivation Numerical and Mathematical Motivation Conservative Formulation Numerical treatment of RHD mathematics Analytically left and right hand side of ∇(uρ) = u∇ρ + ρ∇u are equivalent; numerically the product (uρ) must be treated as conservative density function Harald Höller Using Mathematica for: Motivation Using Mathematica Astrophysical Motivation Numerical and Mathematical Motivation Conservative Formulation Numerical treatment of RHD mathematics Analytically left and right hand side of ∇(uρ) = u∇ρ + ρ∇u are equivalent; numerically the product (uρ) must be treated as conservative density function Components of tensors (most of our physical variables are tensors) are not conserved; Christoffel symbols are unwelcome geometric source terms Harald Höller Using Mathematica for: Motivation Using Mathematica Astrophysical Motivation Numerical and Mathematical Motivation Conservative Formulation Numerical treatment of RHD mathematics Analytically left and right hand side of ∇(uρ) = u∇ρ + ρ∇u are equivalent; numerically the product (uρ) must be treated as conservative density function Components of tensors (most of our physical variables are tensors) are not conserved; Christoffel symbols are unwelcome geometric source terms Conservative covariant derivatives are motivated by the theory of differential forms and yield [1] e.g. hp i 1 |g|φ êµ gradφ = êµ ∂µ φ = êµ ∇µ φ = p ∂µ |g| (1) References e.g. Randall J. LeVeque (1990) [2], Thompson, Warsi, Mastin (1985) [1], Vladimir D. Liseikin (1999) [3], Vladimir D. Liseikin (2004) [4] Harald Höller Using Mathematica for: Motivation Using Mathematica Computeralgebra as interstage Playground 1 Motivation Astrophysical Motivation Numerical and Mathematical Motivation 2 Using Mathematica Computeralgebra as interstage Playground Harald Höller Using Mathematica for: Motivation Using Mathematica Computeralgebra as interstage Playground What we use Mathematica for The long path to the code Do a little tensor analysis Figure: Mathematica 7 Logo, Source (Link) Harald Höller Using Mathematica for: Motivation Using Mathematica Computeralgebra as interstage Playground What we use Mathematica for The long path to the code Do a little tensor analysis Generate the equations of RHD in conservation form Figure: Mathematica 7 Logo, Source (Link) Harald Höller Using Mathematica for: Motivation Using Mathematica Computeralgebra as interstage Playground What we use Mathematica for The long path to the code Do a little tensor analysis Generate the equations of RHD in conservation form Generate an adequate adaptive grid Figure: Mathematica 7 Logo, Source (Link) Harald Höller Using Mathematica for: Motivation Using Mathematica Computeralgebra as interstage Playground What we use Mathematica for The long path to the code Do a little tensor analysis Generate the equations of RHD in conservation form Generate an adequate adaptive grid Generate the equations of RHD in conservation form on an adaptive curvilinear grid Figure: Mathematica 7 Logo, Source (Link) Harald Höller Using Mathematica for: Motivation Using Mathematica Computeralgebra as interstage Playground What we use Mathematica for The long path to the code Do a little tensor analysis Generate the equations of RHD in conservation form Generate an adequate adaptive grid Generate the equations of RHD in conservation form on an adaptive curvilinear grid Calculate the Jacobian of the system of PDEs (already 1D) Harald Höller Using Mathematica for: Figure: Mathematica 7 Logo, Source (Link) Motivation Using Mathematica Computeralgebra as interstage Playground 1 Motivation Astrophysical Motivation Numerical and Mathematical Motivation 2 Using Mathematica Computeralgebra as interstage Playground Harald Höller Using Mathematica for: Motivation Using Mathematica Computeralgebra as interstage Playground Using Mathematica On the Playground Mathematica-File as pdf-document in the appendix Harald Höller Using Mathematica for: Motivation Using Mathematica Computeralgebra as interstage Playground Bibliography I J. F. Thompson, Z. U. Warsi, and C. W. Mastin, Numerical grid generation: foundations and applications (Elsevier North-Holland, Inc., New York, NY, USA, 1985). R. J. LeVeque, Lectures in Mathematics, ETH-Zurich (1990). V. D. Liseikin, A Computational Differential Geometry Approach to Grid Generation (Springer-Verlag, Berlin Heidelberg, 2004). V. D. Liseikin, Grid Generation Methods (Springer-Verlag, Berlin Heidelberg, 1999). Harald Höller Using Mathematica for: Playground: Using Mathematica Author: Harald Höller Unterstützung zu M1 mit Schwerpunkt Computeralgebra und Wiki Last modified: 23.06.2010 Licence: http://creativecommons.org/licenses/by- nc- nd/3.0/at/ Do a Little Tensor Analysis Differential Geometric Relations Let us assume a nice orthogonal standard-coordinate system, the spherical coordinates r Î [0,¥), Φ Î [0,2Π], Θ Î [0,Pi]. We calculate some relevant quantities as the metric tensor and the co- and contravariant base vectors. Coordinate Transformation x := r Sin@thetaD Cos@phiD y := r Sin@thetaD Sin@phiD z := r Cos@thetaD lij = 88D@x, rD, D@x, thetaD, D@x, phiD<, 8D@y, rD, D@y, thetaD, D@y, phiD<, 8D@z, rD, D@z, thetaD, D@z, phiD<<; lijtransposed := Transpose@lijD Metric Tensor (covariant Components) gij = lijtransposed.lij FullSimplify 981, 0, 0<, 90, r2 , 0=, 90, 0, r2 Sin@thetaD2 == g = Det@gijD r4 Sin@thetaD2 rootg = r ^ 2 * Sin@thetaD; Basis (covariant) er = lijtransposed@@1DD 8Cos@phiD Sin@thetaD, Sin@phiD Sin@thetaD, Cos@thetaD< etheta = lijtransposed@@2DD 8r Cos@phiD Cos@thetaD, r Cos@thetaD Sin@phiD, - r Sin@thetaD< 2 playground_wed_latex.nb ephi = lijtransposed@@3DD 8- r Sin@phiD Sin@thetaD, r Cos@phiD Sin@thetaD, 0< Contravariant Basis Er = 1 rootg * Cross@etheta , ephi D FullSimplify 8Cos@phiD Sin@thetaD, Sin@phiD Sin@thetaD, Cos@thetaD< Etheta = 1 rootg * Cross@ephi , er D FullSimplify Cos@phiD Cos@thetaD Cos@thetaD Sin@phiD , 9 Sin@thetaD ,- r r = r Ephi = 1 rootg * Cross@er , etheta D FullSimplify Csc@thetaD Sin@phiD Cos@phiD Csc@thetaD , 9- , 0= r r Covariant, Mixed and Contravariant Components of the Metric Tensor Table@metricg@i, jD = ei .ej FullSimplify, 8i, 8r, theta, phi<<, 8j, 8r, theta, phi<<D 981, 0, 0<, 90, r2 , 0=, 90, 0, r2 Sin@thetaD2 == Table@Metricg@i, jD = Ei .Ej FullSimplify, 8i, 8r, theta, phi<<, 8j, 8r, theta, phi<<D Csc@thetaD2 1 981, 0, 0<, 90, , 0=, 90, 0, == r2 r2 Table@delta@i, jD = Ei .ej FullSimplify, 8i, 8r, theta, phi<<, 8j, 8r, theta, phi<<D 881, 0, 0<, 80, 1, 0<, 80, 0, 1<< Christoffel- Symbols Table@Table@Table@Gammer@sigma, mu, nuD = 1 2 * Sum@HEsigma .Erho L * HD@Henu .erho L, muD + D@Hemu .erho L, nuD - D@Hemu .enu L, rhoDL, 8rho, 8r, theta, phi<<D FullSimplify, 8sigma, 8r, theta, phi<<D, 8mu, 8r, theta, phi<<D, 8nu, 8r, theta, phi<<D 1 9980, 0, 0<, 90, r 1 990, 0, r 1 , 0=, 90, 0, 1 , 0=, 8- r, 0, 0<, 80, 0, Cot@thetaD<=, ==, 990, r r =, 80, 0, Cot@thetaD<, 9- r Sin@thetaD2 , - Cos@thetaD Sin@thetaD, 0=== playground_wed_latex.nb Differentiation Tensor of Artificial Viscosity Covariant components of qschlange Table@qschlange@i, jD = 1 2 * Hd@iD@u@jDD + d@jD@u@iDD - Sum@Gammer@k, i, jD * u@kD, 8k, 8r, theta, phi<<D Sum@Gammer@k, j, iD * u@kD, 8k, 8r, theta, phi<<DL 1 3 * metricg@i, jD * div@uD, 8i, 8r, theta, phi<<, 8j, 8r, theta, phi<<D div@uD 1 + d@rD@u@rDD, 993 1 2 u@thetaD + d@rD@u@thetaDD + d@thetaD@u@rDD , 2 r 2 u@phiD + d@phiD@u@rDD + d@rD@u@phiDD =, 2 r 1 2 u@thetaD + d@rD@u@thetaDD + d@thetaD@u@rDD , - 9 2 r 1 - r2 div@uD + 3 1 H2 r u@rD + 2 d@thetaD@u@thetaDDL, 2 1 H- 2 Cot@thetaD u@phiD + d@phiD@u@thetaDD + d@thetaD@u@phiDDL=, 2 1 2 u@phiD 2 1 + d@phiD@u@rDD + d@rD@u@phiDD , - 9 r 2 1 H- 2 Cot@thetaD u@phiD + d@phiD@u@thetaDD + d@thetaD@u@phiDDL, - r2 div@uD Sin@thetaD2 + 3 1 2 I2 r Sin@thetaD2 u@rD + 2 Cos@thetaD Sin@thetaD u@thetaD + 2 d@phiD@u@phiDDM== 3 4 playground_wed_latex.nb Contravariant Table@qschlangeoben@m, nD = Sum@HMetricg@m, kD * Metricg@n, lDL * H1 2 * Hd@kD@u@lDD + d@lD@u@kDD - Sum@Gammer@o, k, lD * u@oD, 8o, 8r, theta, phi<<D Sum@Gammer@o, l, kD * u@oD, 8o, 8r, theta, phi<<DL - 1 3 * metricg@m, nD * div@uDL, 8k, 8r, theta, phi<<, 8l, 8r, theta, phi<<D, 8m, 8r, theta, phi<<, 8n, 8r, theta, phi<<D - div@uD + d@rD@u@rDD, 99- 2 u@thetaD r + d@rD@u@thetaDD + d@thetaD@u@rDD , 2 r2 3 Csc@thetaD2 I- 2 u@phiD r + d@phiD@u@rDD + d@rD@u@phiDDM =, 2 r2 - 2 u@thetaD r + d@rD@u@thetaDD + d@thetaD@u@rDD , 9 2 r2 - 1 3 r2 div@uD + 1 2 H2 r u@rD + 2 d@thetaD@u@thetaDDL , r4 Csc@thetaD2 H- 2 Cot@thetaD u@phiD + d@phiD@u@thetaDD + d@thetaD@u@phiDDL =, 2 r4 Csc@thetaD2 I- 2 u@phiD r + d@phiD@u@rDD + d@rD@u@phiDDM , 9 2 r2 Csc@thetaD2 H- 2 Cot@thetaD u@phiD + d@phiD@u@thetaDD + d@thetaD@u@phiDDL , 2 r4 1 Csc@thetaD4 - r4 1 r2 div@uD Sin@thetaD2 + 3 1 I2 r Sin@thetaD2 u@rD + 2 Cos@thetaD Sin@thetaD u@thetaD + 2 d@phiD@u@phiDDM == 2 Table@ qoben@m, nD = Sum@HMetricg@m, iD * Metricg@n, jDL qschlange@i, jD, 8i, 8r, theta, phi<<, 8j, 8r, theta, phi<<D, 8m, 8r, theta, phi<<, 8n, 8r, theta, phi<<D; playground_wed_latex.nb Mixed components Table@qmix@n, iD = Sum@Metricg@n, jD * qschlange@j, iD, 8j, 8r, theta, phi<<D, 8i, 8r, theta, phi<<, 8n, 8r, theta, phi<<D - div@uD + d@rD@u@rDD, 99- 2 u@thetaD r + d@rD@u@thetaDD + d@thetaD@u@rDD , 2 r2 3 2 u@phiD r Csc@thetaD2 I- + d@phiD@u@rDD + d@rD@u@phiDDM =, 2 r2 1 2 u@thetaD + d@rD@u@thetaDD + d@thetaD@u@rDD , - 9 2 r 1 3 - r2 div@uD + 1 2 H2 r u@rD + 2 d@thetaD@u@thetaDDL , r2 Csc@thetaD2 H- 2 Cot@thetaD u@phiD + d@phiD@u@thetaDD + d@thetaD@u@phiDDL =, 2 r2 1 2 u@phiD + d@phiD@u@rDD + d@rD@u@phiDD , - 9 2 r - 2 Cot@thetaD u@phiD + d@phiD@u@thetaDD + d@thetaD@u@phiDD , 2 r2 1 Csc@thetaD2 - r2 1 r2 div@uD Sin@thetaD2 + 3 1 I2 r Sin@thetaD2 u@rD + 2 Cos@thetaD Sin@thetaD u@thetaD + 2 d@phiD@u@phiDDM == 2 Simplified Viscosity Tensor Table@qsimp@m, nD = Sum@HMetricg@m, iD * Metricg@n, jDL H1 2 * Hd@iD@u@jDD + d@jD@u@iDD - Sum@Gammer@k, i, jD * u@kD, 8k, 8r, theta, phi<<D Sum@Gammer@k, j, iD * u@kD, 8k, 8r, theta, phi<<DL 1 3 * metricg@i, jD * div@uDL, 8i, 8r, theta, phi<<, 8j, 8r, theta, phi<<D FullSimplify, 8m, 8r, theta, phi<<, 8n, 8r, theta, phi<<D div@uD - 2 u@thetaD + r Hd@rD@u@thetaDD + d@thetaD@u@rDDL + d@rD@u@rDD, 99- , 2 r3 3 Csc@thetaD2 H- 2 u@phiD + r Hd@phiD@u@rDD + d@rD@u@phiDDLL =, 2 r3 - 2 u@thetaD + r Hd@rD@u@thetaDD + d@thetaD@u@rDDL , 9 2 r3 - r2 div@uD + 3 Hr u@rD + d@thetaD@u@thetaDDL , 3 r4 Csc@thetaD2 H- 2 Cot@thetaD u@phiD + d@phiD@u@thetaDD + d@thetaD@u@phiDDL =, 2 r4 Csc@thetaD2 H- 2 u@phiD + r Hd@phiD@u@rDD + d@rD@u@phiDDLL , 9 2 r3 Csc@thetaD2 H- 2 Cot@thetaD u@phiD + d@phiD@u@thetaDD + d@thetaD@u@phiDDL , 2 r4 Csc@thetaD2 I- r2 div@uD + 3 Ir u@rD + Cot@thetaD u@thetaD + Csc@thetaD2 d@phiD@u@phiDDMM == 3 r4 5 6 playground_wed_latex.nb Divergence of Tensors Definition of Tensors in Equation of Motion Table@rschlange@i, jD = rho * Hu@iD - xdot@iDL * u@jD FullSimplify, 8i, 8r, theta, phi<<, 8j, 8r, theta, phi<<D Table@p@i, jD = p * Metricg@i, jD FullSimplify, 8i, 8r, theta, phi<<, 8j, 8r, theta, phi<<D Table@q@i, jD = qsimp@i, jD FullSimplify, 8i, 8r, theta, phi<<, 8j, 8r, theta, phi<<D 88rho u@rD Hu@rD - xdot@rDL, rho u@thetaD Hu@rD - xdot@rDL, rho u@phiD Hu@rD - xdot@rDL<, 8rho u@rD Hu@thetaD - xdot@thetaDL, rho u@thetaD Hu@thetaD - xdot@thetaDL, rho u@phiD Hu@thetaD - xdot@thetaDL<, 8rho u@rD Hu@phiD - xdot@phiDL, rho u@thetaD Hu@phiD - xdot@phiDL, rho u@phiD Hu@phiD - xdot@phiDL<< p Csc@thetaD2 p 98p, 0, 0<, 90, , 0=, 90, 0, r2 == r2 div@uD - 2 u@thetaD + r Hd@rD@u@thetaDD + d@thetaD@u@rDDL + d@rD@u@rDD, 99- , 2 r3 3 Csc@thetaD2 H- 2 u@phiD + r Hd@phiD@u@rDD + d@rD@u@phiDDLL =, 2 r3 - 2 u@thetaD + r Hd@rD@u@thetaDD + d@thetaD@u@rDDL , 9 2 r3 - r2 div@uD + 3 Hr u@rD + d@thetaD@u@thetaDDL , 3 r4 Csc@thetaD2 H- 2 Cot@thetaD u@phiD + d@phiD@u@thetaDD + d@thetaD@u@phiDDL =, 2 r4 Csc@thetaD2 H- 2 u@phiD + r Hd@phiD@u@rDD + d@rD@u@phiDDLL , 9 2 r3 Csc@thetaD2 H- 2 Cot@thetaD u@phiD + d@phiD@u@thetaDD + d@thetaD@u@phiDDL , 2 r4 Csc@thetaD2 I- r2 div@uD + 3 Ir u@rD + Cot@thetaD u@thetaD + Csc@thetaD2 d@phiD@u@phiDDMM == 3 r4 Generate the Equations of RDH in Conservation Form Example: Spatial Part of the Equation of Motion in Spherical Coordinates Table@d@tD@Sum@Sqrt@gD * rho * u@nD * en @@kDD, 8n, 8r, theta, phi<<DD + Sum@Sum@d@iD@Sqrt@gD * H rschlange@i, jD + p@i, jD + Qkomp@i, jDL * ej @@kDDD, 8i, 8r, theta, phi<<D, 8j, 8r, theta, phi<<D + rho * Sum@d@lD@Sqrt@gD * Phi * El @@kDDD, 8l, 8r, theta, phi<<D 4 Pi c * Sqrt@gD * HSum@H@oD * eo @@kDD, 8o, 8r, theta, phi<<DL . 8Sin@thetaD ® Sqrt@1 - mu ^ 2D, d@thetaD ® - Sqrt@1 - mu ^ 2D d@muD, Csc@thetaD ® 1 Sqrt@1 - mu ^ 2D, Cos@thetaD ® mu<, 8k, 81, 2, 3<<D playground_wed_latex.nb 1 I1 - mu2 M r4 4Π 9c 1 - mu2 Cos@phiD H@rD + mu r Cos@phiD H@thetaD 1 - mu2 d@muD A- - 1 - mu2 r 1 - mu2 r H@phiD Sin@phiD + I1 - mu2 M r4 Sin@phiD HQkomp@theta, phiD + rho u@phiD Hu@thetaD - xdot@thetaDLLE + 1 - mu2 I1 - mu2 M r4 Cos@phiD HQkomp@theta, rD + rho u@rD Hu@thetaD - xdot@thetaDLLE + 1 - mu2 d@muD Amu r - 1 - mu2 d@muD A I1 - mu2 M r4 Cos@phiD p + Qkomp@theta, thetaD + rho u@thetaD Hu@thetaD - xdot@thetaDL E + r2 1 - mu2 r d@phiDA- I1 - mu2 M r4 Sin@phiD p + Qkomp@phi, phiD + rho u@phiD Hu@phiD - xdot@phiDL E + I1 - mu2 M r2 1 - mu2 d@phiDA I1 - mu2 M r4 Cos@phiD HQkomp@phi, rD + rho u@rD Hu@phiD - xdot@phiDLLE + I1 - mu2 M r4 Cos@phiD d@phiDAmu r HQkomp@phi, thetaD + rho u@thetaD Hu@phiD - xdot@phiDLLE + mu Phi rho I1 - mu2 M r4 Cos@phiD 1 - mu2 d@muD A - E+ r I1 - mu2 M r4 Sin@phiD Phi d@phiDA- 1d@rDA- 1 - mu2 r 1 - mu2 d@rDA d@rDAmu r - I1 - mu2 M r4 Cos@phiDE + r I1 - mu2 M r4 Sin@phiD HQkomp@r, phiD + rho u@phiD Hu@rD - xdot@rDLLE + I1 - mu2 M r4 Cos@phiD Hp + Qkomp@r, rD + rho u@rD Hu@rD - xdot@rDLLE + I1 - mu2 M r4 Cos@phiD HQkomp@r, thetaD + rho u@thetaD Hu@rD - xdot@rDLLE + d@tDA 1 - mu2 r mu r 1 - mu2 Phi E + d@rDA mu2 I1 - mu2 M r4 rho Sin@phiD u@phiD + I1 - mu2 M r4 rho Cos@phiD u@thetaDE, - 1 - mu2 1 4Π I1 - mu2 M r4 rho Cos@phiD u@rD + I1 - mu2 M r4 c 1 - mu2 r Cos@phiD H@phiD + - 1 - mu2 d@muD A 1 - mu2 r 1 - mu2 H@rD Sin@phiD + mu r H@thetaD Sin@phiD + I1 - mu2 M r4 Cos@phiD HQkomp@theta, phiD + rho u@phiD Hu@thetaD - xdot@thetaDLLE + 1 - mu2 - 1 - mu2 d@muD A I1 - mu2 M r4 Sin@phiD HQkomp@theta, rD + rho u@rD Hu@thetaD - xdot@thetaDLLE + 1 - mu2 d@muD Amu r I1 - mu2 M r4 Sin@phiD E+ 7 8 playground_wed_latex.nb p + Qkomp@theta, thetaD + rho u@thetaD Hu@thetaD - xdot@thetaDL E + r2 1 - mu2 r d@phiDA I1 - mu2 M r4 Cos@phiD p + Qkomp@phi, phiD + rho u@phiD Hu@phiD - xdot@phiDL E + I1 - mu2 M r2 1 - mu2 d@phiDA I1 - mu2 M r4 Sin@phiD HQkomp@phi, rD + rho u@rD Hu@phiD - xdot@phiDLLE + I1 - mu2 M r4 Sin@phiD d@phiDAmu r HQkomp@phi, thetaD + rho u@thetaD Hu@phiD - xdot@phiDLLE + mu Phi rho I1 - mu2 M r4 Sin@phiD 1 - mu2 d@muD A - E+ r I1 - mu2 M r4 Cos@phiD Phi d@phiDA 1d@rDA 1 - mu2 r d@rDA 1 - mu2 r I1 - mu2 M r4 Cos@phiD HQkomp@r, phiD + rho u@phiD Hu@rD - xdot@rDLLE + I1 - mu2 M r4 Sin@phiD Hp + Qkomp@r, rD + rho u@rD Hu@rD - xdot@rDLLE + 1 - mu2 r 1 - mu2 I1 - mu2 M r4 rho Cos@phiD u@phiD + I1 - mu2 M r4 rho Sin@phiD u@rD + mu r I1 - mu2 M r4 Jmu H@rD - 4Π I1 - mu2 M r4 Sin@phiDE + I1 - mu2 M r4 Sin@phiD HQkomp@r, thetaD + rho u@thetaD Hu@rD - xdot@rDLLE + d@rDAmu r d@tDA 1 - mu2 Phi E + d@rDA mu2 I1 - mu2 M r4 rho Sin@phiD u@thetaDE, 1 - mu2 r H@thetaDN - + c - 1 - mu2 d@muD @0D + - I1 - mu2 M r4 HQkomp@theta, rD + rho u@rD Hu@thetaD - xdot@thetaDLLE + mu - 1 - mu2 d@muD A 1 - mu2 d@muD A- 1 - mu2 r I1 - mu2 M r4 p + Qkomp@theta, thetaD + rho u@thetaD Hu@thetaD - xdot@thetaDL E + d@phiD@0D + r2 d@phiDAmu - I1 - mu2 M r4 HQkomp@phi, rD + rho u@rD Hu@phiD - xdot@phiDLLE + d@phiDA 1 - mu2 r I1 - mu2 M r4 HQkomp@phi, thetaD + rho u@thetaD Hu@phiD - xdot@phiDLLE + 1 - mu2 Phi d@rD@0D + rho - I1 - mu2 M r4 1 - mu2 d@muD A- E+ r d@phiD@0D + d@rDAmu Phi d@rDAmu d@rDAd@tDAmu I1 - mu2 M r4 E + I1 - mu2 M r4 Hp + Qkomp@r, rD + rho u@rD Hu@rD - xdot@rDLLE + 1 - mu2 r I1 - mu2 M r4 HQkomp@r, thetaD + rho u@thetaD Hu@rD - xdot@rDLLE + I1 - mu2 M r4 rho u@rD - 1 - mu2 r I1 - mu2 M r4 rho u@thetaDE= With Tensor of Artificial Viscosity Table@d@tD@Sum@Sqrt@gD * rho * u@nD * en @@kDD, 8n, 8r, theta, phi<<DD + Sum@Sum@d@iD@Sqrt@gD * H rschlange@i, jD + p@i, jD + q@i, jDL * ej @@kDDD, 8i, 8r, theta, phi<<D, 8j, 8r, theta, phi<<D + rho * Sum@d@lD@Sqrt@gD * Phi * El @@kDDD, 8l, 8r, theta, phi<<D 4 Pi c * Sqrt@gD * HSum@H@oD * eo @@kDD, 8o, 8r, theta, phi<<DL . 8Sin@thetaD ® Sqrt@1 - mu ^ 2D, d@thetaD ® - Sqrt@1 - mu ^ 2D d@muD, Csc@thetaD ® 1 Sqrt@1 - mu ^ 2D, Cos@thetaD ® mu<, 8k, 81, 2, 3<<D playground_wed_latex.nb 1 - mu2 d@muD Amu r 9 - I1 - mu2 M r4 Cos@phiD p + rho u@thetaD Hu@thetaD - xdot@thetaDL + r2 - r2 div@uD + 3 Jr u@rD + J- 1 - mu2 d@muDN@u@thetaDDN 1 - mu2 d@muD A E+ 3 r4 - 1 - mu2 r I1 - mu2 M r4 Sin@phiD rho u@phiD Hu@thetaD - xdot@thetaDL + - 2 Cot@thetaD u@phiD + J- 1 - mu2 d@muDN@u@phiDD + d@phiD@u@thetaDD E+ 2 I1 - mu2 M r4 - 1 - mu2 d@muD A 1 - mu2 - 2 u@thetaD + r JJ- I1 - mu2 M r4 Cos@phiD rho u@rD Hu@thetaD - xdot@thetaDL + 1 - mu2 d@muDN@u@rDD + d@rD@u@thetaDDN E+ 2 r3 d@phiDA- 1 - mu2 r p I1 - mu2 M r4 Sin@phiD + rho u@phiD Hu@phiD - xdot@phiDL + I1 - mu2 M r2 - r2 div@uD + 3 Jr u@rD + Cot@thetaD u@thetaD + d@phiD@u@phiDD 1-mu2 N E+ 3 I1 - mu2 M r4 d@phiDAmu r I1 - mu2 M r4 Cos@phiD rho u@thetaD Hu@phiD - xdot@phiDL + - 2 Cot@thetaD u@phiD + J- 1 - mu2 d@muDN@u@phiDD + d@phiD@u@thetaDD E+ 2 I1 - mu2 M r4 d@phiDA 1 - mu2 I1 - mu2 M r4 Cos@phiD rho u@rD Hu@phiD - xdot@phiDL + - 2 u@phiD + r Hd@phiD@u@rDD + d@rD@u@phiDDL 1 4Π E2 I1 - mu2 M r3 1 - mu2 Cos@phiD H@rD + mu r Cos@phiD H@thetaD mu Phi - I1 - mu2 M r4 rho c 1 - mu2 r H@phiD Sin@phiD I1 - mu2 M r4 Cos@phiD 1 - mu2 d@muD A E+ r + + 9 10 playground_wed_latex.nb Phi I1 - mu2 M r4 Sin@phiD d@phiDA- E + d@rDA 1- d@rDA- 1 - mu2 r mu2 1 - mu2 Phi I1 - mu2 M r4 Cos@phiDE + r I1 - mu2 M r4 Sin@phiD - 2 u@phiD + r Hd@phiD@u@rDD + d@rD@u@phiDDL rho u@phiD Hu@rD - xdot@rDL + E + d@rDA 2 I1 - mu2 M r3 1 - mu2 I1 - mu2 M r4 Cos@phiD p - div@uD + rho u@rD Hu@rD - xdot@rDL + d@rD@u@rDD E + 3 I1 - mu2 M r4 Cos@phiD rho u@thetaD Hu@rD - xdot@rDL + d@rDAmu r - 2 u@thetaD + r JJ- 1 - mu2 d@muDN@u@rDD + d@rD@u@thetaDDN E+ 2 r3 d@tDA- 1 - mu2 r 1 - mu2 I1 - mu2 M r4 rho Sin@phiD u@phiD + I1 - mu2 M r4 rho Cos@phiD u@rD + mu r 1 - mu2 d@muD Amu r - I1 - mu2 M r4 Sin@phiD I1 - mu2 M r4 rho Cos@phiD u@thetaDE, p + rho u@thetaD Hu@thetaD - xdot@thetaDL + r2 - r2 div@uD + 3 Jr u@rD + J- 1 - mu2 d@muDN@u@thetaDDN 1 - mu2 d@muD A E+ 3 r4 1 - mu2 r I1 - mu2 M r4 Cos@phiD rho u@phiD Hu@thetaD - xdot@thetaDL + - 2 Cot@thetaD u@phiD + J- 1 - mu2 d@muDN@u@phiDD + d@phiD@u@thetaDD E+ 2 I1 - mu2 M r4 - 1 - mu2 d@muD A 1 - mu2 - 2 u@thetaD + r JJ- I1 - mu2 M r4 Sin@phiD rho u@rD Hu@thetaD - xdot@thetaDL + 1 - mu2 d@muDN@u@rDD + d@rD@u@thetaDDN E+ 2 r3 d@phiDA 1 - mu2 r I1 - mu2 M r4 Cos@phiD p + rho u@phiD Hu@phiD - xdot@phiDL + I1 - mu2 M r2 - r2 div@uD + 3 Jr u@rD + Cot@thetaD u@thetaD + d@phiD@u@phiDD 1-mu2 N E+ 3 I1 - mu2 M r4 playground_wed_latex.nb I1 - mu2 M r4 Sin@phiD rho u@thetaD Hu@phiD - xdot@phiDL + d@phiDAmu r 1 - mu2 d@muDN@u@phiDD + d@phiD@u@thetaDD - 2 Cot@thetaD u@phiD + J- E+ 2 I1 - mu2 M r4 1 - mu2 d@phiDA I1 - mu2 M r4 Sin@phiD rho u@rD Hu@phiD - xdot@phiDL + - 2 u@phiD + r Hd@phiD@u@rDD + d@rD@u@phiDDL 1 4Π E2 I1 - mu2 M r3 1 - mu2 r Cos@phiD H@phiD + 1 - mu2 H@rD Sin@phiD + mu r H@thetaD Sin@phiD I1 - mu2 M r4 Sin@phiD mu Phi - I1 - mu2 M r4 rho c 1 - mu2 d@muD A E+ r Phi I1 - mu2 M r4 Cos@phiD d@phiDA E + d@rDA 1 - mu2 Phi I1 - mu2 M r4 Sin@phiDE + 1 - mu2 r d@rDA 1 - mu2 r I1 - mu2 M r4 Cos@phiD rho u@phiD Hu@rD - xdot@rDL + - 2 u@phiD + r Hd@phiD@u@rDD + d@rD@u@phiDDL E + d@rDA 2 I1 - mu2 M r3 1 - mu2 I1 - mu2 M r4 Sin@phiD p - div@uD + rho u@rD Hu@rD - xdot@rDL + d@rD@u@rDD E + 3 d@rDAmu r I1 - mu2 M r4 Sin@phiD rho u@thetaD Hu@rD - xdot@rDL + - 2 u@thetaD + r JJ- 1 - mu2 d@muDN@u@rDD + d@rD@u@thetaDDN E+ 2 r3 d@tDA 1 - mu2 r 1 - mu2 I1 - mu2 M r4 rho Cos@phiD u@phiD + I1 - mu2 M r4 rho Sin@phiD u@rD + mu r 1 - mu2 d@muD @0D + - - - 1 - mu2 r I1 - mu2 M r4 I1 - mu2 M r4 rho Sin@phiD u@thetaDE, 1 - mu2 d@muD A p + rho u@thetaD Hu@thetaD - xdot@thetaDL + r2 - r2 div@uD + 3 Jr u@rD + J- 1 - mu2 d@muDN@u@thetaDDN E+ 3 r4 11 12 playground_wed_latex.nb - 1 - mu2 d@muD Amu I1 - mu2 M r4 - 2 u@thetaD + r JJ- rho u@rD Hu@thetaD - xdot@thetaDL + 1 - mu2 d@muDN@u@rDD + d@rD@u@thetaDDN E+ 2 r3 1 - mu2 r d@phiD@0D + d@phiDA- - 2 Cot@thetaD u@phiD + J- I1 - mu2 M r4 rho u@thetaD Hu@phiD - xdot@phiDL + 1 - mu2 d@muDN@u@phiDD + d@phiD@u@thetaDD E+ 2 I1 - mu2 M r4 d@phiDAmu I1 - mu2 M r4 rho u@rD Hu@phiD - xdot@phiDL + - 2 u@phiD + r Hd@phiD@u@rDD + d@rD@u@phiDDL E + d@rD@0D 2 I1 - mu2 M r3 1 I1 - mu2 M r4 rho mu H@rD - 4Π 1 - mu2 r H@thetaD - 1 - mu2 d@muD A c 1 - mu2 Phi I1 - mu2 M r4 E + d@phiD@0D + d@rDAmu Phi - I1 - mu2 M r4 E + r I1 - mu2 M r4 d@rDAmu div@uD p- + rho u@rD Hu@rD - xdot@rDL + d@rD@u@rDD E + 3 d@rDA- 1 - mu2 r I1 - mu2 M r4 - 2 u@thetaD + r JJ- rho u@thetaD Hu@rD - xdot@rDL + 1 - mu2 d@muDN@u@rDD + d@rD@u@thetaDDN E+ 2 r3 d@tDAmu I1 - mu2 M r4 rho u@rD - 1 - mu2 r I1 - mu2 M r4 rho u@thetaDE= Clear@"Global`*"D Generate an Adequate Adaptive Grid Ansatz for quasi-polar coordinates To a certain extent is is demanded, that phyiscs take place in coordinate planes or in other words, that there are no strong gradients skew to coordinate lines. Since in reality no (for RHD relevant) astrophysical object is spherical, we look for a more general coordinate system that allows oblateness etc. Coordinate Transformation with Product Ansatz We define a coordinate transformation with product ansatz, which is reasonable for any kind of coordinate system. x = X@Ξ, ΗD; y = Y@Ξ, ΗD; playground_wed_latex.nb 13 X@Ξ_, Η_D = a@ΞD * Α@ΗD; Y@Ξ_, Η_D = b@ΞD * Β@ΗD; Α@Η_D Β@Η_D a@Ξ_D b@Ξ_D = = = = H1 + alpha1 * Η + alpha2 * Η ^ 2 + alpha3 * Η ^ 3L * Cos@ΗD; H1 + beta1 * Η + beta2 * Η ^ 2 + beta3 * Η ^ 3L * Sin@ΗD; Ha1 * Ξ + a2 * Ξ ^ 2L ; Hb1 * Ξ + b2 * Ξ ^ 2L ; We calculate the Jacobian of this transformation to get the base vectors in the new coordinate system. lij = 88D@x, ΞD, D@x, ΗD<, 8D@y, ΞD, D@y, ΗD<<; lijtransposed := Transpose@lijD 2D Metric Tensor (covariant Components) For trivial signatures, the metric tensor is simply given by the Jacobian times its transpositon. The off diagonal elements contain the information about the non-orthogonality (angles), the diagonal elements are measures of lenght in the coordinate directions. gij = lijtransposed.lij; g11@Ξ_, g12@Ξ_, g21@Ξ_, g22@Ξ_, Η_D Η_D Η_D Η_D = = = = gij@@1, gij@@1, gij@@2, gij@@2, 1DD; 2DD; 1DD; 2DD; 2D Basis (covariant) The base vectors yield eΞ @Ξ_, Η_D = lijtransposed@@1DD 9I1 + alpha1 Η + alpha2 Η2 + alpha3 Η3 M Ha1 + 2 a2 ΞL Cos@ΗD, I1 + beta1 Η + beta2 Η2 + beta3 Η3 M Hb1 + 2 b2 ΞL Sin@ΗD= eΗ @Ξ_, Η_D = lijtransposed@@2DD 9Ialpha1 + 2 alpha2 Η + 3 alpha3 Η2 M Ia1 Ξ + a2 Ξ2 M Cos@ΗD I1 + alpha1 Η + alpha2 Η2 + alpha3 Η3 M Ia1 Ξ + a2 Ξ2 M Sin@ΗD, I1 + beta1 Η + beta2 Η2 + beta3 Η3 M Ib1 Ξ + b2 Ξ2 M Cos@ΗD + Ibeta1 + 2 beta2 Η + 3 beta3 Η2 M Ib1 Ξ + b2 Ξ2 M Sin@ΗD= PDEs + Boundary conditions Equations and boundary conditions In order to control the shape of the grid by a manageable number of parameters and for reasons of symmetry we impose geometrically motivated boundary conditions. Since some of them are either redundant or exclusive, the following list is somewhat heuristic. 14 playground_wed_latex.nb ESSol = SolveA9 H*g12@Ξ,ΗD0,*L H* orthogonality *L eΞ @Ξ, 0D@@1DD 1, H* scaling *L eΞ @Ξ, 0D@@2DD 0, H* in "x"-axis *L eΞ @Ξ, Pi 2D@@1DD 0, H* in "y"-axis *L eΞ @Ξ, Pi 2D@@2DD 1, H* scaling *L eΗ @Ξ, 0D@@1DD 0, H* normal to "x"-axis *L eΗ @Ξ, 0D@@2DD Ξ, H* scaling *L eΗ @Ξ, Pi 2D@@1DD - Ξ, H* orientation *L eΗ @Ξ, Pi 2D@@2DD 0, H* normal to "y"-axis *L X@0, 0D 0, H* set origin *L Y@0, 0D 0, H* set origin *L X@Ξ, 0D X@Ξ, 2 * PiD, H* periodicity *L Y@Ξ, 0D Y@Ξ, 2 * PiD, H* periodicity *L X@Ξ, 0D Ξ * X@1, 0D H* scaling *L =, 8alpha1, alpha2, beta1, beta2, , alpha3, beta3, a1, a2<E Solve::svars : Equations may not give solutions for all "solve" variables. beta3 Π3 - 16 b2 Ξ + b2 beta3 Π3 Ξ - beta3 Π3 + 4 b2 Ξ - b2 beta3 Π3 Ξ , beta2 ® 99beta1 ® 4 Π H1 + b2 ΞL , Π2 H1 + b2 ΞL alpha2 ® 0, alpha1 ® 0, alpha3 ® 0, a1 ® 1, a2 ® 0== Xnew@Ξ_, Η_D = Evaluate@X@Ξ, ΗD . ESSol@@1DDD Simplify Ynew@Ξ_, Η_D = Evaluate@Y@Ξ, ΗD . ESSol@@1DDD Simplify Ξ Cos@ΗD 1 4 Π2 Ξ Hb1 + b2 ΞL I- 16 b2 Π Η Ξ + 16 b2 Η2 Ξ + H1 + b2 ΞL beta3 Π4 Η H1 + b2 ΞL - 4 beta3 Π3 Η2 H1 + b2 ΞL + 4 Π2 I1 + beta3 Η3 M H1 + b2 ΞLM Sin@ΗD Plots This example for a quasi-polar mesh is being controled by three parameters. playground_wed_latex.nb ManipulateAParametricPlotA 1 9Ξ Cos@ΗD, 4 Π2 Ξ Hb1 + b2 ΞL I- 16 b2 Π Η Ξ + 16 b2 Η2 Ξ + beta3 Π4 Η H1 + b2 ΞL - H1 + b2 ΞL 4 beta3 Π3 Η2 H1 + b2 ΞL + 4 Π2 I1 + beta3 Η3 M H1 + b2 ΞLM Sin@ΗD=, 8Ξ, 0.0001, 1<, 8Η, 0, Pi 2<, AspectRatio ® 1E, 88b1, 1<, - 1, 1<, 88b2, 0<, - 1, 1<, 8 8beta3, 0<, - 1, 1<E b1 b2 beta3 15 16 playground_wed_latex.nb Examples playground_wed_latex.nb Mesh Refinement (Graphically) Plots ManipulateAParametricPlotA 1 9Ξ Cos@ΗD, Ξ Hb1 + b2 ΞL I- 16 b2 Π Η Ξ + 16 b2 Η2 Ξ + beta3 Π4 Η H1 + b2 ΞL - 4 Π2 H1 + b2 ΞL 4 beta3 Π3 Η2 H1 + b2 ΞL + 4 Π2 I1 + beta3 Η3 M H1 + b2 ΞLM Sin@ΗD=, 8Ξ, 0.0001, 1<, 8Η, 0, Pi 2<, AspectRatio ® 1, MeshFunctions ® 81 t * Exp@HSqrt@ð1 ^ 2 + ð2 ^ 2D - pL ^ 2 tD * Sqrt@ð1 ^ 2 + ð2 ^ 2D &, Exp@HArcSin@ð2 HSqrt@ð1 ^ 2 + ð2 ^ 2DLD - mL ^ 2 s ^ 2D * ArcSin@ð2 HSqrt@ð1 ^ 2 + ð2 ^ 2DLD &<E, 88b1, 1<, - 1, 1<, 88b2, 0<, - 1, 1<, 8 8beta3, 0<, - 1, 1<, 88m, 0<, 0, 2<, 88s, 3<, 0.01, 3<, 88t, 3<, 0.01, 3<, 88p, 0<, 0, 2<E b1 b2 beta3 m s t p 17 18 playground_wed_latex.nb Examples playground_wed_latex.nb Generate the Equations of RHD in Conservation Form on an Adaptive Curvilinear Grid Some Differential Geometry Coordinate Transformation x = Xnew@r, thetaD y=0 z = Ynew@r, thetaD r Cos@thetaD 0 1 4 Π2 r Hb1 + b2 rL I- 16 b2 Π r theta + beta3 Π4 H1 + b2 rL theta + 16 b2 r theta2 - H1 + b2 rL 4 beta3 Π3 H1 + b2 rL theta2 + 4 Π2 H1 + b2 rL I1 + beta3 theta3 MM Sin@thetaD 19 20 playground_wed_latex.nb lij = 88D@x, rD, D@x, thetaD<, 8D@z, rD, D@z, thetaD<< 98Cos@thetaD, - r Sin@thetaD<, 1 r Hb1 + b2 rL I- 16 b2 Π theta + b2 beta3 Π4 theta + 16 b2 theta2 - 9 4 Π2 H1 + b2 rL 4 b2 beta3 Π3 theta2 + 4 b2 Π2 I1 + beta3 theta3 MM Sin@thetaD + 1 4 Π2 b2 r I- 16 b2 Π r theta + beta3 Π4 H1 + b2 rL theta + 16 b2 r theta2 - H1 + b2 rL 4 beta3 Π3 H1 + b2 rL theta2 + 4 Π2 H1 + b2 rL I1 + beta3 theta3 MM Sin@thetaD 1 4 Π2 b2 r Hb1 + b2 rL I- 16 b2 Π r theta + beta3 Π4 H1 + b2 rL theta + 16 b2 r theta2 - H1 + b2 rL 2 4 beta3 Π3 H1 + b2 rL theta2 + 4 Π2 H1 + b2 rL I1 + beta3 theta3 MM Sin@thetaD + 1 4 Π2 Hb1 + b2 rL I- 16 b2 Π r theta + beta3 Π4 H1 + b2 rL theta + 16 b2 r theta2 - H1 + b2 rL 4 beta3 Π3 H1 + b2 rL theta2 + 4 Π2 H1 + b2 rL I1 + beta3 theta3 MM Sin@thetaD, 1 r Hb1 + b2 rL I- 16 b2 Π r theta + beta3 Π4 H1 + b2 rL theta + 16 b2 r theta2 - 4 Π2 H1 + b2 rL 4 beta3 Π3 H1 + b2 rL theta2 + 4 Π2 H1 + b2 rL I1 + beta3 theta3 MM Cos@thetaD + 1 r Hb1 + b2 rL I- 16 b2 Π r + beta3 Π4 H1 + b2 rL + 32 b2 r theta - 4 Π2 H1 + b2 rL 8 beta3 Π3 H1 + b2 rL theta + 12 beta3 Π2 H1 + b2 rL theta2 M Sin@thetaD== lijtransposed := Transpose@lijD 2D Metric Tensor (covariant Components) gij = lijtransposed.lij Simplify; Gij = Inverse@gijD Simplify; Grr = Gij@@1, 1DD; Grtheta = Gij@@1, 2DD; Gthetar = Gij@@2, 1DD; Gthetatheta = Gij@@2, 2DD; g = Det@gijD; playground_wed_latex.nb rootg = Sqrt@gD Simplify 1 8 Π2 1 r2 I8 b1 Π2 + 12 b2 Π2 r + 16 b1 b2 Π2 r + 24 b22 Π2 r2 + 8 b1 b22 Π2 r2 + 12 b23 Π2 r3 + . 4 H1 + b2 rL 2 b1 beta3 Π4 theta - 48 b1 b2 Π r theta + 3 b2 beta3 Π4 r theta + 4 b1 b2 beta3 Π4 r theta - 64 b22 Π r2 theta - 32 b1 b22 Π r2 theta + 6 b22 beta3 Π4 r2 theta + 2 b1 b22 beta3 Π4 r2 theta - 48 b23 Π r3 theta + 3 b23 beta3 Π4 r3 theta - 8 b1 beta3 Π3 theta2 + 48 b1 b2 r theta2 12 b2 beta3 Π3 r theta2 - 16 b1 b2 beta3 Π3 r theta2 + 64 b22 r2 theta2 + 32 b1 b22 r2 theta2 - 24 b22 beta3 Π3 r2 theta2 - 8 b1 b22 beta3 Π3 r2 theta2 + 48 b23 r3 theta2 - 12 b23 beta3 Π3 r3 theta2 + 8 b1 beta3 Π2 theta3 + 12 b2 beta3 Π2 r theta3 + 16 b1 b2 beta3 Π2 r theta3 + 24 b22 beta3 Π2 r2 theta3 + 8 b1 b22 beta3 Π2 r2 theta3 + 12 b23 beta3 Π2 r3 theta3 b2 r Ibeta3 Π4 H1 + b2 rL2 theta - 16 Π Hb1 + b2 r H2 + b2 rLL theta + 16 Hb1 + b2 r H2 + b2 rLL theta2 - 4 beta3 Π3 Htheta + b2 r thetaL2 + 4 HΠ + b2 Π rL2 I1 + beta3 theta3 MM Cos@2 thetaD + H1 + b2 rL Hb1 + b2 rL 2 I- 16 b2 r + beta3 Π2 H1 + b2 rL HΠ - 6 thetaLM HΠ - 2 thetaL Sin@2 thetaDM 2D Basis (covariant) er = lijtransposed@@1DD 1 9Cos@thetaD, 4 Π2 r Hb1 + b2 rL I- 16 b2 Π theta + b2 beta3 Π4 theta + H1 + b2 rL 16 b2 theta2 - 4 b2 beta3 Π3 theta2 + 4 b2 Π2 I1 + beta3 theta3 MM Sin@thetaD + 1 4 Π2 b2 r I- 16 b2 Π r theta + beta3 Π4 H1 + b2 rL theta + 16 b2 r theta2 - H1 + b2 rL 4 beta3 Π3 H1 + b2 rL theta2 + 4 Π2 H1 + b2 rL I1 + beta3 theta3 MM Sin@thetaD 1 4 Π2 b2 r Hb1 + b2 rL I- 16 b2 Π r theta + beta3 Π4 H1 + b2 rL theta + 16 b2 r theta2 - H1 + b2 rL2 4 beta3 Π3 H1 + b2 rL theta2 + 4 Π2 H1 + b2 rL I1 + beta3 theta3 MM Sin@thetaD + 1 4 Π2 Hb1 + b2 rL I- 16 b2 Π r theta + beta3 Π4 H1 + b2 rL theta + 16 b2 r theta2 - H1 + b2 rL 4 beta3 Π3 H1 + b2 rL theta2 + 4 Π2 H1 + b2 rL I1 + beta3 theta3 MM Sin@thetaD= etheta = lijtransposed@@2DD 9- r Sin@thetaD, 1 4 Π2 r Hb1 + b2 rL I- 16 b2 Π r theta + beta3 Π4 H1 + b2 rL theta + 16 b2 r theta2 - H1 + b2 rL 4 beta3 Π3 H1 + b2 rL theta2 + 4 Π2 H1 + b2 rL I1 + beta3 theta3 MM Cos@thetaD + 1 r Hb1 + b2 rL I- 16 b2 Π r + beta3 Π4 H1 + b2 rL + 32 b2 r theta - 4 Π2 H1 + b2 rL 8 beta3 Π3 H1 + b2 rL theta + 12 beta3 Π2 H1 + b2 rL theta2 M Sin@thetaD= 2D Contravariant Basis Er = Grtheta * etheta + Grr * er ; 21 22 playground_wed_latex.nb Etheta = Gthetar * er + Gthetatheta * etheta ; 2D Covariant, Mixed and Contravariant Components of the Metric Tensor Table@metricg@i, jD = ei .ej Simplify, 8i, 8r, theta<<, 8j, 8r, theta<<D; Table@Metricg@i, jD = Ei .Ej Simplify, 8i, 8r, theta<<, 8j, 8r, theta<<D; Simplify::time : Time spent on a transformation exceeded 300 seconds, and the transformation was aborted. Increasing the value of TimeConstraint option may improve the result of simplification. 2D Christoffel-Symbols Table@Table@Table@Gammer@sigma, mu, nuD = 1 2 * Sum@HEsigma .Erho L * HD@Henu .erho L, muD + D@Hemu .erho L, nuD - D@Hemu .enu L, rhoDL, 8rho, 8r, theta<<D FullSimplify, 8sigma, 8r, theta<<D, 8mu, 8r, theta<<D, 8nu, 8r, theta<<D 999I4 b2 Ibeta3 Π4 H1 + b2 rL3 theta - 16 Π Hb1 + b2 r H3 + b2 r H3 + b2 rLLL theta 4 beta3 HΠ + b2 Π rL3 theta2 + 16 Hb1 + b2 r H3 + b2 r H3 + b2 rLLL theta2 + 4 Π2 H1 + b2 rL3 I1 + beta3 theta3 MM Sin@thetaD2 M IH1 + b2 rL I2 b1 Ibeta3 Π4 H1 + b2 rL2 theta - 8 b2 Π r H3 + 2 b2 rL theta + 8 b2 r H3 + 2 b2 rL theta2 - 4 beta3 Π3 Htheta + b2 r thetaL2 + 4 HΠ + b2 Π rL2 I1 + beta3 theta3 MM + b2 r I3 beta3 Π4 H1 + b2 rL2 theta - 16 b2 Π r H4 + 3 b2 rL theta + 16 b2 r H4 + 3 b2 rL theta2 - 12 beta3 Π3 Htheta + b2 r thetaL2 + 12 HΠ + b2 Π rL2 I1 + beta3 theta3 MM b2 r Ibeta3 Π4 H1 + b2 rL2 theta - 16 Π Hb1 + b2 r H2 + b2 rLL theta + 16 Hb1 + b2 r H2 + b2 rLL theta2 - 4 beta3 Π3 Htheta + b2 r thetaL2 + 4 HΠ + b2 Π rL2 I1 + beta3 theta3 MM Cos@2 thetaD + H1 + b2 rL Hb1 + b2 rL I- 16 b2 r + beta3 Π2 H1 + b2 rL HΠ - 6 thetaLM HΠ - 2 thetaL Sin@2 thetaDMM, I2 b2 Ibeta3 Π4 H1 + b2 rL3 theta - 16 Π Hb1 + b2 r H3 + b2 r H3 + b2 rLLL theta 4 beta3 HΠ + b2 Π rL3 theta2 + 16 Hb1 + b2 r H3 + b2 r H3 + b2 rLLL theta2 + 4 Π2 H1 + b2 rL3 I1 + beta3 theta3 MM Sin@2 thetaDM Ir H1 + b2 rL I2 b1 Ibeta3 Π4 H1 + b2 rL2 theta - 8 b2 Π r H3 + 2 b2 rL theta + 8 b2 r H3 + 2 b2 rL theta2 - 4 beta3 Π3 Htheta + b2 r thetaL2 + 4 HΠ + b2 Π rL2 I1 + beta3 theta3 MM + b2 r I3 beta3 Π4 H1 + b2 rL2 theta - 16 b2 Π r H4 + 3 b2 rL theta + 16 b2 r H4 + 3 b2 rL theta2 - 12 beta3 Π3 Htheta + b2 r thetaL2 + 12 HΠ + b2 Π rL2 I1 + beta3 theta3 MM b2 r Ibeta3 Π4 H1 + b2 rL2 theta - 16 Π Hb1 + b2 r H2 + b2 rLL theta + 16 Hb1 + b2 r H2 + b2 rLL theta2 - 4 beta3 Π3 Htheta + b2 r thetaL2 + 4 HΠ + b2 Π rL2 I1 + beta3 theta3 MM Cos@2 thetaD + H1 + b2 rL Hb1 + b2 rL I- 16 b2 r + beta3 Π2 H1 + b2 rL HΠ - 6 thetaLM HΠ - 2 thetaL Sin@2 thetaDMM=, 9I2 b2 r Sin@thetaD IIbeta3 Π4 H1 + b2 rL2 theta - 16 Π Hb1 + b2 r H2 + b2 rLL theta + 16 Hb1 + b2 r H2 + b2 rLL theta2 - 4 beta3 Π3 Htheta + b2 r thetaL2 + 4 HΠ + b2 Π rL2 I1 + beta3 theta3 MM Cos@thetaD + playground_wed_latex.nb 4 HΠ + b2 Π rL2 I1 + beta3 theta3 MM Cos@thetaD + I- 16 b1 - 16 b2 r H2 + b2 rL + beta3 HΠ + b2 Π rL2 HΠ - 6 thetaLM HΠ - 2 thetaL Sin@thetaDMM I2 b1 Ibeta3 Π4 H1 + b2 rL2 theta - 8 b2 Π r H3 + 2 b2 rL theta + 8 b2 r H3 + 2 b2 rL theta2 4 beta3 Π3 Htheta + b2 r thetaL2 + 4 HΠ + b2 Π rL2 I1 + beta3 theta3 MM + b2 r I3 beta3 Π4 H1 + b2 rL2 theta - 16 b2 Π r H4 + 3 b2 rL theta + 16 b2 r H4 + 3 b2 rL theta2 12 beta3 Π3 Htheta + b2 r thetaL2 + 12 HΠ + b2 Π rL2 I1 + beta3 theta3 MM b2 r Ibeta3 Π4 H1 + b2 rL2 theta - 16 Π Hb1 + b2 r H2 + b2 rLL theta + 16 Hb1 + b2 r H2 + b2 rLL theta2 - 4 beta3 Π3 Htheta + b2 r thetaL2 + 4 HΠ + b2 Π rL2 I1 + beta3 theta3 MM Cos@2 thetaD + H1 + b2 rL Hb1 + b2 rL I- 16 b2 r + beta3 Π2 H1 + b2 rL HΠ - 6 thetaLM HΠ - 2 thetaL Sin@2 thetaDM, I2 b1 I- beta3 Π4 H1 + b2 rL2 theta + 16 b2 Π r H2 + b2 rL theta - 16 b2 r H2 + b2 rL theta2 + 4 beta3 Π3 Htheta + b2 r thetaL2 - 4 HΠ + b2 Π rL2 I1 + beta3 theta3 MM + 4 b2 r I- beta3 Π4 H1 + b2 rL2 theta + 8 b2 Π r H3 + 2 b2 rL theta - 8 b2 r H3 + 2 b2 rL theta2 + 4 beta3 Π3 Htheta + b2 r thetaL2 - 4 HΠ + b2 Π rL2 I1 + beta3 theta3 MM Ib1 I- 16 b2 r H2 + b2 rL + beta3 HΠ + b2 Π rL2 HΠ - 6 thetaLM + 2 b2 r I- 8 b2 r H3 + 2 b2 rL + beta3 HΠ + b2 Π rL2 HΠ - 6 thetaLMM HΠ - 2 thetaL Sin@2 thetaDM Ir Ib2 r I- 3 beta3 Π4 H1 + b2 rL2 theta + 16 b2 Π r H4 + 3 b2 rL theta - 16 b2 r H4 + 3 b2 rL theta2 + 12 beta3 Π3 Htheta + b2 r thetaL2 - 12 HΠ + b2 Π rL2 I1 + beta3 theta3 MM + 2 b1 I- beta3 Π4 H1 + b2 rL2 theta + 8 b2 Π r H3 + 2 b2 rL theta - 8 b2 r H3 + 2 b2 rL theta2 + 4 beta3 Π3 Htheta + b2 r thetaL2 - 4 HΠ + b2 Π rL2 I1 + beta3 theta3 MM + b2 r Ibeta3 Π4 H1 + b2 rL2 theta - 16 Π Hb1 + b2 r H2 + b2 rLL theta + 16 Hb1 + b2 r H2 + b2 rLL theta2 - 4 beta3 Π3 Htheta + b2 r thetaL2 + 4 HΠ + b2 Π rL2 I1 + beta3 theta3 MM Cos@2 thetaD - H1 + b2 rL Hb1 + b2 rL I- 16 b2 r + beta3 Π2 H1 + b2 rL HΠ - 6 thetaLM HΠ - 2 thetaL Sin@2 thetaDMM==, 99I2 b2 r Sin@thetaD IIbeta3 Π4 H1 + b2 rL2 theta - 16 Π Hb1 + b2 r H2 + b2 rLL theta + 16 Hb1 + b2 r H2 + b2 rLL theta2 - 4 beta3 Π3 Htheta + b2 r thetaL2 + 4 HΠ + b2 Π rL2 I1 + beta3 theta3 MM Cos@thetaD + I- 16 b1 - 16 b2 r H2 + b2 rL + beta3 HΠ + b2 Π rL2 HΠ - 6 thetaLM HΠ - 2 thetaL Sin@thetaDMM I2 b1 Ibeta3 Π4 H1 + b2 rL2 theta - 8 b2 Π r H3 + 2 b2 rL theta + 8 b2 r H3 + 2 b2 rL theta2 4 beta3 Π3 Htheta + b2 r thetaL2 + 4 HΠ + b2 Π rL2 I1 + beta3 theta3 MM + b2 r I3 beta3 Π4 H1 + b2 rL2 theta - 16 b2 Π r H4 + 3 b2 rL theta + 16 b2 r H4 + 3 b2 rL theta2 12 beta3 Π3 Htheta + b2 r thetaL2 + 12 HΠ + b2 Π rL2 I1 + beta3 theta3 MM b2 r Ibeta3 Π4 H1 + b2 rL2 theta - 16 Π Hb1 + b2 r H2 + b2 rLL theta + 16 Hb1 + b2 r H2 + b2 rLL theta2 - 4 beta3 Π3 Htheta + b2 r thetaL2 + 4 HΠ + b2 Π rL2 I1 + beta3 theta3 MM Cos@2 thetaD + H1 + b2 rL Hb1 + b2 rL I- 16 b2 r + beta3 Π2 H1 + b2 rL HΠ - 6 thetaLM HΠ - 2 thetaL Sin@2 thetaDM, I2 b1 I- beta3 Π4 H1 + b2 rL2 theta + 16 b2 Π r H2 + b2 rL theta - 16 b2 r H2 + b2 rL theta2 + 4 beta3 Π3 Htheta + b2 r thetaL2 - 4 HΠ + b2 Π rL2 I1 + beta3 theta3 MM + 4 b2 r I- beta3 Π4 H1 + b2 rL2 theta + 8 b2 Π r H3 + 2 b2 rL theta - 8 b2 r H3 + 2 b2 rL theta2 + 4 beta3 Π3 Htheta + b2 r thetaL2 - 4 HΠ + b2 Π rL2 I1 + beta3 theta3 MM Ib1 I- 16 b2 r H2 + b2 rL + beta3 HΠ + b2 Π rL2 HΠ - 6 thetaLM + 2 b2 r I- 8 b2 r H3 + 2 b2 rL + beta3 HΠ + b2 Π rL2 HΠ - 6 thetaLMM HΠ - 2 thetaL Sin@2 thetaDM Ir Ib2 r I- 3 beta3 Π4 H1 + b2 rL2 theta + 16 b2 Π r H4 + 3 b2 rL theta - 16 b2 r H4 + 3 b2 rL theta2 + 12 beta3 Π3 Htheta + b2 r thetaL2 - 12 HΠ + b2 Π rL2 I1 + beta3 theta3 MM + 23 24 playground_wed_latex.nb theta2 + 12 beta3 Π3 Htheta + b2 r thetaL2 - 12 HΠ + b2 Π rL2 I1 + beta3 theta3 MM + 2 b1 I- beta3 Π4 H1 + b2 rL2 theta + 8 b2 Π r H3 + 2 b2 rL theta - 8 b2 r H3 + 2 b2 rL theta2 + 4 beta3 Π3 Htheta + b2 r thetaL2 - 4 HΠ + b2 Π rL2 I1 + beta3 theta3 MM + b2 r Ibeta3 Π4 H1 + b2 rL2 theta - 16 Π Hb1 + b2 r H2 + b2 rLL theta + 16 Hb1 + b2 r H2 + b2 rLL theta2 - 4 beta3 Π3 Htheta + b2 r thetaL2 + 4 HΠ + b2 Π rL2 I1 + beta3 theta3 MM Cos@2 thetaD - H1 + b2 rL Hb1 + b2 rL I- 16 b2 r + beta3 Π2 H1 + b2 rL HΠ - 6 thetaLM HΠ - 2 thetaL Sin@2 thetaDMM=, 9Ir H1 + b2 rL Hb1 + b2 rL I- 32 b2 Π r theta + 2 beta3 Π4 H1 + b2 rL theta + 32 b2 r I- 1 + theta2 M 8 beta3 Π3 H1 + b2 rL I- 1 + theta2 M + 8 Π2 H1 + b2 rL I1 + beta3 theta I- 3 + theta2 MM 8 I- 4 b2 r + beta3 Π2 H1 + b2 rL HΠ - 3 thetaLM Cos@2 thetaD I- 16 b2 r + beta3 Π2 H1 + b2 rL HΠ - 6 thetaLM HΠ - 2 thetaL Sin@2 thetaDMM Ib2 r I- 3 beta3 Π4 H1 + b2 rL2 theta + 16 b2 Π r H4 + 3 b2 rL theta - 16 b2 r H4 + 3 b2 rL theta2 + 12 beta3 Π3 Htheta + b2 r thetaL2 - 12 HΠ + b2 Π rL2 I1 + beta3 theta3 MM + 2 b1 I- beta3 Π4 H1 + b2 rL2 theta + 8 b2 Π r H3 + 2 b2 rL theta - 8 b2 r H3 + 2 b2 rL theta2 + 4 beta3 Π3 Htheta + b2 r thetaL2 - 4 HΠ + b2 Π rL2 I1 + beta3 theta3 MM + b2 r Ibeta3 Π4 H1 + b2 rL2 theta - 16 Π Hb1 + b2 r H2 + b2 rLL theta + 16 Hb1 + b2 r H2 + b2 rLL theta2 - 4 beta3 Π3 Htheta + b2 r thetaL2 + 4 HΠ + b2 Π rL2 I1 + beta3 theta3 MM Cos@2 thetaD H1 + b2 rL Hb1 + b2 rL I- 16 b2 r + beta3 Π2 H1 + b2 rL HΠ - 6 thetaLM HΠ - 2 thetaL Sin@2 thetaDM, I2 Cos@thetaD I2 H1 + b2 rL Hb1 + b2 rL I- 16 b2 r + beta3 Π2 H1 + b2 rL HΠ - 6 thetaLM HΠ - 2 thetaL Cos@thetaD + I8 b1 I- beta3 HΠ + b2 Π rL2 HΠ - 3 thetaL + 2 b2 r I2 + 2 b2 r - Π theta + theta2 MM + b2 r Ibeta3 Π4 H1 + b2 rL2 theta - 16 b2 Π r H2 + b2 rL theta 4 beta3 Π3 H1 + b2 rL2 I2 + theta2 M + 16 b2 r I2 I1 + theta2 M + b2 r I2 + theta2 MM + 4 HΠ + b2 Π rL2 I1 + beta3 theta I6 + theta2 MMMM Sin@thetaDMM I2 b1 Ibeta3 Π4 H1 + b2 rL2 theta - 8 b2 Π r H3 + 2 b2 rL theta + 8 b2 r H3 + 2 b2 rL theta2 4 beta3 Π3 Htheta + b2 r thetaL2 + 4 HΠ + b2 Π rL2 I1 + beta3 theta3 MM + b2 r I3 beta3 Π4 H1 + b2 rL2 theta - 16 b2 Π r H4 + 3 b2 rL theta + 16 b2 r H4 + 3 b2 rL theta2 12 beta3 Π3 Htheta + b2 r thetaL2 + 12 HΠ + b2 Π rL2 I1 + beta3 theta3 MM b2 r Ibeta3 Π4 H1 + b2 rL2 theta - 16 Π Hb1 + b2 r H2 + b2 rLL theta + 16 Hb1 + b2 r H2 + b2 rLL theta2 - 4 beta3 Π3 Htheta + b2 r thetaL2 + 4 HΠ + b2 Π rL2 I1 + beta3 theta3 MM Cos@2 thetaD + H1 + b2 rL Hb1 + b2 rL I- 16 b2 r + beta3 Π2 H1 + b2 rL HΠ - 6 thetaLM HΠ - 2 thetaL Sin@2 thetaDM=== Spatial Part of Continuity Equation 2D Divergence Divergence - Spacial Part of Continuity Eqaution Sum@d@iD@Sqrt@gD * Hrho * Hu@iD - xdot@iDLLD, 8i, 8r, theta<<D playground_wed_latex.nb A very large output was generated. Here is a sample of it: d@rDArho - J 4 b1 b22 b12 r2 Cos@thetaD4 H1+b2 rL2 r4 Cos@thetaD4 H1+b2 rL2 + + 2 b1 b2 r3 Cos@thetaD4 b12 H1+b2 rL2 b22 r4 Cos@thetaD4 H1+b2 rL2 117 b12 b28 beta34 Π4 r10 theta10 Sin@thetaD4 d@thetaDArho b12 r2 14 H1+1L2 H1+b2 rL2 b28 648 b1 + 13 021 + + b22 r4 Cos@thetaD4 H1+b2 rL2 beta34 Π4 H1+b2 rL2 HΠ+b2 Π rL4 H1+b2 rL2 HΠ+b2 Π rL4 + 13 030 + 36 5 1 12 1 r10 theta10 + Sin@thetaD4 H1+b2 rL2 HΠ+b2 Π rL4 36 b210 beta34 Π4 r12 theta10 Sin@thetaD4 + H1+b2 rL2 HΠ+b2 Π rL4 2 b12 b2 r3 Cos@thetaD4 216 b29 beta34 Π4 r11 theta10 Sin@thetaD4 + H1+b2 rL2 HΠ+b2 Π rL4 108 b1 b29 beta34 Π4 r11 theta10 Sin@thetaD4 + + N Hu@rD - xdot@rDLE + Hu@thetaD - xdot@thetaDLE Show Less Show More Show Full Output Set Size Limit... Divergence in Polar Coordinates in Conservative, Axisymmetric Formulation Sum@d@iD@Sqrt@gD * Hrho * Hu@iD - xdot@iDLLD, 8i, 8r, theta<<D . 8Sin@thetaD ® Sqrt@1 - mu ^ 2D, d@thetaD ® - Sqrt@1 - mu ^ 2D d@muD, Csc@thetaD ® 1 Sqrt@1 - mu ^ 2D, Cos@thetaD ® mu< A very large output was generated. Here is a sample of it: J- 1 - mu2 d@muDNA rho - - b14 beta3 mu I1-mu2 M32 Π2 r2 b14 mu2 I1-mu2 M r2 - H1+b2 rL6 6 b14 b2 mu2 I1-mu2 M r3 H1+b2 rL6 + 13 017 + 12 b1 beta34 mu2 I1-mu2 M Π4 r11 H1+b2 rL2 HΠ+b2 Π rL4 6 b13 b2 mu2 I1-mu2 M r3 - H1+b2 rL6 - + H1+b2 rL2 HΠ+b2 Π rL4 24 b29 beta34 mu2 I1-mu2 M Π4 r11 theta12 + H1+b2 rL2 HΠ+b2 Π rL4 16 H1+b2 rL6 72 b1 b28 beta34 mu2 I1-mu2 M Π4 r10 theta12 13 b12 b28 beta34 mu2 I1-mu2 M Π4 r10 theta12 b29 b14 beta32 I1-mu2 M2 Π4 r2 - 2 H1+b2 rL6 theta12 + H1+b2 rL2 HΠ+b2 Π rL4 4 b210 + Hu@thetaD - xdot@thetaDLE + d@rDArho beta34 mu2 I1-mu2 M Π4 r12 theta12 H1+b2 rL2 HΠ+b2 Π rL4 13 030 + 4 7 12 1 + Hu@rD - xdot@rDLE Show Less Show More Show Full Output Set Size Limit... 25 26 playground_wed_latex.nb Continuity Equation d@tD@Sqrt@gD * rhoD + Sum@d@iD@Sqrt@gD * Hrho * Hu@iD - xdot@iDLLD, 8i, 8r, theta<<D . 8Sin@thetaD ® Sqrt@1 - mu ^ 2D, d@thetaD ® - Sqrt@1 - mu ^ 2D d@muD, Csc@thetaD ® 1 Sqrt@1 - mu ^ 2D, Cos@thetaD ® mu< Simplify A very large output was generated. Here is a sample of it: r2 J-b12 H1L+2 b1 b2 r H1L+b22 r2 H1LN rho J- - Hu@thetaD-xdot@thetaDL H1+b2 rL4 1 - mu2 d@muDNA E+ 4 Π2 r2 J-b12 H1L+2 b1 b2 r J-4 beta32 Π7 H1L4 theta H1L+11N+b22 r2 H1LN rho - E+ 4 Π2 r2 -b12 -beta32 Π8 H1+b2 rL4 -mu2 +mu4 -2 mu rho d@tDA Hu@rD-xdot@rDL H1+b2 rL4 d@rDA 1-mu2 theta-theta2 -8 4 J4+52 N+11 +2 4+b22 r2 H1L H1+b2 rL4 4 Π2 Show Less Show More Show Full Output Set Size Limit... E
© Copyright 2026 Paperzz