Biometrika (1999), 86, 4,pp. 965-972 ? 1999BiometrikaTrust Printedin GreatBritain Statisticalanalysisofincomplete data long-range dependent BY WILFREDO PALMA AND GUIDO DEL PINO Departamento de Estadistica,PontificiaUniversidad Catolicade Chile,Casilla 306, Santiago22, Chile [email protected] gdelpino(mat.puc.cl SUMMARY This paperaddressesboththeoretical and methodological of issuesrelatedto theprediction long-memory modelswithincomplete data.Estimates and forecasts are calculatedby meansof statespace modelsand theinfluence of data gaps on theperformance of shortand long run is investigated. predictions Thesetechniques areillustrated witha statistical analysisoftheminimumwaterlevelsoftheNileriver, a timeseriesexhibiting strongdependency. Somekeywords:ARFIMAmodel;Incomplete data;Linearpredictor; Maximum Long-memory; likelihood; Meansquareprediction error; Statespacesystem. 1. INTRODUCTION data arisein a widevariety Long-range dependent ofscientific fromhydrology to disciplines, see forexampleBloomfield economics; (1992),Robinson(1993),Beran(1994) and Ray & Tsay classoflong-memory (1997).A well-known processes aretheautoregressive fractionally integrated movingaverage(ARFIMA) models,defined bythediscrete-time equation (D(B)( 1 - B)dyt = E)(B)et, fort= 1,... , n,whereIdI< 4, {?t} is a whitenoisesequencewithzeromeanand varianceo2, B is thebackshift operator ofdegreesp and q respectively Byt= yt D(B) and ((B) arepolynomials withno commonzerosand all theirrootsoutsidetheunitcircle,and (1 - B)d is thefractional The ARFIMA difference operator. modelshavelongmemory becausetheirautocorrelations decay to zero at a hyperbolicrate,thatis Pk -I kI` (oC > 0), forlarge k. Estimationof theselong-range dependentmodelsis discussedby Fox & Taqqu (1986), Dahlhaus (1989) and Sowell(1992), among others.The problemof data gaps in time serieshas receiveda great deal of attention;see for exampleJones(1980), Ansley& Kohn (1983) and Penzer & Shea (1997). In particular,Palma & Chan (1997) and Chan & Palma (1998) develop state space methodsfordealing withmissing observationsin the long-memory context. The mainobjectiveofthispaperis to investigate ofmissingvaluesor data irregularities theeffects on the behaviourof predictionerrors.If Ytdenotesthe value of the seriesat timet,the complete and the observed series are (yt, t E In = {1, . . . , n}) and (Yt, t E K,,= {k1,. . . , kr,} ' IJl)respectively. Informationmay be available in the patternof missingobservations,whichis equivalentto the is performed conditionalon it. For Kn, but thisset is normallyconsideredas fixed,or inference likelihoodinferencethis may be justifiedby appealing to the 'missingat random' conditionof Little& Rubin(1987,p. 10), whichmeansherethatKnis not affected by theparameter0 specifying thetimeseriesmodel or by theunobservedvalues {Yt:t E I, t ? K11}.The likelihoodfunctionL(0) is just thejoint densityof the observedvalues,whichmay be specifiedin manyways,leadingto formulaeforthelikelihood,e.g.integrated different likelihoodor recursivelikelihood.Nevertheless, theyall lead to equivalentfunctions. This paper focuseson therecursivelikelihoodfora Gaussian timeseries,whichcan be calculatedbymeansoftheKalman filter. Let 9tbe thebestlinearpredictor 966 WILFREDO PALMA AND DEL GUIDO PINO ofYtgiventheobservedvaluesup to timet - 1 and let A,be thevarianceoftheone-stepprediction erroryt- t. Withthisnotationthe recursivelikelihoodis L(f))-(27) - r(I1HAt exp F- r { A_ ]1 Explicitstatespace formulaeforcalculatingthe predictionsytand Atmay be foundin Palma & Chan (1997). Section 2 addressesthe behaviourof shortand long run forecastsof ARFIMA models in the presenceof data gaps. Applicationsof theseproceduresto the analysisof the annual minimum waterlevelsof theNile riverare discussedin ? 3. 2. INFLUENCE OF MISSING VALUES ON PREDICTION 2 1. Preliminaries This sectionstudiesthe evolutionof the one-stepmean square predictionerror,E(yt- it)2, for ARFIMA models,duringand aftera block of missingdata. The resultsare thenspecialisedto the case of a singlemissingobservation. For mathematicalconvenience,the analysisis carriedout by takinginto accountthe fullpast, instead of the finitepast, Yt-i, Yt-2,... Yl, of the time series.Throughoutthis Yt-1, Yt-2, .., sectionwe use theconceptsofexponentialand hyperbolicratesofconvergenceofa sequence {Xk } to its limitx as k- oo. Exponentialconvergencecorrespondsto IXk-X I < C1 a - k forlarge k, for some a > 1 and a positiveconstantC1, and hyperbolicconvergenceto IXk- xl < C2k ', forsome C2 >0 and o > 0. 2 2. Influence ofa blockofmissingvalues 0..'., Yto+ m -1, are missing,the standarddeviationof the When m consecutiveobservations,Yto is added. predictionerrorincreasesduringthe data gap and thendecreases,as new information we may take to= 0. By stationarity, The followingtwo propositionscharacterisethisbehaviourduringand afterthe data gap and specifythe convergencerates.Proofsare givenin the Appendix. THEOREM Z1 1. Let Yt be a stationaryinvertibleprocess with AR(O0) decompositionYt= Yt=yJ=o jYt-j and MA(OO) decomposition jet-j. Suppose that the observations = (yt, t < k,t 0 {0, 1,... , m- 1}). Denotebye(t,m,k) theerror and let ~//km Yo, ... 5Ym are missing of thebestlinearpredictorofYtgiven #k,n,thatis givenall theavailableinformation beforetimek, ?t-?- and by U2(t,m,k) its variance.Then (a) for k= 0, ..., m,a2(k, m,k)= (b) for k > m, u2(k,m,k)- u a u2m2 L j /J; maxj>k-m 7E Theorem 1(a) shows that,as expected,duringthe data gap the mean square predictionerror is beingadded. In contrast,after increasesmonotonicallyup to timem,sinceno new information timem the varianceof the predictionerrordecreases,as new observationsare incorporated.The nextresultspecifiesthe ratesat whichtheseerrorvariancesincreaseor decreaseduringand after the gap. THEOREM 2. Withthenotationof Theorem1,fora long-memory ARFIMAmodel, (a) o2(k, m,k)- a2 _ Clk2d-l, for someconstantC1> 0 and largek (k < m); C2k-2d-2, forsomeconstant (b) o2(k, m,k) _ C2 > 0 andlargek (k> m). ARMAmodel, Also,for a short-memory (c) o2(k, m,k) - a2 _ C3aj-k forsomeconstants C3 > 0, a1 > 1 andlargek (k< m); (d) o'(k, m,k)-aE ~ C4a2j for someconstantsC4 > 0, a2 > 1 and largek (k > m). Accordingto Theorem2, thereare two different hyperbolicratesforthemean square prediction errorduringand afterthe data gap. For example,ifd = 0 40, the varianceof the predictionerror 967 Miscellanea duringthe gap increasesat rate O(k-02), whereasit decreasesto U2 at rate O(k-28). Thus informationis lost duringthe block of missingobservationsat a muchslowerratethanthatat which it is gained afterthe data gap. Theorems1 and 2 assume the data gap lengthto be fixed.However,if the lengthof the gap equivalentto thatduringthe tranincreasesto infinity, thenthepredictionprocessis statistically sitionperiodat thebeginningofthetimeseries,withno previousobservation.The followingresult characterises the convergenceof thepredictionerrorin thiscase. THEOREM errore(k, Xo,k). Then,as k-o, 3. Let o2(k, oo,k) be thevarianceof theprediction 72(k,oo k)-u2,Ck-1. past may be drawnfrom An interesting relationshipbetweenpredictingwithfiniteand infinite Theorem3. Let 9(t,m,k) be the errorof the best linearpredictorof y, based on the finitepast (Yt-1,Yt-2 ... Yi), and let J2(k,oo,k) be its variance.Then 2 X(koo k) = 2 k-i H(1 - ) o'(k,oo, k). i=1 to o2, the errorvarianceof the best Accordingto Theorem3, thistermconvergeshyperbolically ) past (Yt-1, Yt-2 linearpredictorof ytbased on the infinite 2 3. Influence ofa singlemissingvalue errorofan isolated of Theorem1, themeansquareprediction THEOREM 4. Undertheconditions is asfollows: missingobservation (a) for k >, 52(k, 1, k)- U2 =in2 2(0, 1, k); decreasingsequencethena2(k,1,k) - a2is a monotonically (b) for k > 0, ifik is a monotonically to zero. decreasingsequenceconverging Accordingto Theorem4(a) thereis a jump in themean square predictionerroraftera missing value. Its magnitudeis n2U25 unlessi, = 0, as is trueforsome ARFIMA models.For instance,in an ARFIMA (1, d, 1) process71 = 0-d, and so thereis no jump in theone-stepmean squareprediction errorif d = 0 - b. The monotonicityconditionin Theorem4(b) is shared by all fractional 1 (k-1-d)/k > Oandso 7k/7k + 1 noiseprocesseswithlongmemoryparameterd. In fact,7.I = (k + 1)/(k- d). However,ford E (-1, 1) and k > 1, (k + 1)/(k- d) > 1, provingthat7Ek/7Ek1 > 1. Figure1 depictsthe evolutionof the mean square predictionerror,a2(k,1,k), aftera single missingvalue forARFIMA(0, d,0) modelswithparametersd = 0 10,d = 0 40 and d = 049, respect?- -d=O0 o 120 10 d=040 d=049 E 115 V D 1-05 1*10D___ .,_,,,_,__._ 1 00 v . ^... ._w . .......... ............... A__: f........ 5 10 Time . .._ .......... 15 Fig. 1. Mean square predictionerrorforfractionalnoise processes. 20 968 PALMA WILFREDO AND GUIDO DEL PINO ively.Ifwe take a' = 1 it followsfromi, = 0- -d thatthemagnitudeofthejump is d2. Observe that, after the firstpeak, the mean square predictionerror decays to one monotonically. betweenthe mean square predictionerrorand one is not noticeable the difference Furthermore, afterabout six stepsfromthemissingvalue. The resultsdiscussedin thissectionindicatea sharpcontrastbetweenARMA and ARFIMAprocesses.For example,fromTheorem2, the influenceof a data gap on the mean square prediction errorvanishes at an exponentialrate for ARMA models and at a hyperbolicrate for ARFIMA processes.Thus, the influenceon the predictionerrorspersistslongerin the latterprocesses.On errorvarianceafterthe end of the otherhand, as a consequenceof Theoreml(a) the forecasting processesa clear theseriesgrowsmoreslowlyforARFIMAthanARMAmodels,givinglong-memory processes. advantageover short-memory 3. APPLICATION: THE NILE RIVER DATA REVISITED The annual minimumwater levels of the Nile rivermeasuredat the Roda gorge is a welllong-rangedependency;see forexampleHosking(1984), Beran(1994, knowntimeseriesexhibiting Ch. 1) and Hipel & McLeod (1994, Ch. 10). These measurements,available fromStatlib at www.stat.cmu.edu, are displayedin Fig. 2(a) spanninga time period fromAD 622 to AD 1921. Severalblocks of repeatedobservations,i.e. consecutiveyearshavingexactlythe same minimum waterlevel,have been removed.Since the observationsare specifiedby fourdigits,therepetitions are probablythe resultof a lack of new information. From AD 622 to AD 1281, the period analysedby Beran (1994), thereare 48 repeatedvalues. to roughly27% of the This figurerisesto 344 whenthe fullperiodis considered,corresponding century, when samplesize of 1297 observations.The problemis especiallycriticalafterthefifteenth can be found. blocks of up to 55 consecutiverepetitions FollowingBeran (1994,p. 11), we fittedan ARFIMA(O,d,0) model to theNile riverdata and the maximumlikelihoodestimatesare presentedin Table 1. The fullperiodfromAD 622 to AD 1921 was dividedinto two sub-periods,fromAD 622 to AD 1281,whichcoincideswithBeran'sanalysis, and fromAD 1282 to AD 1921,a periodin which46% of the observationsare missing.The means of the timeseriesin Fig. 2(a), displayedin the thirdcolumn of Table 1, are similarin the three (a) Data withoutrepetitions ; 14- 102 600 800 1000 1200 1400 1600 1800 1400 1600 1800 Year (b) One-steppredictions ~14%- 121 600 800 1000 1200 Year Fig. 2. Annual minimumwaterlevelsof theNile river(AD 622-AD 1921). Miscellanea 969 periods,whereasthe standarddeviationsof the timeseries,shownin the fourthcolumn,present small changesfromperiodto period. Table 1: Nile riverdata. Maximumlikelihoodestimationof d and C72 Period AD 622-AD 1281 1921 622-AD 1921 AD 1282-AD AD Missing 7% 46% 27% y1150 12 08 11 71 7y 0 89 1 17 1 04 d td SE 0 3712 1196 0 921 0 4385 0 4141 14 92 18 21 1 095 0 733 From Table 1, it can be observedthat the maximumlikelihoodestimatesof the long-memory parameterd in the threeperiods are similar.The estimatefound by Beran (1994, p. 125) is d = 040, for the period AD 622-AD 1281 withoutremovingthe repeatedvalues. The maximum likelihoodestimateof d forthe second and thirdperiodswiththe repeatedvalues is 0 49 in both models. cases,indicatingalmostnonstationary The estimatedstandarddeviThe t-statistics ford in the studiedperiodsare highlysignificant. ations of the noise U. are close to one in the firstand second periods.However,when the full periodis considered,thisestimatedrops to around 0 7. The influenceof the data gaps on theforecastscan be analysedfromthe Kalman filteroutput. Figure2(b) depictsone-steppredictions.The residuals,et= Yt,- y, and the predictions'standard deviationsare displayedin Fig. 3. The evolutionof these standarddeviationsis explained by the theoreticalresultsfrom? 2. Two typicalsituationsare shownin Fig. 4. Aftera singlemissing value at time t = 791, see Fig. 4(a), the residual standard deviationjumps to roughly0 8 in agreementwithTheorem4. It can cU" (1 + 7E2), and thendecays to C, = 0-733monotonically, six stepsafterthe missingvalue to reach be also observedin Fig. 4(a) thatit takes approximately the 0 733 level,analogouslyto the theoreticalresultdisplayedin Fig. 1 ford = 0 40. For a stringof missingvalues,see Fig. 4(b), the mean square predictionerrorapproachesthe upper limito2 monotonicallyat a hyperbolicrate O(k-026), see Theorem 2(a). Then, as new is added, the errorvariancedecays to o2 at a hyperbolicrate O(k-274) as indicated information (a) 600 800 1000 1200 1600 1400 1800 Year (b) '1-4. 1-0 I II kln I IIE a08 600 800 II 11ld IIAl a 1000 I RIN I I 1200 1 1 1400 Lf 1600 h 1800 Year Fig.3. (a) Residuals: Yt- 9 and (b) standarddeviationsof one-steppredictions,forthe Nile riverdata. 970 WILFREDO (a) AD PALMA AND GUIDO DEL (b) AD 781-AD 801 080 - PINO 1529-AD 1588 -t 100 24 0-78- t0.90 0-76- 0.80 0-74- _. . ... 790 . 800 . . ~~~~~~~~. 1530 . 1550 Year 1570 1590 Year Fig. 4: Nile river data. Evolution of one-step standard deviations (a) (b) AD 1529-AD 1588 period. AD 781-AD 801 period, by Theorem2(b). It takes55 missingobservationsforthemean square predictionerrorto increase to about one, but it takesfewerthan six observationsto regainthe originallevel,U. Model fitting fortheNile riverapplicationhas beenperformed usingthestatespace formulation, and a Fortranprogramthatimplements thisapproachis availablefromtheauthors.As shownby thisapplication,data irregularities may severelyaffectthe estimationof long-memory processes, models. resultingin almostnonstationary ACKNOWLEDGEMENT Part ofthisworkcorrespondsto thefourthchapterofW. Palma's Ph.D. dissertation at CarnegieMellon University;he would like to thankN. H. Chan, J. B. Kadane and N. Terrinfor their guidanceand helpfulcommentsand discussions.This researchwas supportedin part by a grant fortheircarefulreviewof fromFondecyt.The authorswishto thankthe editorand two referees the paper. APPENDIX Proofs Proofof Theorem1. Part (a) is a standardresultforthe t - s stepsahead errorvariance;see e.g. Beran (1994, p. 167). To prove(b) take t = k in theAR(oo) decompositionand subtractfromboth sides the best linearpredictor.Then all termsvanish,exceptforYk and those associatedwiththe missingobservations,whichyieldsthe usefulidentity e(k,m,k) = Z k ?k - ice(k-I, m,k). (Al) 1 j=k-m+ of 8k to all previousobservations, By the orthogonality k)= ,72(k,m, 72 + var { k j=k-m+l1 -j, m,k)} 7tje(k (A2) form> 1. Boundingthe sum in (b) and U2(j,m,k) by o2 ends the proof. Proof of Theorem 2. (a) For k < m, o2(k, m,k) - 2 Jk j= = = J??Zk j. J V2 C1k2d-1,forlargek. (b) For k >>m,from(A2), ~m,k z-ml{f(,m,k-E}=vrgk E Zkl+zekj v Since D /i Cljdl ,k> forlarge j, Miscellanea 971 forlarge k, k var { 2} k) 7C-Pnl{f2k,m, - e(k-j, m,k)} j =k -mtt+ 1 = var(Zk), where m-1 Zk = j=O in- 1 yj -E Y, j=O .. * *nYmnzY-1 nY-25-* YjI|YO < var(Zk)< var(Zm)< oo. Therefore However,0 < var(ZO,,) 2(k,m,k)- _ C2 - C2k-2d-2 bm? (k? i). Parts (c) and (d) are proved analogously,by observingthatforARMA processesi/ij 7Ej C4aJ- forlargej. C3a-j and D2 Proofof Theorem3. Let C be a constantwhichdoes not dependon k. Then,forlargek, 92(k, oo, k) -U2 = o2(k, oo, k) I1- = u72(k,oo,k) 072 I- exp f1 -exp(C k{1 k)} 2(k log(1 -i)} {k? Z i24-Ck1l /1 F] as required. Proofof Theorem4. Takingm= 1 in (Al) yields(a). Part (b) followsfromthemonotonicbehaviour of 072(0, 1,r),whichdecreasesfromo72 to U2(0, 1, 00), the varianceof the interpolationerror D givenall observationsbut themissingone. REFERENCES averageprocesswith ANSLEY,C. F. & KOHN,R. (1983). Exact likelihoodof vectorautoregressive-moving 70, 275-8. missingor aggregateddata. Biometrika Processes.New York: Chapman and Hall. BERAN, J. (1994). StatisticsforLong-Memory ClimaticChange21, 1-16. BLOOMIFIELD, P. (1992). Trendsin global temperature. processes.Ann.Statist.26, 719-40. W. (1998). State-spacemodellingoflong-memory CHAN,N. H. & PALMA, R. (1989). Efficient parameterestimationof selfsimilarprocesses.Ann.Statist.17, 1749-66. DAHLHAUS, Fox, R. & TAQQU,M. S. (1986). Large sample propertiesof parameterestimatesfor stronglydependent stationaryGaussian timeseries.Ann.Statist.14, 517-32. Systems. HIPEL,K. W. & MCLEOD,A. I. (1994). TimeSeriesModellingof WaterResourcesand Environmental Amsterdam:Elsevier. in hydrologicaltimeseriesusingfractional Water differencing. J.R. M. (1984). Modelingpersistence HOSKING, Resour.Res. 20, 1898-908. R. H. (1980). Maximumlikelihoodfitting ofARMA modelsto timeserieswithmissingobservations. JONES, Technometrics 22, 389-95. LITTLE,R. J. A. & RUBIN,D. B. (1987). StatisticalAnalysiswithMissingData. New York: Wiley. processes.J. Forecasting PALMA,W. & CHAN,N. H. (1997). Estimationand forecastingof long-memory 16, 395-410. averagemodelwithincomplete J.& SHEA,B. (1997). The exactlikelihoodofan autoregressive-moving PENZER, data. Biometrika 84, 919-28. 972 WILFREDO PALMA AND GUIDO DEL PINO RAY,B. K. & TSAY,R. S. (1997). Bandwidthselectionforkernelregressionwithlong-rangedependenterrors. Biometrika 84, 791-802. 6thWorldCongress, In AdvancesinEconometrics, ROBINSON, P. M. (1993). Time serieswithstrongdependency. Ed. C. A. Sims,pp. 47-95. Cambridge:CambridgeUniversityPress. SOWELL,F. (1992). Maximum likelihood of stationaryunivariate fractionallyintegratedtime series. 53, 165-88. J. Econometrics [ReceivedJuly1998.RevisedMay 1999]
© Copyright 2026 Paperzz