M 106 - INTEGRAL CALCULUS Dr. Tariq A. AlFadhel 1 Solution of the first mid-term exam First semester 1432-1433 H Multiple choice questions (One mark for each question) n X (3 + k)2 is equal to : Question 1. The sum k=1 1 2n3 + 21n2 + 54n 6 1 3 n + 21n2 + 73n (b). 6 1 2n3 + 19n2 + 73n (c). 6 1 (d). 2n3 + 21n2 + 73n 6 (a). Answer: n X (3 + k 2 ) = k=1 n X (9 + 6k + k 2 ) = n X k=1 k=1 9+6 n X k=1 k+ n X k2 k=1 2n3 + n2 + 2n2 + n n(n + 1) n(n + 1)(2n + 1) + = 9n + 3n2 + 3n + = 9n + 6 2 6 6 18n2 + 72n + 2n3 + 3n2 + n 2n3 + 3n2 + n 2 = = 3n + 12n + 6 6 3 2 2n + 21n + 73n 1 3 2 = = 2n + 21n + 73n 6 6 The right answer is (d) Question 2. The value of the integral Z sin(1 + 3x) dx is equal to : 1 (a). − cos(1 + 3x) + c 3 (b). 3 cos(1 + 3x) + c (c). 1 cos(1 + 3x) + c 3 (d). − cos(1 + 3x) + c Z Z 1 1 Answer: sin(1 + 3x) dx = sin(1 + 3x) 3 dx = − cos(1 + 3x) + c 3 3 The right answer is (a) 1 E-mail : [email protected] 1 Question 3. The number z that satisfies the conclusion of the Mean Value Theorem for f (x) = x2 on [−2, 0] is : r 8 (a). − 3 r 8 (b). 3 −2 (c). √ 3 2 (d). √ 3 Z 0 x2 dx Answer : f (z) = −2 0 − (−2) 3 0 1 8 −8 1 4 1 x 2 0− = = = z = 2 3 −2 2 3 2 3 3 r 2 4 = ±√ z= 3 3 2 2 Note that − √ ∈ [−2, 0] but √ ∈ / [−2, 0] 3 3 The right answer (c) Question 4. The average value of f (x) = (a). −3 2 (b). −2 3 (c). 2 3 (d). 3 2 Z 0 √ x + 1 on [−1, 0] is equal to : √ x + 1 dx Z 0 1 Answer : fav = −1 (x + 1) 2 dx = 0 − (−1) −1 i i 2 3 0 3 3 2h 2 2h (x + 1) 2 (0 + 1) 2 − (−1 + 1) 2 = (1 − 0) = = fav = 3 3 3 3 −1 The right answer is (c) Question 5. If F (x) = Z 2x f ′ (t) dt then F ′ (x) is equal to : x (a). f (2x) − f (x) (b). 2f (2x) − f (x) 2 (c). 2f ′ (x) (d). 2f ′ (x) − f ′ (x) d dx The right answer is (d) Answer : F ′ (x) = Z 2x x f ′ (t) dt = f ′ (2x) (2) − f ′ (x) (1) = 2f ′ (2x) − f ′ (x) Question 6. The value of the integral Z 5cosh x dx is equal to : cschx (a). 5cosh x + c (b). (ln 5) 5sinh x + c (c). 5cosh x +c ln 5 5sinh x +c ln 5 Z Z cosh x 5cosh x 5 dx = 5cosh x sinh x dx = +c Answer : cschx ln 5 The right answer is (c) (d). √ Question 7. The derivative of the function f (x) = cosh−1 ( x) is equal to : (a). 1 √ 2 x2 − x (b). √ 1 2x2 − x (c). 1 √ 2x x + 1 (d). 1 2x x2 − 1 √ 1 √ 2 ( x) − 1 1 1 = p = = √ √ 2 x x−1 2 x(x − 1) The right answer is (a) Answer : f ′ (x) = q 1 √ 2 x 1 √ 2 x2 − x Question 8. The value of the integral (a). 1 +c cos x (b). 1 +c sin x Z 3 (sin x)(sec x)2 dx is equal to : (c). 1 +c sec x 1 (sec x)3 + c 3 Z Z 2 Answer : (sin x)(sec x) dx = (d). sin x dx = − (cos x)2 (cos x)−1 1 +c= +c −1 cos x The right answer is (a) Z (cos x)−2 (− sin x) dx =− Question 9. If (a). ecos −1 −1 (d). esin −1 −1 ecos x √ dx = f (x) + c , then f (x) is equal to : 1 − x2 −1 x (b). e− cos (c). −ecos Z x x x ecos x √ Answer : dx = − 1 − x2 The right answer is (c). Z −1 Z ecos −1 x Question 10. The value of the integral −1 −1 √ dx = −ecos x + c 2 1−x Z e2x dx is equal to : e4x − 1 1 sin−1 e2x + c 2 1 (b). sinh−1 e2x + c 2 1 (c). cosh−1 e2x + c 2 (d). cosh−1 e2x + c Z Z e2x 1 2e2x 1 p Answer : dx = dx = cosh−1 (e2x ) + c 4x e −1 2 2 (e2x )2 − (1)2 The right answer is (c) (a). 4 Full questions Question 11. Approximate the integral Z 1 e4x dx using Simpson’s rule for 0 n = 4. [3 marks] Answer : f (x) = e4x , [a, b] = [0, 1] and n = 4 . ∆x = 1−0 4 = 0.25 x = 0 , x1 = 0.25 , x2 = 0.5 , x3 = 0.75 and x4 = 1 Z0 1 1−0 [f (0) + 4f (0.25) + 2f (0.5) + 4f (0.75) + f (1)] e4x dx ≈ 3(4) 0 1 = [1 + 4(2.7183) + 2(7.3891) + 4(20.086) + 54.598] 12 1 1 [1 + 10.873 + 14.778 + 80.344 + 54.598] = [161.59] = 13.466 = 12 Z 112 e4x dx ≈ 13.466 0 2x+1 Question 12. If y = (cosh x) , then find y ′ . [2 marks] 2x+1 2x+1 Answer : y = (cosh x) ⇒ ln y = ln (cosh x) = (2x + 1) ln(cosh x) Differentiate both sides sinh x y′ = 2 ln(cosh x) + (2x + 1) = 2 ln(cosh x) + (2x + 1) tanh x y cosh x ′ y = y [2 ln(cosh x) + (2x + 1) tanh x] 2x+1 y ′ = (cosh x) [2 ln(cosh x) + (2x + 1) tanh x] Question 13. Evaluate the integral Z √ x−2 dx [3 marks] 8 − 2x2 Answer : Z Z Z x−2 x 2 √ √ √ dx = dx − dx 2 2 8− 8 − 2x2 Z 2x Z 8 − 2x 1 1 = (8 − 2x2 )− 2 x dx − 2 q √ √ 2 dx 2 8 − 2x √ Z Z 1 1 2 2 2 −2 q √ =− (8 − 2x ) (−4x) dx − √ √ 2 dx 2 4 2 2 2 − 2x ! √ 1 2 1 (8 − 2x2 ) 2 2x √ +c − √ sin−1 =− 1 4 2 2 2 2 x 1p 2 =− 8 − 2x2 − √ sin−1 +c 2 2 2 Z 1 q Question 14. Evaluate the integral dx [2 marks] 2 x 4 + (ln x) Answer : Z Z 1 1 ln x −1 x q q +c dx = dx = sinh 2 2 2 x 4 + (ln x) (2)2 + (ln x) 5 M 106 - INTEGRAL CALCULUS Dr. Tariq A. AlFadhel 2 Solution of the second mid-term exam First semester 1432-1433 H Multiple choice questions (One mark for each question) ln x Question 1. lim is equal to x→0+ ln(sin x) (a) ∞ (b) 0 (c) 1 (d) −∞ ln x −∞ −∞ x→0 ln(sin x) Apply L’Hôpital’s rule 1 ln x 1 sin x x lim = lim cos x = = (1)(1) = 1 cos x x x→0+ ln(sin x) x→0+ sin x The right answer is (c) Answer: lim+ Question 2. If (a) 1 A B = + then the value of A is equal to (x − 4)(x + 2) x−4 x+2 1 6 (b) 4 (c) 1 4 (d) − 16 A B 1 = + ⇒ 1 = A(x + 2) + B(x − 4) (x − 4)(x + 2) x−4 x+2 Put x = 4 then 1 = A(4 + 2) + B(4 − 4) ⇒ 1 = 6A ⇒ A = 61 The right answer is (a) Answer: Question 3. To evaluate the integral (a) x = 4 sec θ Z p (b) x = 2 cos θ (c) x = 2 sec θ (d) x = 2 tan θ 2 E-mail : [email protected] 6 4x2 − 16 dx , we use the substitution Answer : Z p 4x2 − 16 dx = Z p (2x)2 − (4)2 dx So we use the substitution 2x = 4 sec θ ⇒ x = 2 sec θ The right answer (c) Question 4. The value of the integral Z π 2 cos5 x sin x dx is equal to 0 (a) 0 (b) 1 3 (c) 3 (d) 1 6 Z π2 Z π2 Answer : cos5 x sin x dx = − (cos x)5 (− sin x) dx 0 π 0 1 (cos x)6 2 1 =− 0− =− = 6 6 6 0 The right answer is (d) x 2 Question 5. The substitution u = tan into (a) Z 2 du (b) Z du (c) Z 1 du 1+u (d) Z 1 du 1 + u2 transforms the integral Z Answer : Using the half angle substitution u = tan x2 2 1 − u2 and dx = du cos x = 2 1+u 1 + u2 Z Z 1 2 1 du dx = 1−u2 1 + cos x 1 + u2 1 + 1+u2 Z Z Z 2 2 1 + u2 1 + u2 du = du = du = (1 + u2 ) + (1 − u2 ) 1 + u2 2 1 + u2 The right answer is (b) Question 6. If Z 3 2 (sec x) tan x dx = Z (a) u = tan x 3 (b) u = (sec x) 2 7 √ u du then 1 dx 1 + cos x (c) u = √ sec x (d) u = sec x Z Z 1 3 Answer : (sec x) 2 tan x dx = (sec x) 2 sec x tan x dx Put u = sec x ⇒ du = Zsec x tan x dx Z Z √ 1 3 (sec x) 2 tan x dx = (sec x) 2 sec x tan x dx = u du The right answer is (d) Question 7. The improper integral Z ∞ 0 1 dx x2 + 4 (a) converges to 0 (b) diverges (c) converges to π 4 (d) converges to π2 Z ∞ Z t Z t 1 1 1 Answer : dx = lim dx = lim dx 2 2 2 t→∞ 0 x + 4 t→∞ 0 (x) + (2)2 x +4 0 x t 1 1 1 t 1π 1 π = lim − tan−1 (0) = tan−1 = lim tan−1 − (0) = t→∞ 2 2 0 t→∞ 2 2 2 22 2 4 The right answer is (c) Question 8. The value of the integral Z √ 1 dx is equal to 4x − x2 x−2 +c (a) sinh 2 x−2 (b) sin−1 +c 2 1 x−2 (c) sin−1 +c 2 2 x+2 (d) sin−1 +c 2 Z Z 1 1 √ p Answer : dx dx = 2 − 4x + 4) + 4 4x − x2 −(x Z x−2 1 p +c dx = sin−1 2 2 2 (2) − (x − 2) The right answer is (b) −1 Question 9. The area of the region bounded by the graphs of equations y = x2 and y = −x is equal to (a) 5 6 8 (b) 2 (c) 1 6 (d) 1 3 Answer : 1 y = x2 1 -1 y = -x -1 Points of intersection between y = x2 and y = −x x2 = −x ⇒ x2 + x = 0 ⇒ x(x + 1) = 0 ⇒ x = −1 , x = 0 0 2 Z 0 x3 x −x − x2 dx = − − Area = 2 3 −1 −1 1 1 1 1 1 Area = 0 − − + = − = 2 3 2 3 6 The right answer is (c). Question 10. The value of the integral (a) Z tan3 x sec x dx is equal to 1 sec3 x + sec x + c 3 1 (b) − sec3 x − sec x + c 3 1 (c) − sec3 x + sec x + c 3 1 sec3 x − sec x + c 3 Z Z Answer : tan3 x sec x dx = tan2 x sec x tan x dx Z = (sec2 x − 1) sec x tan x dx (d) Put Z u = sec x then du Z = sec x tan x dx 3 1 u 3 − u + c = sec3 x − sec x + c tan x sec x dx = (u2 − 1) du = 3 3 The right answer is (d) 9 Full questions Question 11. Evaluate Z 2x tan−1 x dx . [2 marks] Answer : Using integration by parts u = tan−1 x dv = 2x dx 1 dx v = x2 du = 1 + x2 Z Z Z (1 + x2 ) − 1 x2 2 −1 −1 2 −1 dx = x tan x− dx 2x tan x dx = x tan x− 2 1 + x2 1+x Z 1 1− = x2 tan−1 x − dx = x2 tan−1 x − x + tan−1 x + c 1 + x2 Question 12. Sketch the region R bounded by the graphs of y = x2 − 2 ; y = −x2 and find its area . [2 marks] Answer : y = x2 - 2 1 -1 -1 y = -x 2 -2 Note that y = x2 − 2 is a parabola with vertex (0, −2) and opens upward , y = −x2 is a parabola with vertex (0, 0) and opens downward . Points of intersection between y = x2 − 2 and y = −x2 x2 − 2 =Z−x2 ⇒ 2x2 = 2 ⇒ x2 = 1Z⇒ x = −1 , x = 1 1 1 [2 − 2x2 ] dx [−x2 − (x2 − 2)] dx = 1 −1 −1 2 4 2 8 2x3 − −2 + =4− = = 2− Area = 2x − 3 −1 3 3 3 3 Z 1 √ dx [3 marks] Question 13. Evaluate 2 x 4 − x2 Answer : Using trigonometric substitution x Put x = 2 sin θ ⇒ sin θ = 2 π π dx = 2 cos θ dθ , where Z Z −2 < θ < 2 Z 2 cos θ dθ 2 cos θ dθ 1 p √ p = dx = 2 2 2 2 2 (2 sinZθ) 4 − (2 sin θ) 4 sin θ 4 − 4 sin2 θ Z x 4−x 2 cos θ dθ 2 cos θ dθ q = 2 4 sin θ (2 cos θ) 2 2 4 sin θ 4(1 − sin θ) Z Z 1 1 1 1 dθ = csc2 θ dθ = − cot θ + c = 2 4 4 4 sin θ Area = 10 2 x Θ 4 - x2 √ 1 4 − x2 1 1 +c dx = − cot θ + c = − 4 4 x x2 4 − x2 Z x−1 dx [3 marks] Question 14. Evaluate x2 + x Answer : Using Partial fractions x−1 x−1 A B = = + x2 + x x(x + 1) x x+1 x − 1 = A(x + 1) + Bx Put x = 0 then 0 − 1 = A(0 + 1) + B(0) ⇒ A = −1 Put x = −1 then −1 − 1 = A(−1 + 1) + B(−1) ⇒ B = 2 x−1 1 2 =− + 2 x Zx + 1 Zx + x 1 2 x−1 dx − + dx = x2Z+ x x x+1 Z 1 1 dx + 2 dx = − ln |x| + 2 ln |x + 1| + c =− x x+1 Z √ 11 M 106 - INTEGRAL CALCULUS Dr. Tariq A. AlFadhel 3 Solution of the Final Exam First semester 1432-1433 H Multiple choice questions (one mark for each question) 2 1. The sum n X (k − 1) is equal to k=1 (a) n2 (n − 1) 2 (b) n(n − 1) 2 The answer : (k − 1) = k=1 = k=1 k − n X k=1 1= (d) n2 (n2 − 1) 2 n2 (n2 + 1) − n2 2 n (n + 1 − 2) n2 (n2 − 1) n (n + 1) − 2n = = 2 2 2 2 2 2 2 n X n2 (n2 + 1) 2 2 2 2 n X (c) 2 The right answer is (d) . 1 2. The average value of the function f (x) = (x + 1) 3 on [−2, 0] is equal to (a) 3 (b) 0 (c) −1 (d) −3 Z 0 1 0 (x + 1) 3 dx 4 1 3 −2 3 = (x + 1) The answer : fav = 0 − (−2) 2 4 −2 4 4 1 3 1 3 3 3 fav = (0 + 1) 3 − (−2 + 1) 3 = (1) − (1) = 0 2 4 4 2 4 4 The right answer is (b) . 3. The integral Z 4x dx is equal to 22x 4x 4x+1 2x + c (b) + c (c) + c (d) +c 2 ln 2 ln 2 ln 4 ln 4 x Z 22 4x 22x The answer : 4x dx = +c= +c= +c 2 ln 4 ln 2 2 ln 2 (a) The right answer is (a) . 4. If F (x) = 3 E-mail Z x2 1 p 3 t4 + 1 dt , then F ′ (x) is equal to : [email protected] 12 (a) p 3 (b) x2 x8 + 1 The answer : F ′ (x) = F ′ (x) = 2x p 3 p 3 x8 + 1 d dx Z x2 1 (c) 2x p 3 p 3 x8 + 1 t4 + 1 dt = q 3 (d) 2x 4 p 3 x4 + 1 (x2 ) + 1 (2x) x8 + 1 The right answer is (c) Z 5. The integral 2sin x cos x dx is equal to (a) 2sin x + c The answer : (b) Z 2sin x +c ln 2 (c) (ln 2)2sin x + c (d) −2sin x +c ln 2 2sin x +c ln 2 2sin x cos x dx = The right answer is (b) 6. If f (x) = xln x then f ′ (e) is equal to (a) 2 (b) 2e (c) 0 (d) e The answer : f (x) = xln x ⇒ ln |f (x)| = ln xln x = (ln |x|)2 Diffrentiating both sides : f ′ (x) 1 2 ln |x| = 2 ln |x| = f (x) x x f ′ (x) = f (x) f ′ (e) = 2 ln |x| xln |x| 2 ln |x| = x x 2 ln(e) eln e 2e = =2 e e The right answer is (a) 7. lim x→0 sin x − x x3 (a) ∞ (b) − 61 is equal to (c) 1 6 (d) 0 sin x − x 0 The answer : lim 3 x→0 x 0 Apply L’Hôpital’s rule cos x − 1 sin x − x = lim lim 3 x→0 x→0 x 3x2 Apply L’Hôpital’s rule 13 0 0 lim x→0 cos x − 1 − sin x 1 sin x 1 1 = lim = lim − = − (1) = − x→0 x→0 3x2 6x 6 x 6 6 The rightanswer is (b) . 8. The integral Z 1 √ (x + 1) x2 + 2x dx is equal to (a) ln |x2 + 2x| + c (b) sin−1 (x + 1) + c −1 (c) sech (x + 1) + c (d) sec−1 (x + 1) + c Z Z dx dx p √ = The answer : 2 2 (x + 1) x + 2x (x + 1) (x + 2x + 1) − 1 Z dx p = = sec−1 (x + 1) + c (x + 1) (x + 1)2 − (1)2 The right answer is (d) . 9. The improper integral Z √ 2x dx 16 − x4 (a) converges to π2 (b) converges to π4 (c) converges to π (d) diverges Z 2 Z 2x 2x √ √ dx = lim dx The answer : t→2 0 16 − x4 16 − x4 2 t Z 2 x 2x p dx = lim sin−1 = lim t→2 t→2 0 4 (4)2 − (x2 )2 0 2 π π t − sin−1 (0) = sin−1 (1) − sin−1 (0) = − 0 = = lim sin−1 t→2 4 2 2 The right answer is (a) 10. To evaluate the integral Z 1 dx , we use the substitution x x6 − 1 √ (a) u = x6 (b) u = x2 (c) u = x3 (d) u = x6 − 1 Z Z 1 1 p √ The answer : dx dx = 6 x x −1 x (x3 )2 − 1 So , we use the substitution u = x3 The right answer is (c) 2 1 Note : u = x3 ⇒ x = u 3 ⇒ dx = 13 u− 3 du Z 1 1 √ dx = 3 x x6 − 1 Z 2 u− 3 1 du = 1√ 3 u 3 u2 − 1 14 Z du 1 √ = sec−1 u + c 3 u u2 − 1 11. The partial fraction decomposition of A B (a) 2 + + 2 x c −1 B C A + + (c) x x−1 x+1 The answer : 2x3 takes the form x(x2 − 1) A Bx + C + 2 x x −1 A B (d) 2 + + x−1 x+1 (b) 2 + 2x3 2x2 (2x2 − 2) + 2 2 = = =2+ x(x2 − 1) x2 − 1 x2 − 1 (x − 1)(x + 1) A B 2x3 =2+ + 2 x(x − 1) x−1 x+1 The right answer is (d) 12. If Z 1 x2 dx = 1 6 x3 − 1 (a) x = u2 u8 du then u2 − 1 Z (b) x = u3 (c) x = u6 (d) x = u8 Z 1 x2 dx involves The answer : Since the integrand in the integral 1 6 x3 − 1 1 1 x 2 and x 3 then we use the substitution x = u6 (note that l.c.m(2, 3) = 6) . The right answer is (c) . 13. The area of the region bounded by the graphs of y = 2x , y = x , 0 ≤ x ≤ 1 is equal to (a) 1 2 (b) 2 (c) 1 4 1 3 (d) The answer : y =2x 1 y =x 1 15 Note that y = 2x and y = x are two straight lines passing through the origin . 2 1 Z 1 x 1 1 (2x − x) dx = Area = = −0= 2 2 2 0 0 The right answer is (a) 14. The arc length of the graph y = 4x frm A(0, 0) to B(1, 4) is equal to √ √ √ √ (a) 17 (b) 5 (c) 4 17 (d) 4 5 The answer : f (x) = 4x ⇒ f ′ (x) = 4 Z 1p Z 1√ √ √ √ L= 1 + (4)2 dx = 17 dx = 17[x]10 = 17(1 − 0) = 17 0 0 The right answer is (a) Note : y = 4x is a straight line , so the arc length here p is equal to the distance between the two points (0, 0) and (1, 4) which is (1 − 0)2 + (4 − 0)2 = √ 17 15. The slope of the tangent line at the point corresponding to t = π4 on the parametric curve given by the equations x = sin t , y = cos t , 0 ≤ t ≤ 2π is (a) −1 (b) 1 (c) 0 π 4 dy t − sin t = − tan t cos t equals − tan π4 = −1 dy = The answer : m = dx The slope at t = (d) 13 dx dt = The right answer is (a) 16. If a graph has poalar equation r = 2 csc θ , then its equation in xy-system is (a) x = 2 (b) y = 2 (c) x = The answer : r = 2 csc θ ⇒ r = 1 2 (d) y = 12 2 ⇒ r sin θ = 2 ⇒ y = 2 sin θ The right answer is (b) 17. The length of the curve C : x = cos 2t , y = sin 2t ; 0 ≤ t ≤ (a) π (b) The answer : π 2 (c) 2π (d) π 4 dy dx = −2 sin 2t , = 2 cos 2t dt dt 16 π 2 is equal to L= L= Z Z π 2 0 π 2 0 p (−2 sin 2t)2 + (2 cos 2t)2 dt = Z π 2 0 π √ π 4 dt = 2[t]02 = 2 −0 =π 2 p 4 sin2 2t + 4 cos2 2t dt The right answer is (a) Note : : 0 ≤ t ≤ π2 ⇒ 0 ≤ 2t ≤ π, So the arc length of the given parametric curve is half of the circumference of the unit circle whic equals 2π(1) =π 2 18. To evaluate the integral Z tan5 x sec5 x dx we use the substitution : (a) u = tan2 x (b) u = tan x (c) u = sec x (d) u = sin x Z Z 5 5 The answer : tan x sec x dx = tan4 x sec4 x sec x tan x dx = Z tan2 x 2 sec4 x sec x tan x dx = Z 2 sec2 x − 1 sec4 x sec x tan x dx So we use the substitutio u = sec x ⇒ du = sec x tan x dx The right answer is (c) 19. If a point has (r, θ)-coordinates (r, θ) = (1, π6 ) then its (x, y)-coordinates is (a) ( √ 3 1 2 , 2) (b) ( 12 , √ 3 2 ) (c) ( √ √ 2 2 2 , 2 ) The answer : (r, θ) = (1, π6 ) ⇒ r = 1 , θ = x = r cos θ = (1) cos π6 = y = r sin θ = (1) sin π6 = (d) (1, 0) π 6 √ 3 2 1 2 So its (x, y)-coordinates is ( √ 3 1 2 , 2) The right answer is (a) 20. The slope of the tangent line to the curve r = cos θ at θ = (a) π 2 (b) 0 (c) π 4 π 4 is (d) 1 The answer : x = r(θ) cos θ = cos2 θ ⇒ y = r(θ) sin θ = cos θ sin θ ⇒ dy dθ cos 2θ dy m= = dx = dx − sin 2θ dθ dy dθ dx dθ = −2 sin θ cos θ = −2 sin 2θ = cos2 θ − sin2 θ = cos 2θ 17 The slope at θ = π 4 equals cos π2 0 = =0 − sin π2 1 The right answer is (b) Full Questions : 21. Evaluate the integral The answer : = Z Z 1 − sin2 x Z 2 sin2 x cos5 x dx 5 sin x cos x dx = 2 Z [4 marks] cos4 x sin2 x cos x dx sin2 x cos x dx Put u = sin x then du = cos x dx Z Z Z 2 1 − sin2 x sin2 x cos x dx = (1 − u2 )2 u2 du = (1 − 2u2 + u4 )u2 du 2u5 u7 u3 − + +c 3 5 7 = Z = 2 1 1 sin3 x − sin5 x + sin7 x + c 3 5 7 (u2 − 2u4 − u6 ) du = 22. Find the surface area generated by revolving y = the x-axis . [4 marks] s 2 Z 4 √ 1 √ x 1+ The answer : SA = 2π dx 2 x 1 r Z 4 √ 1 x 1+ dx = 2π 4x 1 r Z 4 √ 4x + 1 dx = 2π x 4x 1 Z 4√ 4x + 1 = 2π dx 2 1 Z 4 Z √ 1 π 4 =π 4x + 1 dx = (4x + 1) 2 4dx 4 1 1 4 h i 3 3 3 π π 2 (17) 2 − (5) 2 (4x + 1) 2 = = 4 3 6 1 √ x , 1 ≤ x ≤ 4 about x3 dx [6 marks] x2 (x2 + 1) Z Z x x3 dx = dx The answer : 2 2 2 x (x + 1) x +1 23. Evaluate the integral Z 18 = 1 2 Z 1 2x dx = ln(x2 + 1) + c x2 + 1 2 24. Evaluate the integral Z ln x √ dx x Using integration by parts u = ln x du = 1 dx x 1 1 dv = √ = x− 2 x √ v=2 x Z √ 1 √ ln x √ dx = 2 x ln x − 2 x dx x x Z Z √ √ 1 1 = 2 x ln x − 2 √ dx = 2 x ln x − 2 x− 2 dx x √ √ = 2 x ln x − 4 x + c Z 25. Sketch the region R bouned by the graph of the equations y = ex , y = e and y-axis. Find the volume of the solid generated by revolving the region R around the x-axis. (using Washer method) [6 marks] The answer : 3 y =e e 2 y = ex 1 1 Points of intersection between y = ex and y = e ex = e ⇒ x = 1. Using Washer method Z Z 1h i 2 x 2 (e) − (e ) dx = π V =π 0 1 0 19 e2 − e2x dx 1 1 1 1 V = π e2 x − e2x = π e2 − e2 − 0 − e0 2 2 2 0 1 π 1 V = π e2 + = (e2 + 1) 2 2 2 26. Sketch the region R that lies inside both of the graphs of the equations r = 3 + 3 cos θ and r = 3 − 3 cos θ. Set up (do not evaluate) an integral that can be used to find its area. [5 marks] The answer : Π 2 2Π Π 3 3 5Π Π 6 6 0 Π 0. 1. 2. 3. 4. 5. 6. 7Π 11 Π 6 6 4Π 5Π 3 3 3Π 2 Angles of intersection between r = 3 + 3 cos θ and r = 3 − 3 cos θ 3 + 3 cos θ = 3 − 3 cos θ ⇒ cos θ = 0 ⇒ θ = Area = 1 2 Z π 2 0 (3 − 3 cos θ)2 dθ+ 1 2 Z 3π 2 π 2 π 2 , θ= 3π 2 (3 + 3 cos θ)2 dθ+ 1 2 Z 2π 3π 2 ((3 − 3 cos θ)2 dθ Since the region is symmetric with respect to the polar axis and to the line θ = π2 then ! Z π 1 2 (3 − 3 cos θ)2 dθ Area = 4 2 0 20 M 106 - INTEGRAL CALCULUS Dr. Tariq A. AlFadhel 4 Solution of the first mid-term exam Second semester 1432-1433 H Multiple choice questions (One mark for each question) 25 X (k 2 + αk) = 0 , then the value of α is equal to : Question 1. If k=1 (a) −16 (b) 16 (c) −17 (d) −1 Answer: 25 X 2 (k + αk) = 0 ⇒ k=1 ⇒ 25 X k=1 k 2 = −α 25 X k=1 25 X k k=1 25 X 2 2 ! +α k⇒α= k k=0 k=1 k − k=1 25 X 25 X =− (25)(25+1)(2(25)+1) 6 25(25+1) 2 =− k=1 The right answer is (c) Question 2. The value of the integral Z 1 2|x|3 dx is equal to : −1 (a) 2 (b) 1 (c) 0 (d) −1 Answer: Note that |x| = x if x ≥ 0 , and |x| = −x if x < 0 . Z 1 Z 0 Z 1 3 3 2|x|3 dx 2|x| dx + 2|x| dx = 0 −1 −1 Z 1 Z 0 Z 1 Z 0 2x3 dx 2x3 dx + 2x3 dx = − 2(−x)3 dx + = 0 −1 −1 4 0 40 1 x x = −2 +2 4 −1 4 0 1 1 1 1 +2 −0 = + =1 = −2 0 − 4 4 2 2 4 E-mail : [email protected] 21 51 = −17 3 The right answer is (b) Question 3. The value of the integral Z sin(tan(x)) dx is equal to : cos2 (x) (a) cos(tan(x)) + c (b) sin(tan(x)) + c (c) − cos(tan(x)) + c (d) − sin(tan(x)) + c Z Z sin(tan(x)) Answer : dx = sin(tan(x)) sec2 (x) dx = − cos(tan(x)) + c cos2 (x) The right answer (c) Question 4. The derivative of the integral Z x 0 1+ d tan(t) dt (a) 1 + tan x (b) 1 − tan x (c) 1 − sec2 x (d) 1 + sec2 x Z x d tan x d tan(t) d dt = 1 + 1+ = 1 + sec2 x Answer : dx 0 dt dx The right answer is (d) Question 5. If G(x) = Z x2 e ln(t) dt then G′ (e) is equal to : 4 (a) 2e (b) 1 (c) e (d) 4e Z x2 d ln(x2 ) ln(t) Answer : G (x) = dt = (2x) dx e 4 4 2 ln(x) 4x ln(x) = (2x) = = x ln(x) 4 4 ′ G (e) = e ln(e) = e(1) = e The right answer is (c) ′ 22 dt is equal to : Question 6. If log2 x−1 x = 1 , then x is equal to : (a) 1 (b) 2 (c) 1 2 (d) −1 x−1 x−1 =1⇒ = 2 ⇒ x − 1 = 2x ⇒ x = −1 x x The right answer is (d) Answer : log2 Question 7. The value of the integral (a) 4 ln 5 5 (b) ln 5 4 (c) 4 ln 5 (d) 5 ln 5 4 Answer : Z 1 5x dx = 0 The right answer is (c) 5x ln 5 1 0 = (b) 1 5x dx is equal to : 0 5 1 4 − = ln 5 ln 5 ln 5 Question 8. The value of the integral (a) Z Z 1 2p 2 x x +1+c 2 p x x2 + 1 dx is equal to : 3 2 2 (x + 1) 2 + c 3 3 2 (c) − (x2 + 1) 2 + c 3 3 1 2 (x + 1) 2 + c 3 Z p Z 3 1 1 1 (x2 + 1) 2 2 2 2 Answer : x x + 1 dx = (x + 1) (2x) dx = +c 3 2 2 2 3 1 = (x2 + 1) 2 + c 3 The right answer is (d) (d) 23 Question 9. The value of the integral (a) Z 1 0 ex dx is equal to : (ex + 1)2 e−1 2(1 + e) (b) −1 (c) 0 1 (1 + e)2 Z Z 1 ex dx = (ex + 1)−2 ex dx Answer : x 2 0 (e + 1) x 1 1 (e + 1)−1 −1 = = x −1 e +1 0 0 −1 −1 1 −2 + e + 1 e−1 −1 − = + = = = e+1 1+1 e+1 2 2(e + 1) 2(e + 1) The right answer is (a). (d) Question 10. The value of the integral cos−1 (a) − 25 x 16 cos−1 (b) 25 x 16 +c sin−1 (c) 5 5x 4 +c Z 1 √ dx is equal to : 16 − 25x2 +c sin−1 5x 4 +c (d) − 5 Z Z 1 1 1 5 5x −1 √ p dx = sin dx = Answer : +c 2 2 2 5 5 4 16 − 25x (4) − (5x) The right answer is (c) 24 Full questions Question 11. Use Trapizoidal rule to approximate the integral Z 3 1 p x2 + 3 dx with n = 4. [3 marks] p Answer : [a, b] = [1, 3] , n = 4 , and (x) = 3 + x2 . b−a 3−1 2 1 ∆x = = = = = 0.5 n 4 4 2 x0 = 1 , x1 = 1.5 , x2 = 2 , x3 = 2.5 , x4 = 3 . Z 3p 3−1 3 + x2 dx ≈ [f (1) + 2f (1.5) + 2f (2) + 2f (2.5) + f (3)] 2(4) Z1 3 p 1 3 + x2 dx ≈ [2 + 2(2.29129) + 2(2.64575) + 2(3.04138) + 3.4641] 4 Z1 3 p 21.4209 ≈ 5.35523 3 + x2 dx ≈ 4 1 Question 12. If f (x) = xcosh x , then find f ′ (x). [2 marks] cosh x Answer : f (x) = xcosh x ⇒ ln |f (x)| = ln |x| = cosh x ln |x| Differentiate both sides f ′ (x) 1 = sinh x ln |x| + cosh x f (x) x cosh x ′ f (x) = f (x) sinh x ln |x| + x cosh x cosh x ′ sinh x ln |x| + f (x) = x x Question 13. Find the number z that satisfies the conclusion h π i of the Mean Value Theorem for the function f (x) = cos(2x) where x ∈ 0, . And also find 2 the averahe value fav of f (x) . [3 marks] Answer : First : Calculating fav Z π2 Z π cos 2x dx π 1 2 1 2 0 cos(2x) 2 dx = [sin(2x)]02 fav = = π π 2 π − 0 0 2 1 1 = [sin(π) − sin(0)] = (0) = 0 . π π Second : Calculating the number z that satisfies conclusion of the MVT h the πi such that According to MVT there exists a number z ∈ 0, 2 Z π2 cos 2x dx cos(2z) = 0 π 2 −0 π π cos(2z) = 0 ⇒ 2z = ⇒ z = 2 4 25 Question 14. Evaluate the integral J = Z cos(x) q dx [2 marks] sin(x) 4 − sin2 (x) Answer : Z Z cos(x) cos(x) q p J= dx = dx 2 sin(x) (2)2 − (sin(x))2 sin(x) 4 − sin (x) 1 sin x −1 +c = − sech 2 2 26 M 106 - INTEGRAL CALCULUS Dr. Tariq A. AlFadhel 5 Solution of the second mid-term exam Second semester 1432-1433 H Multiple choice questions (One mark for each question) 2x − 3x is equal to Question 1. lim x→0 x (a) ∞ (b) ln 23 (c) ln 32 (d) −1 0 2x − 3x Answer: lim x→0 x 0 Apply L’Hôpital’s rule 2x − 3x 2x ln 2 − 3x ln 3 2 lim = lim = 20 ln 2 − 30 ln 3 = ln 2 − ln 3 = ln x→0 x→0 x 1 3 The right answer is (b) Question 2. The partial fraction decomposition of (a) x2 + 2 (x4 − 1)(x − 1) Cx + D E Ax + B + 2 + x2 + 1 x −1 x−1 (b) C D E Ax + B + + + 2 2 x +1 x − 1 (x − 1) x+1 (c) Ax + B Cx + D E + + 2 2 x +1 (x − 1) x+1 (d) C E Ax + B + + 2 2 x +1 (x − 1) x+1 x2 + 2 x2 + 2 x2 + 2 = = (x4 − 1)(x − 1) (x2 + 1)(x2 − 1)(x − 1) (x2 + 1)(x − 1)2 (x + 1) Ax + B C D E x2 + 2 = 2 + + + (x4 − 1)(x − 1) x +1 x − 1 (x − 1)2 x+1 The right answer is (b) Answer: Question 3. The integral (a) ln |x2 − 4x + 3| + c x + 1 +c (b) ln x + 3 5 E-mail Z 2 dx is equal to x2 − 4x + 3 : [email protected] 27 x − 3 +c (c) ln x − 1 x − 1 +c (d) ln x − 3 Answer : Using partial fractions 2 A B 2 = = + x2 − 4x + 3 (x − 1)(x − 3) x−1 x−3 2 = A(x − 3) + B(x − 1) Put x = 1 then 2 = A(1 − 3) ⇒ 2 = −2A ⇒ A = −1 Put ⇒B=1 Z Z x = 3 then 2 = 2B −1 1 2 dx dx = + 2 x−1 x−3 Z x − 4x + 3 x − 3 2 +c dx = − ln |x − 1| + ln |x − 3| + c = ln x2 − 4x + 3 x − 1 The right answer (c) Question 4. The value of the integral (a) 1 6 sin6 x − 1 8 sin8 x + c (b) 1 5 sin5 x − 1 3 sin3 x + c (c) 1 3 sin5 x − 1 2 sin2 x + c Z sin5 x cos3 x dx is equal to sin5 x − 18 sin8 x + c Z Z 5 3 Answer : sin x cos x dx = sin5 x cos2 x cos x dx Z = sin5 x(1 − sin2 x) cos x dx (d) 1 3 Put Z u = sin x ⇒ du = cos x dx Z sin5 x(1 − sin2 x) cos x dx = u5 (1 − u2 ) du Z u8 u6 − +c = (u5 − u7 ) du = 6 8 1 1 = sin6 x − sin8 x + c 6 8 The right answer is (a) Question 5. The substitution u = tan x 2 into (a) Z u2 2 du − 2u + 5 (b) Z u2 2 du − 2u + 3 (c) Z 2 du u2 + 2u + 5 28 transforms the integral Z 1 dx 3 − sin x + 2 cos x (d) Z 2 du u2 + 2u + 3 Answer : Using the half angle substitution u = tan x2 1 − u2 2u 2 cos x = , sin x = and dx = du 2 2 1 + u 1 + u 1 + u2 Z Z 2 1 1 dx = du 2u 1−u2 3 − sin x + 2 cos x 1 + u2 3 − 1+u2 + 2 1+u2 Z Z 1 + u2 2 2 = du = du 2 ) − 2u + 2(1 − u2 ) 1 + u2 2 − 2u + 2 − 2u2 3(1 + u 3 + 3u Z 2 = du u2 − 2u + 5 The right answer is (a) Z Question 6. To evaluate the integral dx √ , we use the substitution x2 x2 − 25 (a) x = 5 sec θ (b) x = sec5 θ (c) x = 5 tan θ (d) x = tan5 θ p p Answer : x2 − 25 = (x)2 − (5)2 So, we use the substitution x = 5 sec θ The right answer is (a) Question 7. The improper integral Z ∞ x2 0 1 dx +1 (a) converges to π (b) diverges (c) converges to π 2 (d) converges to +∞ Z t Z ∞ 1 1 dx = lim dx Answer : 2 2 t→∞ x +1 x +1 0 −1 t −1 0 π π = lim tan (x) 0 = lim tan (t) − tan−1 (0) = − 0 = t→∞ t→∞ 2 2 The right answer is (c) Question 8. The value of the integral Z (a) x − ln |x + 1| + c (b) x − ln (ex + 1) + c 29 1 dx is equal to 1 + ex x2 − ln (ex + 1) + c 2 2 x − ln |x + 1| + c (d) ln 2 Z Z 1 (1 + ex ) − ex Answer : dx = dx x 1 + ex Z 1+ e Z x x x e e 1+e 1− dx = dx − = 1 + ex 1 + ex 1 + ex x = x − ln (e + 1) + c The right answer is (b) (c) Question 9. The value of the integral (a) ln |x| −x+c x Z ln |x| dx is equal to (b) x ln |x| − ln |x| + c (c) ln2 |x| +c 2 (d) x ln |x| − x + c Answer : Using integration by parts u = ln |x| dv = dx 1 du = dx v = x x Z Z 1 ln |x| dx = x ln |x| − x dx x R = x ln |x| − dx = x ln |x| − x + c The right answer is (d). Question 10. The area of the region bounded by the graphs of y = x , y = −x and y = 1 is equal to (a) 1 (b) 0 (c) 2 (d) 1 2 Answer : y =1 1 y =x y = -x 1 -1 30 y = x intersects y = 1 at x =Z1 and y = −x intersects y = 1 at x = −1 Z 0 1 (1 − x) dx (1 − (−x)) dx + Area = 0 −1 0 1 x2 x2 + x− Area = x + 2 2 −1 0 1 1 1 1 Area = 0 − −1 + + 1− −0 = + =1 2 2 2 2 The right answer is (a) Full questions Z Question 11. Evaluate sin5 5x dx . [3 marks] Z Z Answer : sin5 5x dx = sin4 5x sin 5x dx Z Z 2 2 2 1 − cos2 5x sin 5x dx sin 5x sin 5x dx = = 1 Put Z dx ⇒ − 5 du = sin 5x dx Z u = cos 5x then du = −5 sin 5x 2 2 1 1 − u2 du 1 − cos2 5x sin 5x dx = − 5 Z 2u3 u5 1 1 2 4 +c + (1 − 2u + u ) du = − u − =− 5 5 3 5 cos 5x 2 cos3 5x cos5 5x =− + − +c 5 15 25 Z x+1 Question 12. Evaluate the integral dx [2 marks] x2 + x − 2 Answer : Using partial fractions x+1 A B x+1 = = + 2 x +x−2 (x + 2)(x − 1) x−1 x+2 x + 1 = A(x + 2) + B(x − 1) Put x = 1 then 2 = 3A ⇒ A = 23 Put x = −2 then −1 = −3B ⇒ B = 31 2 1 x+1 = 3 + 3 2 x − 1 Zx + 2 Zx + x − 2 Z x+1 1 1 2 1 dx = dx + dx 2 x +x−2 3 x−1 3 x+2 1 2 = ln |x − 1| + ln |x + 2| + c 3 3 Z Question 13. Evaluate the integral tan x sec3 x dx [3 marks] Z Z Answer : tan x sec3 x dx = sec2 x sec x tan x dx Z sec3 x +c = (sec x)2 sec x tan x dx = 3 Question 14. Sketch the region bounded by the graphs of y = − π2 x + 1 , y = π2 x − 1 , x = 0 and x = π . Find its area. [2 marks] Answer : Points of intersection between y = − π2 x + 1 and y = π2 x − 1 31 2 2 4 π x−1=− x+1⇒ x=2⇒x= π π π 2 1 y = -2 x +1 Π Π Π 2 y = -1 2 x -1 Π x =Π Z π 2 2 2 2 − x+1− x−1 dx + x−1− − x+1 dx π π π π π 0 2 Z π2 Z π 4 4 Area = − x + 2 dx + x − 2 dx π π π 0 2 π2 π 2 2 2 Area = − x2 + 2x + x − 2x π π π 2 0 i h π i π π h π −π = + =π Area = − + π − 0 + (2π − 2π) − 2 2 2 2 Area = Z π 2 32 M 106 - INTEGRAL CALCULUS Dr. Tariq A. AlFadhel 6 Solution of the Final Exam Second semester 1432-1433 H Multiple choice questions (one mark for each question) √ 1. The average value of 3 x + 1 0n [−2, 0] is equal to (a) − 1 2 (b) 1 2 (c) 0 Z The answer : fav = fav = 3 4 0 (d) 1 √ 3 x + 1 dx −2 = 0 − (−2) 4 4 (0 + 1) 3 − 43 (−2 + 1) 3 = 2 3 4 h 3 4 4 (x + 1) 3 (1) − 2 2 3 4 (1) i0 −2 =0 The right answer is (c) . 2. The integral Z sin 5x [cos 5x]−3 dx is equal to [cos 5x]−2 [cos 5x]−2 + c (b) − +c 10 −2 10 −2 (c) [cos 5x] + c (d) −[cos 5x] + c Z Z 1 [cos 5x]−3 (− sin 5x) 5 dx The answer : sin 5x [cos 5x]−3 dx = − 5 (a) =− 1 [cos 5x]−2 [cos 5x]−2 +c= +c 5 −2 10 The right answer is (a) . 3. The integral Z ln √ x dx is equal to 1 x(ln x − 1) + c (b) 2x(ln x − 1) + c 2 1 (c) x ln x − 1 + c (d) x ln x − x + c 2 Z Z Z √ 1 1 ln x dx The answer : ln x dx = ln(x) 2 dx = 2 (a) Using integration by parts u = ln x 1 du = dx x 6 E-mail dv = dx v=x : [email protected] 33 Z 1 1 x ln x − x dx ln x dx = 2 x Z 1 1 1 x ln x − dx = (x ln x − x) + c = x (ln x − 1) + c = 2 2 2 1 2 Z The right answer is (a) . 4. lim x→0 (a) tan x − x is equal to x2 1 3 (b) 0 (c) 3 2 (d) 2 3 0 0 tan x − x x→0 x2 The answer : lim Apply L’Hôpital’s rule tan x − x sec2 x − 1 = lim x→0 x→0 x2 2x 0 0 lim Apply L’Hôpital’s rule sec2 x − 1 2 sec2 x tan x 0 = lim = =0 x→0 x→0 2x 2 2 lim The right answer is (b) 5. If exp(x2 ) = exp(4x − 4) then the value of x is equal to (a) −2 (b) 2 (c) 1 (d) −1 The answer : exp(x2 ) = exp(4x − 4) ⇒ x2 = 4x − 4 ⇒ x2 − 4x + 4 = 0 ⇒ (x − 2)2 = 0 ⇒ x = 2 The right answer is (b) x2 + 1 is equal to x→∞ ln(x + 1) 6. lim (a) ln 2 (b) ∞ (c) 1 (d) x2 + 1 x→∞ ln(x + 1) The answer : lim Apply L’Hôpital’s rule 1 ln 2 ∞ ∞ x2 + 1 2x = lim 1 = lim 2x(x + 1) = ∞ x→∞ ln(x + 1) x→∞ x→∞ x+1 lim The right answer is (b) 34 7. To evaluate the integral (a) u = cos x Z sin3 x dx , we use the substitution (b) u = sin x (c) u = cos x 3 (d) u = sin x 3 The answer : Since the power of the sine function is odd then we use u = cos x The right answer is (a) . 8. The partial fraction decomposition of A Bx + C + 2 +1 2x + 2 Ax + B C (c) + 2x2 + 1 2x2 + 2 (a) 2x2 The answer : 2x2 + 2x + 10 takes the form 8x4 + 12x2 + 4 A B + 2 + 1 2x + 2 Ax + B Cx + D (d) + 2x2 + 1 2x2 + 2 (b) 2x2 x2 + x + 5 x2 + x + 5 2x2 + 2x + 10 = 2 = 4 2 2 8x + 12x + 4 4x + 6x + 2 (2x + 1)(2x2 + 2) Ax + B Cx + D x2 + x + 5 = + + 1)(2x2 + 2) 2x2 + 1 2x2 + 2 (2x2 Note that 2x2 + 1 and 2x2 + 2 are irreducible quadratics . The right answer is (d) . 9. If F (x) = 2tan x , then F ′ (x) is equal to (a) (ln 2) (sec2 x) 2tan x (c) (ln 2) (sec x tan x) 2tan x (b) (sec2 x) 2tan x (d) (ln 2) (sec2 x) The answer : F ′ (x) = 2tan x sec2 x ln 2 = (ln 2) (sec2 x) 2tan x The right answer is (a) 10. 1 dx is equal to x2 − 6x + 13 x−3 1 + c (b) log |x2 − 6x + 13| + c (a) tan−1 2 2 1 x−3 (c) tan +c (d) log |x − 3| + c 3 2 Z Z 1 1 The answer : dx = dx x2 − 6x + 13 (x2 − 6x + 9) + 4 Z 1 x−3 1 −1 +c dx = tan = (x − 3)2 + (2)2 2 2 Z The right answer is (a) 35 11. The area of the region bounded by the graphs of y = x2 and y = |x| is equal to (a) 1 3 (b) 1 (c) 2 3 (d) 4 3 The answer : 1 x ¤ x2 1 -1 Points of intersection between y = x2 and y = |x| x2 = |x| ⇒ x2 = ±x ⇒ x2 ± x = 0 ⇒ x(x ± 1) = 0 ⇒ x = 0 , x = ±1 Since the region is symmetric with respect to the y-axis then Z 1 Z 1 x − x2 dx |x| − x2 dx = Area = 2 0 0 Area = 2 3 1 2 x x − 2 3 =2 0 1 1 − 2 3 1 1 − (0 − 0) = 2 = 6 3 The right answer is (a) 12. The improper integral Z ∞ −∞ 1 dx x2 + 9 (a) converges to 0 (b) converges to (c) diverges (d) converges tp The answer : = lim t→−∞ Z 0 t 0 Z ∞ −∞ 1 x2 + 9 1 dx = 2 x +9 Z dx + lim k→∞ Z 0 −∞ k 0 π 3π 2 1 dx + 2 x +9 Z ∞ 0 x2 1 dx +9 1 dx x2 + 9 k 1 1 dx + lim dx 2 2 2 t→−∞ t x + 3 k→∞ 0 x + 32 0 k 1 1 −1 x −1 x = lim tan + lim tan t→−∞ 3 3 t k→∞ 3 3 0 1 1 1 1 t k −1 −1 −1 −1 = lim + lim − tan (0) tan (0) − tan tan t→−∞ 3 k→∞ 3 3 3 3 3 = lim Z Z 36 1 π 1 π π π 1 π − = + −0 = + = 0− 3 2 3 2 3 2 2 3 The right answer is (b) . 13. To evaluate the integral (a) u = √ x √ 3 x Z dx , we use the substitution 2 x + x3 1 1 2 (c) u = x 5 (d) u = x 5 √ Z 3 x 1 3 The answer : Since the integrand in the integral 2 dx involves x x + x3 2 1 and x 3 then we use the substitution x = u3 ⇒ u = x 3 (b) u = x 3 (note that l.c.m(3, 3) = 3) . The right answer is (b) 14. The substitution u = tan (a) 2 Z du Z −u2 − 1 2 (c) du 2 −u − 2u + 1 x 2 Z transforms the integral 1 dx into 2 + cos x 1 du 2 − 2u + 1 −u Z 2 (d) du 2 u +3 (b) Z The answer : Using half-angle substitution u = tan x 2 ⇒ cos x = 2 1 − u2 , dx = du 1 + u2 1 + u2 1 Z 1 dx = 2 + cos x = Z 1 + u2 2 du = 2 2 2(1 + u ) + 1 − u 1 + u2 = Z u2 Z 2+ 1−u2 1+u2 2 du 1 + u2 Z 2+ 2u2 2 du + 1 − u2 2 du +3 The right answer is (d) 15. The parametric curve C : x = t + 1 , y = 2t + 1 , 0 ≤ t ≤ 2 represents (a) a line segment (b) a parabola (c) a circle (d) an ellipse The answer : x = t + 1 ⇒ t = x − 1 y = 2t + 1 ⇒ y = 2(x − 1) + 1 = 2x − 2 + 1 = 2x − 1 The parametric curve represents a line segment from (1, 1) to (3, 5) The right answer is (a) 37 16. The volume of the solid obtained by revolving the region bounded by the 1 , y = 0 , x = 0 and x = 1 about the x-axis is equal to graphs of y = x+1 π π (b) (c) π (d) 2π (a) 4 2 The answer : x =0 x =1 1 1 y = x +1 1 Using the disk method 2 Z 1 Z 1 V =π dx = π (x + 1)−2 dx x+1 0 1 1 1 π (x + 1)−1 −1 V =π = π − − (−1) = =π −1 x+1 0 2 2 0 The right answer is (b) 17. If (x, y) = (0, −2) then its polar coordinates (r, θ) equals to (c) 2, π2 (d) None of these (a) (−2, π) (b) 2, 3π 2 38 The answer : Hr, Θ L = H2 , 3 Π 2 L r= p (0)2 + (−2)2 = √ Hx , y L = H0 , - 2 L 4=2 3π (see the above figure) 2 (r, θ) = 2, 3π 2 θ= The right answer is (b) 18. The point on C : x = t , y = t2 ; − 1 ≤ t ≤ 1 at which the tangent line is horizontal is 1 (c) u = − 21 , 41 (d) 41 , 16 (a) (0, 0) (b) 21 , 41 The answer : The slope of the tangent line is m = dy dx = 2t and =1 dt dt The tangent line is horizontal when dy dt dx dt dy dx = 0 and 6= 0 dt dt dy = 0 ⇒ 2t = 0 ⇒ t = 0 dt Note that dx 6= 0 at t = 0 dt When t = 0 : x = 0 and y = 02 = 0 The point on C at which the tangent line is horizontal is (0, 0) The right answer is (a) 39 19. The arc length of the polar curve r = 4 sin θ ; 0 ≤ θ ≤ (a) π 2 (b) π The answer : L = L= Z L= Z π 2 0 π 2 0 p (c) 2π Z π 2 0 s π 2 equals to (d) 4π [r(θ)]2 + dr dθ 16 sin2 θ + 16 cos2 θ dθ = π 4 dθ = [4θ]02 = 4 The right answer is (c) π 2 2 Z π 2 0 dθ = q Z π 2 0 q 2 [4 sin θ]2 + [4 cos θ] dθ 16 sin2 θ + cos2 θ dθ − 0 = 2π Note: The polar curve r = 4 sin θ ; 0 ≤ θ ≤ π2 represents half a circle of center (0, 2) and radius equals 2 , therefore the arc length is half of the circuference of the circle which equals to 12 2π(2) = 2π 20. The polar curve r = (a) a straight line The answer : r = 3 represents sin θ (b) a circle (c) a cardioid (d) a rose curve 3 ⇒ r sin θ = 3 ⇒ y = 3 sin θ 3 represents a straight line parallel to the polar The polar curve r = sin θ axis . The right answer is (a) Full Questions : 21. Approximate the integral Z regular partition with n=4 The answer : f (x) = 2 0 1 dx bu using Simpson’s rule and +1 [4 marks] 3x3 2−0 1 , [a, b] = [0, 2] and ∆x = = 0.5 3x3 + 1 4 x0 = 0 , x1 = 0.5 , x2 = 1 , x3 = 1.5 and x4 = 2 . Z 2 1 2−0 dx ≈ [f (0) + 4f (0.5) + 2f (1) + 4f (1.5) + f (2)] 3 3 (4) 0 3x + 1 Z 2 1 1 dx ≈ [1 + 4(0.727273) + 2(0.25) + 4(0.0898876) + 0.04] 3+1 3x 6 0 Z 2 1 1 dx ≈ [1 + 2.90909 + 0.5 + 0.359551 + 0.04] 3 6 0 3x + 1 40 Z 2 0 1 1 dx ≈ [4.80864] ≈ 0.80144 +1 6 3x3 22. Evaluate Z x2 1 √ dx . x2 + 16 [6 marks] The answer : Using trigonometric substitutions Put x = 4 tan θ ⇒ tan θ = x 4 dx = 4 sec2 θ dθ Z Z 1 4 sec2 θ dθ p √ dx = x2 x2 + 16 (4 tan θ)2 (4 tan θ)2 + 16 Z Z 4 sec2 θ dθ 4 sec2 θ dθ p = = 16 tan2 θ (4 sec θ) 16 tan2 θ 16(tan2 θ + 1) Z Z Z 1 1 1 sec θ dθ cos2 θ 1 dθ = = sin θ)−2 cos θ dθ = 16 16 16 tan2 θ sin2 θ cos θ = 1 1 (sin θ)−1 + c = − csc θ + c 16 −1 16 x 2 + 16 4 Θ Z 1 1 √ dx = − 2 2 16 x x + 16 x √ x2 + 16 +c x 1 √ dx 4 x x − 16 Z Z 1 1 √ dx = The answer : 2 x x4 − 16 23. Evaluate the integral Z [5 marks] 2x q 2 x2 (x2 ) − (4)2 2 2 1 1 1 x x = +c= +c sec−1 sec−1 2 4 4 8 4 41 dx 24. Let R be the region bounded by the graph of the equations y = e2x−1 , y = 0 , x = 0 and x = 1 . Sketch the region R and evaluate the volume of the solid obtained by revolving the region R about the x-axis . [5 marks] The answer : 3 2 y = e 2 x -1 1 1 x =1 Note that y = e2x−1 is a positive increasing exponential function . Using the disk method Z Z 1 2x−1 2 dx = π e V =π 0 V = 1 e 4x−2 0 π 4x−2 1 π 2 e e − e−2 = 0 4 4 42 π dx = 4 Z 1 e4x−2 4 dx 0 25. Sketch the region inside the polar curve r = 2 + 2 cos θ and outside the polar curve r = 1 , and find its area [5 marks] The answer : Π 2 2Π Π 3 3 5Π Π 6 6 0 Π 0. 1. 2. 3. 4. 7Π 11 Π 6 6 4Π 5Π 3 3 3Π 2 Angle of intersection between r = 2 + 2 cos θ and r = 1 2 + 2 cos θ = 1 ⇒ cos θ = − 12 ⇒ θ = 2π 3 , θ= 4π 3 Since the region is symmetric with respect to the polar axis then ! Z 2π Z 2π 3 3 1 1 (2 + 2 cos θ)2 dθ − (1)2 dθ Area = 2 2 0 2 0 Area = Z Area = Z Area = Z 2π 3 0 [(4 + 8 cos θ + 4 cos2 θ) − 1] dθ 2π 3 [3 + 8 cos θ + 2(1 + cos 2θ)] dθ 0 2π 3 [5 + 8 cos θ + 2 cos 2θ] dθ 0 2π 3 Area = [5θ + 8 sin θ + sin 2θ]0 26. Evaluate Z √ 10π 7 3 + = 3 2 π 4 sin x ln cos x dx [5 marks] 0 The answer : Using integration by parts u = ln cos x − sin x du = dx cos x dv = sin x dx v = − cos x 43 Z π 4 0 π 4 sin x ln cos x dx = [− cos x ln cos x]0 − π 4 = [− cos x ln cos x]0 − π Z π 4 sin x dx 0 π = [− cos x ln cos x]04 − [cos x]04 # # "√ " √ ! √ 2 2 2 ln −1 −0 + = − 2 2 2 44 Z π 4 0 sin x − cos x (− cos x) dx
© Copyright 2026 Paperzz