9.1 SOLUTIONS
523
CHAPTER NINE
Solutions for Section 9.1
Exercises
1. We draw a graph of ๐ฆ = cos ๐ก for โ๐ โค ๐ก โค 3๐ and trace along it on a calculator to find points at which ๐ฆ = 0.4. We
read off the ๐ก-values at the points ๐ก0 , ๐ก1 , ๐ก2 , ๐ก3 in Figure 9.1. If ๐ก is in radians, we find ๐ก0 = โ1.159, ๐ก1 = 1.159, ๐ก2 = 5.124,
๐ก3 = 7.442. We can check these values by evaluating:
cos(โ1.159) = 0.40,
cos(1.159) = 0.40,
cos(5.124) = 0.40,
cos(7.442) = 0.40.
Notice that because the cosine function is periodic, the equation cos ๐ก = 0.4 has infinitely many solutions. The symmetry
of the graph suggests that the solutions are related.
๐ฆ
๐ฆ = cos ๐ก
๐ฆ = 0.4
โ๐
๐ก0
๐
๐ก1
๐ก2
๐ก3
2๐
๐ก
3๐
Figure 9.1: The points ๐ก0 , ๐ก1 , ๐ก2 , ๐ก3 are solutions to the equation cos ๐ก = 0.4
2. (a) Tracing along the graph in Figure 9.2, we see that the approximations for the two solutions are
๐ก1 โ 1.88
and
๐ก2 โ 4.41.
Note that the first solution, ๐ก1 โ 1.88, is in the second quadrant and the second solution, ๐ก2 โ 4.41, is in the third
quadrant. We know that the cosine function is negative in those two quadrants. You can check the two solutions by
substituting them into the equation:
cos 1.88 โ โ0.304
and
cos 4.41 โ โ0.298,
both of which are close to โ0.3.
๐ฆ
๐ฆ = cos ๐ก
1
๐ก1
๐
๐ก2
2๐
๐ก
๐ฆ = โ0.3
โ1
Figure 9.2: The angles ๐ก1 and ๐ก2 are the two solutions to cos ๐ก = โ0.3 for 0 โค ๐ก โค 2๐
(b) If your calculator is in radian mode, you should find
cosโ1 (โ0.3) โ 1.875,
which is one of the values we found in part (a) by using a graph. Using the cosโ1 key gives only one of the solutions
to a trigonometric equation. We find the other solutions by using the symmetry of the unit circle. Figure 9.3 shows
that if ๐ก1 โ 1.875 is the first solution, then the second solution is
524
Chapter Nine /SOLUTIONS
๐ก2 = 2๐ โ ๐ก1
โ 2๐ โ 1.875 โ 4.408.
Thus, the two solutions are ๐ก โ 1.88 and ๐ก โ 4.41.
๐ก1
โ
โฅ
โจ
๐ก1
โ๐ก1
๐ก2 = 2๐ โ ๐ก1
Figure 9.3: By the symmetry of the unit circle, ๐ก2 = 2๐ โ ๐ก1
3. Graph ๐ฆ = sin ๐ on 0 โค ๐ โค 2๐ and locate the two points with ๐ฆ-coordinate 0.65. The ๐-coordinates of these points are
approximately ๐ = 0.708 and ๐ = 2.434. See Figure 9.4.
๐ฆ
1
0.65
2๐
๐
2.434 ๐
0.708
โ1
Figure 9.4
4. Graph ๐ฆ = tan ๐ฅ on 0 โค ๐ฅ โค 2๐ and locate the two points with ๐ฆ-coordinate 2.8. The ๐ฅ-coordinates of these points are
approximately ๐ฅ = 1.228 and ๐ฅ = 4.369. See Figure 9.5.
๐ฆ
4
2.8
0
๐ฅ
๐
1.228
4.369
2๐
โ4
Figure 9.5
5. Graph ๐ฆ = cos ๐ก on 0 โค ๐ก โค 2๐ and locate the two points with ๐ฆ-coordinate โ0.24. The ๐ก-coordinates of these points are
approximately ๐ก = 1.813 and ๐ก = 4.473. See Figure 9.6.
๐ฆ
1
1.813
๐
โ0.24
โ1
Figure 9.6
4.473
2๐
๐ก
9.1 SOLUTIONS
6. We have
5 sin(3๐) = 4
4
sin(3๐) =
5
( )
4
5
3๐ = 53.130โฆ
(3๐) = sinโ1
๐ = 0.3091 = 17.710โฆ .
7. We have
9 tan(5๐) + 1 = 10
9 tan(5๐) = 9
tan(5๐) = 1
5๐ = tanโ1 (1)
5๐ = 45โฆ
๐ = 0.1571 = 9โฆ .
8. We have
โ
2 3 tan(2๐) + 1 = 3
โ
2 3 tan(2๐) = 2
2
tan(2๐) = โ
2 3
1
tan(2๐) = โ
3
(
โ1
2๐ = tan
)
1
โ
3
2๐ = 30โฆ
๐ = 0.2618 = 15โฆ .
9. We have
3 sin ๐ + 3 = 5 sin ๐ + 2
1 = 2 sin ๐
1
= sin ๐
2
( )
1
=๐
sinโ1
2
โฆ
0.5236 = 30 = ๐.
10. We have
6 cos(3๐) + 3 = 4 cos(3๐) + 4
2 cos(3๐) = 1
1
cos(3๐) =
2
3๐ = cosโ1
( )
1
2
3๐ = 60โฆ
๐ = 0.3491 = 20โฆ .
525
526
Chapter Nine /SOLUTIONS
11. We have
5 tan(4๐) + 4 = 2(tan(4๐) + 5)
5 tan(4๐) + 4 = 2 tan(4๐) + 10
3 tan(4๐) = 6
tan(4๐) = 2
4๐ = tanโ1 (2)
4๐ = 63.435โฆ
๐ = 0.2768 = 15.859โฆ .
12. Since the cosine function always has a value between โ1 and 1, there are no solutions.
13. We use the inverse tangent function on a calculator to get 5๐ + 7 = โ0.236. Solving for ๐, we get ๐ = โ1.447.
14. We divide both sides by 2, giving us sin(4๐) = 0.3335. We then use the inverse sine function on a calculator to get
4๐ = 0.340, so ๐ = 0.085.
Problems
15. (a) We know that cos(๐โ3) = 1โ2. From the graph of ๐ฆ = cos ๐ก in Figure 9.7, we see that ๐ก = ๐โ3, ๐ก = 5๐โ3, ๐ก = โ๐โ3,
and ๐ก = โ5๐โ3 are all solutions, as are any values of ๐ก obtained by adding or subtracting multiples of 2๐ to these
values.
๐ฆ
1
๐ฆ = cos ๐ก
๐ฆ=
โ2๐
โ 5๐
3
โ ๐3
1
2
๐ก
๐
3
5๐
3
2๐
โ1
Figure 9.7: ๐ฆ = cos ๐ก has an infinite number of ๐ก-values for ๐ฆ = 1โ2
(b) If we restrict our attention to the interval 0 โค ๐ก โค 2๐, we find two solutions, ๐ก = ๐โ3 and ๐ก = 5๐โ3. To see why this is
so, look at the unit circle in Figure 9.8. During one revolution around the circle, there are always two angles with the
same cosine (or sine, or tangent), unless the cosine is 1 or โ1. Therefore, we expect the equation cos ๐ก = 1โ2 to have
two solutions in the interval 0 โค ๐ก โค 2๐.
๐ก=
๐
3
๐ก=
5๐
3
1
โจ
1โ2
โฏ
Figure 9.8: During one revolution around the unit circle, the
two angles ๐โ3 and 5๐โ3 have the cosine value of 1โ2
16. We know that one solution to the equation cos ๐ก = 0.4 is ๐ก = cosโ1 (0.4) = 1.159. From Figure 9.9, we see by the symmetry
of the unit circle that another solution is ๐ก = โ1.159. We know that additional solutions are given each time the angle ๐ก
wraps around the circle in either direction. This means that
1.159 + 1 โ
2๐ = 7.442
wrap once around circle
9.1 SOLUTIONS
1.159 + 2 โ
2๐ = 13.725
527
wrap twice around circle
1.159 + (โ1) โ
2๐ = โ5.124
wrap once around circle the other way
and
โ1.159 + 1 โ
2๐ = 5.124
wrap once around circle
โ1.159 + 2 โ
2๐ = 11.407
wrap once around circle
โ1.159 + (โ1) โ
2๐ = โ7.442.
wrap once around circle the other way
๐ฆ 0.4
โโฒ
๐ก = 1.159
๐ฅ
๐ก = โ1.159
Figure 9.9: Two solutions to the
equation cos ๐ก = 0.4
17. We have ๐ฅ = cosโ1 (0.6) = 0.927. A graph of cos ๐ฅ shows that the second solution is ๐ฅ = 2๐ โ 0.927 = 5.356.
18. Collecting the sin ๐ฅ terms on the left gives
2 sin ๐ฅ = 1 โ sin ๐ฅ
3 sin ๐ฅ = 1
sin ๐ฅ = 1โ3
๐ฅ = sinโ1 (1โ3) = 0.340.
A graph of sin ๐ฅ shows the second solution is ๐ฅ = ๐ โ 0.340 = 2.802.
19. Multiplying both sides by cos ๐ฅ gives
5 cos ๐ฅ = 1โ cos ๐ฅ
5 cos2 ๐ฅ = 1
cos2 ๐ฅ = 1โ5
โ
cos ๐ฅ = ±
1
.
5
( โ
)
โ
Thus ๐ฅ = cosโ1 1โ5 = 1.107 or ๐ฅ = cosโ1 โ 1โ5 = 2.034. A graph of cos ๐ฅ shows that there are other solutions
โ
โ
with cos ๐ฅ = 1โ5 given by ๐ฅ = 2๐ โ 1.107 = 5.176 and with cos ๐ฅ = โ 1โ5 given by ๐ฅ = 2๐ โ 2.034 = 4.249. Thus
the solutions are
1.107, 2.034, 4.249, 5.176.
20. Looking at the graph of ๐ฆ = sin(2๐ฅ) in Figure 9.10, we see it crosses the line ๐ฆ = 0.3 four times between 0 and 2๐, so there
will be four solutions. Since 2๐ฅ = sinโ1 (0.3) = 0.30469, one solution is
๐ฅ=
0.30469
= 0.1523.
2
528
Chapter Nine /SOLUTIONS
The period of ๐ฆ = sin(2๐ฅ) is ๐, so the other solutions in 0 โค ๐ฅ โค 2๐ are
๐ฅ = 0.1523 + ๐ = 3.294
๐ฅ = ๐โ2 โ 0.1523 = 1.418
๐ฅ = 3๐โ2 โ 0.1523 = 4.560.
๐ฆ
sin(2๐ฅ)
1
0.3
๐
๐โ2
3๐โ2
๐ฅ
2๐
โ1
Figure 9.10
21. Since sin(๐ฅ โ 1) = 0.25, we know
๐ฅ โ 1 = sinโ1 (0.25) = 0.253.
๐ฅ = 1.253.
Another solution for ๐ฅ โ 1 is given by
๐ฅ โ 1 = ๐ โ 0.253 = 2.889
๐ฅ = 3.889.
22. Since 5 cos(๐ฅ + 3) = 1, we have
1
= 0.2
5
๐ฅ + 3 = cosโ1 (0.2) = 1.3694
cos(๐ฅ + 3) =
๐ฅ = 1.3694 โ 3 = โ1.6306.
This value of ๐ฅ is not in the interval 0 โค ๐ฅ โค 2๐. To obtain values of ๐ฅ in this interval, we find values of ๐ฅ + 3 in the
interval between 3 and 3 + 2๐, that is between 3 and 9.283. These values of ๐ฅ + 3 are
๐ฅ + 3 = 2๐ โ 1.369 = 4.914
๐ฅ + 3 = 2๐ + 1.369 = 7.653.
Thus
๐ฅ = 1.914, 4.653.
23. See Figure 9.11. The solutions to the equation cos ๐ = โ0.4226 are the angles corresponding to the points ๐ and ๐ on
the unit circle with ๐ฅ = โ0.4226.
Since cosโ1 (โ0.4226) = 115โฆ , point ๐ corresponds to 115โฆ . Since ๐ and ๐ both have reference angles of 65โฆ , ๐
corresponds to 180โฆ + 65โฆ = 245โฆ . Thus the solutions of the equation are
๐ = 115โฆ and ๐ = 180โฆ + 65โฆ = 245โฆ ,
๐ = 360 + 115โฆ = 475โฆ and ๐ = 360โฆ + 245โฆ = 605โฆ .
โฆ
9.1 SOLUTIONS
529
๐ฆ
๐
โฎ115
โฆ
65โฆ
๐ฅ
65โฆ
๐
Figure 9.11: Points corresponding to angles with cos ๐ = โ0.4226
24. (a) Since cos(65โฆ ) = 0.4226, a calculator set in degrees gives cosโ1 (0.4226) = 65โฆ . We see in Figure 9.12 that all the
angles with a cosine of 0.4226 correspond either to the point ๐ or to the point ๐. We want solutions between 0โฆ and
360โฆ , so ๐ is represented by 360โฆ โ 65โฆ = 295โฆ . Thus, the solutions are
๐ = 65โฆ
and
๐ = 295โฆ .
(b) A calculator gives tanโ1 (2.145) = 65โฆ . Since tan ๐ is positive in the first and third quadrants, the angles with a tangent
of 2.145 correspond either to the point ๐ or the point ๐
in Figure 9.13. Since we are interested in solutions between
0โฆ and 720โฆ , the solutions are
๐ = 65โฆ ,
245โฆ ,
65โฆ + 360โฆ ,
245โฆ + 360โฆ .
That is
๐ = 65โฆ ,
245โฆ ,
425โฆ ,
605โฆ .
๐ฆ
๐ฆ
๐ =
๐ = (0.4226, 0.9063)
(cos 65โฆ , sin 65โฆ )
245โฆ
65โฆ
65โฆ
๐ฅ
๐ฅ
โ65โฆ
๐ = (0.4226, โ0.9063)
๐
= (โ0.4223, โ0.9063)
Figure 9.12: The angles 65โฆ and โ65โฆ
Figure 9.13: The angles 65โฆ and 245โฆ
25. By sketching a graph, we see that there are four solutions (see Figure 9.14). The first solution is given by ๐ฅ = cosโ1 (0.6) =
0.927, which is equivalent to the length labeled โ๐" in Figure 9.14. Next, note that, by the symmetry of the graph of the
cosine function, we can obtain a second solution by subtracting the length ๐ from 2๐. Therefore, a second solution to the
equation is given by ๐ฅ = 2๐ โ 0.927 = 5.356. Similarly, our final two solutions are given by ๐ฅ = 2๐ + 0.927 = 7.210 and
๐ฅ = 4๐ โ 0.927 = 11.639.
๐ฆ
0.6
โฒ โ
๐
๐ฅ
2๐
Figure 9.14
4๐
530
Chapter Nine /SOLUTIONS
26. By sketching a graph, we see that there are two solutions (see Figure 9.15). The first solution is given by ๐ฅ = sinโ1 (0.3) =
0.305, which is equivalent to the length labeled โ๐" in Figure 9.15. Next, note that, by the symmetry of the graph of the
sine function, we can obtain the second solution by subtracting the length ๐ from ๐. Therefore, the other solution is given
by ๐ฅ = ๐ โ 0.305 = 2.837.
๐ฆ
0.3
๐ฅ
๐
โฒ๐โ
2๐
Figure 9.15
27. By sketching a graph, we see that there are two solutions (see Figure 9.16). The first solution is given by ๐ฅ = cosโ1 (โ0.7) =
2.346, which corresponds to the leftmost point in Figure 9.16. To find the second solution, we first calculate the distance
labeled โ๐" in Figure 9.16 to obtain ๐ = ๐ โ cosโ1 (โ0.7) = 0.795. Therefore, by the symmetry of the cosine function, the
second solution is given by ๐ฅ = ๐ + ๐ = 3.937.
๐ฆ
๐
โโฒ
๐ฅ
๐
2๐
โ0.7
Figure 9.16
28. By sketching a graph, we see that there are four solutions (see Figure 9.17). To find the four solutions, we begin by
calculating sinโ1 (โ0.8) = โ0.927. Therefore, the length labeled โ๐" in Figure 9.17 is given by ๐ = โ sinโ1 (โ0.8) = 0.927.
Now, using the symmetry of the graph of the sine function, we can see that the four solutions are given by ๐ฅ = ๐ + ๐ =
4.069, ๐ฅ = 2๐ โ ๐ = 5.356, ๐ฅ = 3๐ + ๐ = 10.352, and ๐ฅ = 4๐ โ ๐ = 11.639.
๐ฆ
โฒ๐โ
4๐
๐
โ ๐2
2๐
๐ฅ
3๐
โ0.8
Figure 9.17
โ
โ
29. One solution is ๐ = sinโ1 (โ 2โ2) = โ๐โ4, and a second solution is 5๐โ4, since sin(5๐โ4) = โ 2โ2. All other solutions
are found by adding integer multiples of 2๐ to these two solutions. See Figure 9.18.
๐ฆ
1
โ 3๐
4
โ ๐4
5๐
4
2๐
โ2๐
โ
๐ฆ=โ
13๐
4
7๐
4
2
2
โ1
Figure 9.18
15๐
4
4๐
๐
9.1 SOLUTIONS
531
โ
โ
30. One solution is ๐ = cosโ1 ( 3โ2) = ๐โ6, and a second solution is 11๐โ6, since cos(11๐โ6) = 3โ2. All other solutions
are found by adding integer multiples of 2๐ to these two solutions. See Figure 9.19.
๐ฆ=
1
โ
3
2
๐ฆ
โ ๐6
โ 11๐
6
๐
๐
6
11๐
6
13๐
6
23๐
6
โ1
Figure 9.19
โ
31. One solution is ๐ = tanโ1 (โ 3โ3) = โ๐โ6, All other solutions are found by adding integer multiples of ๐ to โ๐โ6. See
Figure 9.20.
๐ฆ
2
โ 7๐
6
5๐
6
โ ๐6
5๐
2
๐
๐
โ
๐ฆ=โ
11๐
6
3
3
โ2
Figure 9.20
32.
sec2 ๐ผ + 3 tan ๐ผ = tan ๐ผ
1 + tan2 ๐ผ + 3 tan ๐ผ = tan ๐ผ
tan2 ๐ผ + 2 tan ๐ผ + 1 = 0
(tan ๐ผ + 1)2 = 0
tan ๐ผ = โ1
3๐ 7๐
๐ผ=
,
4
4
< ๐ก < 7๐
, 9๐ < ๐ก < 5๐
and 7๐
<๐ก<
33. From Figure 9.21 we can see that the solutions lie on the intervals ๐8 < ๐ก < ๐4 , 3๐
4
8 8
4
4
Using the trace mode on a calculator, we can find approximate solutions ๐ก = 0.52, ๐ก = 2.62, ๐ก = 3.67 and ๐ก = 5.76.
15๐
.
8
๐ฆ
๐ฆ = cos(2๐ก)
1
๐ฆ=
0.5
โ0.5
๐
4
๐
2
3๐
4
๐
1
2
๐ก
5๐
4
3๐
2
7๐
4
2๐
โ1
Figure 9.21
For a more precise answer we solve cos(2๐ก) = 21 algebraically, giving 2๐ก = arccos(1โ2). One solution is 2๐ก = ๐โ3.
But 2๐ก = 5๐โ3, 7๐โ3, and 11๐โ3 are also angles that have a cosine of 1โ2. Thus ๐ก = ๐โ6, 5๐โ6, 7๐โ6, and 11๐โ6 are the
solutions between 0 and 2๐.
532
Chapter Nine /SOLUTIONS
34. To solve
1
tan ๐ก
we multiply both sides of the equation by tan ๐ก. Multiplication gives us
tan ๐ก =
tan2 ๐ก = 1
tan ๐ก = ±1.
or
From Figure 9.22, we see that there are two solutions for tan ๐ก = 1, and two solutions for tan ๐ก = โ1; they are approximately
๐ก = 0.79, ๐ก = 3.93, and ๐ก = 2.36, ๐ก = 5.50.
๐ฆ
๐ฆ = tan ๐ก
๐ฆ=1
1
๐
2
๐
4
3๐
4
๐
๐ก
5๐
4
7๐
4
3๐
2
2๐
๐ฆ = โ1
โ1
Figure 9.22
To find exact solutions, we have ๐ก = arctan(±1) = ±๐โ4. There are other angles that have a tan of ±1, namely ±3๐โ4.
So ๐ก = ๐โ4, 3๐โ4, 5๐โ4, and 7๐โ4 are the solutions in the interval from 0 to 2๐.
35. From Figure 9.23, we see that 2 sin ๐ก cos ๐ก โ cos ๐ก = 0 has four roots between 0 and 2๐. They are approximately ๐ก = 0.52,
๐ก = 1.57, ๐ก = 2.62, and ๐ก = 4.71.
๐ฆ
๐ฆ = 2 sin ๐ก cos ๐ก โ cos ๐ก
๐
2
๐
3๐
2
๐ก
2๐
Figure 9.23
To solve the problem symbolically, we factor out cos ๐ก:
2 sin ๐ก cos ๐ก โ cos ๐ก = cos ๐ก(2 sin ๐ก โ 1) = 0.
So solutions occur either when cos ๐ก = 0 or when 2 sin ๐ก โ 1 = 0. The equation cos ๐ก = 0 has solutions ๐โ2 and 3๐โ2. The
equation 2 sin ๐ก โ 1 = 0 has solution ๐ก = arcsin(1โ2) = ๐โ6, and also ๐ก = ๐ โ ๐โ6 = 5๐โ6. Thus the solutions to the
original problem are
๐ 3๐ ๐
5๐
๐ก= ,
,
and
.
2 2 6
6
36. The solutions to the equation are at points where the graphs of ๐ฆ = 3 cos2 ๐ก and ๐ฆ = sin2 ๐ก cross. From Figure 9.24, we
see that 3 cos2 ๐ก = sin2 ๐ก has four solutions between 0 and 2๐; they are approximately ๐ก = 1.05, ๐ก = 2.09, ๐ก = 4.19, and
๐ก = 5.24.
9.1 SOLUTIONS
533
๐ฆ
๐ฆ = 3 cos2 ๐ก
3
2
1
๐ฆ = sin2 ๐ก
0
๐
3
๐
2
๐ก
๐
2๐
3
4๐
3
3๐
2
2๐
5๐
3
Figure 9.24
To solve 3 cos2 ๐ก = sin2 ๐ก we divide both sides by cos2 ๐ก and rewrite the equation as
โ
3 = tan2 ๐ก
or
tan ๐ก = ± 3.
(Dividing by cos2 ๐ก is valid only if cos ๐ก โ 0. Since ๐ก = ๐โ2 and ๐ก = 3๐โ2 are not solutions, cos ๐ก โ 0.)
Using the inverse tangent and reference angles, we find that the solutions occur at the points
๐ก=
5๐
๐ 4๐ 2๐
,
,
and
.
3 3
3
3
37. Graph ๐ฆ = 12 โ 4 cos(3๐ก) on 0 โค ๐ก โค 2๐โ3 and locate the two points with ๐ฆ-coordinate 14. (See Figure 9.25.) These points
have ๐ก-coordinates of approximately ๐ก = 0.698 and ๐ก = 1.396. There are six solutions in three cycles of the graph between
0 and 2๐.
๐ฆ
16
14
๐ฆ = 12 โ 4 cos(3๐ก)
8
๐ก
0.698 1.396
2๐
3
4๐
3
2๐
Figure 9.25
38. (a) Graph ๐ฆ = 3 โ 5 sin 4๐ก on the interval 0 โค ๐ก โค ๐โ2, and locate values where the function crosses the ๐ก-axis. Alternatively, we can find the points where the graph 5 sin 4๐ก and the line ๐ฆ = 3 intersect. By looking at the graphs of these
two functions on the interval 0 โค ๐ก โค ๐โ2, we find that they intersect twice. By zooming in we can identify these
points of intersection as roughly ๐ก1 โ 0.16 and ๐ก2 โ 0.625. See Figure 9.26.
534
Chapter Nine /SOLUTIONS
๐ฆ
๐ฆ = 3 โ 5 sin(4๐ก)
8
๐ก1
๐ก2
๐
2
๐
4
โ2
๐ก
Figure 9.26
(b) Solve for sin(4๐ก) and then use arcsine:
5 sin(4๐ก) = 3
3
sin(4๐ก) =
5
4๐ก = arcsin
( )
3
.
5
arcsin(3โ5)
โ 0.161 is a solution. But the angle ๐ โ arcsin(3โ5) has the same sine as arcsin(3โ5). Solving
4
๐ arcsin(3โ5)
4๐ก = ๐ โ arcsin(3โ5) gives ๐ก2 = โ
โ 0.625 as a second solution.
4
4
39. (a) The maximum is $100,000 and the minimum is $20,000. Thus in the function
So ๐ก1 =
๐ (๐ก) = ๐ด cos(๐ต(๐ก โ โ)) + ๐,
the midline is
๐=
100, 000 + 20, 000
= $60,000
2
and the amplitude is
100, 000 โ 20, 000
= $40,000.
2
The period of this function is 12 since the sales are seasonal. Since
๐ด=
period = 12 =
2๐
,
๐ต
we have
๐
.
6
The company makes its peak sales in mid-December, which is month โ1 or month 11. Since the regular cosine curve
hits its peak at ๐ก = 0 while ours does this at ๐ก = โ1, we find that our curve is shifted horizontally 1 unit to the left. So
we have
โ = โ1.
๐ต=
So the sales function is
(
๐ (๐ก) = 40,000 cos
)
)
(
๐
๐
๐
+ 60,000.
(๐ก + 1) + 60,000 = 40,000 cos
๐ก+
6
6
6
(b) Mid-April is month ๐ก = 3. Substituting this value into our function, we get
๐ (3) = $40,000.
(c) To solve ๐ (๐ก) = 60,000 for ๐ก, we write
๐
๐ก+
6
(
๐
0 = 40,000 cos
๐ก+
6
)
(
๐
๐
.
๐ก+
0 = cos
6
6
(
60,000 = 40,000 cos
)
๐
+ 60,000
6
)
๐
6
9.1 SOLUTIONS
535
Since the cosine function takes on the value 0 at ๐โ2 and 3๐โ2, the angle ( ๐6 ๐ก + ๐6 ) equals either ๐2 or 3๐2 . Solving for
๐ก, we get ๐ก = 2 or ๐ก = 8. So in mid-March and mid-September the company has sales of $60,000 (which is the average
or midline sales value).
40. (a) Let ๐ก be the time in hours since 12 noon. Let ๐ = ๐ (๐ก) be the depth in feet in Figure 9.27.
High tide
๐ (feet)
17.2
โ
6.2 โฒโ
โ
6.2 โฒ
โ
11.4
โ
5.6
6
Low tide
โฒ
12
18
24
๐ก (hours)
Figure 9.27
17.2 + 5.6
= 11.4 and the amplitude is 17.2 โ 11.4 = 5.8. The period is 12.4. Thus we get
2(
)
๐
๐ก .
๐ = ๐ (๐ก) = 11.4 + 5.8 cos
6.2
(c) We find the first ๐ก value when ๐ = ๐ (๐ก) = 8:
(
)
๐
8 = 11.4 + 5.8 cos
๐ก
6.2
(b) The midline is ๐ =
Using the cosโ1 function, we have
(
)
๐
โ3.4
= cos
๐ก
5.8
6.2
(
)
๐
โ1 โ3.4
cos
๐ก
=
5.8
6.2
)
(
6.2
โ3.4
๐ก=
โ 4.336 hours.
cosโ1
๐
5.8
Since 0.336(60) โ 20 minutes, the latest time the boat can set sail is 4:20 pm.
41. The curve is(a sine
) curve with an amplitude of 5, a period of 8 and a vertical shift of โ3. Thus the equation for the curve
๐
๐ฅ โ 3. Solving for ๐ฆ = 0, we have
is ๐ฆ = 5 sin
4
( )
๐
5 sin
๐ฅ =3
4
( )
3
๐
๐ฅ =
sin
4
5
( )
3
๐
๐ฅ = sinโ1
4
5
( )
4
โ1 3
โ 0.819.
๐ฅ = sin
๐
5
This is the ๐ฅ-coordinate of ๐ . The ๐ฅ-coordinate of ๐ is to the left of 4 by the same distance ๐ is to the right of ๐, by the
symmetry of the sine curve. Therefore,
๐ฅ โ 4 โ 0.819 = 3.181
is the ๐ฅ-coordinate of ๐.
42. (a) The value of sin ๐ก will be between โ1 and 1. This means that ๐ sin ๐ก will be between โ๐ and ๐. Thus, ๐ก2 = ๐ sin ๐ก will
be between 0 and ๐. So
โ
โ
โ ๐ โค ๐ก โค ๐.
(b) Plotting 2 sin ๐ก and ๐ก2 on a calculator, we see that ๐ก2 = 2 sin ๐ก for ๐ก = 0 and ๐ก โ 1.40.
(c) Compare the graphs of ๐ sin ๐ก, a sine wave, and ๐ก2 , a parabola. As ๐ increases, the amplitude of the sine wave increases,
and so the sine wave intersects the parabola in more points.
(d) Plotting ๐ sin ๐ก and ๐ก2 on a calculator for different values of ๐, we see that if ๐ โ 20, this equation will have a negative
solution at ๐ก โ โ4.3, but that if ๐ is any smaller, there will be no negative solution.
536
Chapter Nine /SOLUTIONS
43. (a) In Figure 9.28, the earthโs center is labeled ๐ and two radii are extended, one through ๐, your shipโs position, and
one through ๐ป, the point on the horizon. Your line of sight to the horizon is tangent to the surface of the earth. A line
tangent to a circle at a given point is perpendicular to the circleโs radius at that point. Thus, since your line of sight is
tangent to the earthโs surface at ๐ป, it is also perpendicular to the earthโs radius at ๐ป. This means that triangle ๐๐ถ๐ป
is a right triangle. Its hypotenuse is ๐ + ๐ฅ and its legs are ๐ and ๐. From the Pythagorean theorem, we have
๐2 + ๐ 2 = (๐ + ๐ฅ)2
๐ 2 = (๐ + ๐ฅ)2 โ ๐2
= ๐2 + 2๐๐ฅ + ๐ฅ2 โ ๐2 = 2๐๐ฅ + ๐ฅ2 .
Since ๐ is positive, we have ๐ =
โ
2๐๐ฅ + ๐ฅ2 .
๐ถ
๐ฅ
๐
๐
๐ป
๐
Line of sight
๐
๐
๐
๐
Figure 9.28
(b) We begin by using the formula obtained in part (a):
โ
๐ = 2๐๐ฅ + ๐ฅ2
โ
= 2(6,370,000)(50) + 502
โ 25,238.908.
Thus, you would be able to see a little over 25 kilometers from the crowโs nest ๐ถ.
Having found a formula for ๐, we will now try to find a formula for ๐, the distance along the earthโs surface from
the ship to the horizon ๐ป. In Figure 9.28, ๐ is the arc length specified by the angle ๐ (in radians). The formula for arc
length is
๐ = ๐๐.
In this case, we must determine ๐. From Figure 9.28 we see that
cos ๐ =
adjacent
๐
=
.
hypotenuse
๐+๐ฅ
Thus,
๐ = cosโ1
(
๐
๐+๐ฅ
)
since 0 โค ๐ โค ๐โ2. This means that
๐ = ๐๐ = ๐ cosโ1
(
๐
๐+๐ฅ
)
(
= 6,370,000 cosโ1
6,370,000
6,370,050
)
โ 25,238.776 meters.
9.2 SOLUTIONS
537
There is very little differenceโabout 0.13 m or 13 cmโbetween the distance ๐ that you can see and the distance
๐ that the ship must travel to reach the horizon. If this is surprising, keep in mind that Figure 9.28 has not been drawn
to scale. In reality, the mast height ๐ฅ is significantly smaller than the earthโs radius ๐ so that the point ๐ถ in the crowโs
nest is very close to the shipโs position at point ๐. Thus, the line segment ๐ and the arc ๐ are almost indistinguishable.
Solutions for Section 9.2
Exercises
1. No, these expressions are not equal everywhere. They have different amplitudes (1 and 3) and different periods (2๐โ3 and
2๐).
The value of the two functions are different at ๐ก = ๐โ2, since sin(3๐โ2) = โ1 and 3 sin(๐โ2) = 3.
2. No, these expressions are not equal everywhere. (In fact, cos2 ๐ก = โ(sin2 ๐ก โ 1).)
The value of the two functions are different at ๐ก = 0, since cos2 0 = 1 and sin2 0 โ 1 = โ1.
3. Yes, these expressions are equal everywhere. Expanding the first expression, we get
(cos ๐ก โ sin ๐ก)(cos ๐ก + sin ๐ก) = cos2 ๐ก โ sin2 ๐ก.
4. Yes, these expressions are equal everywhere they are defined. (They are both defined for all ๐ก except where cos ๐ก = 0.) We
use sec ๐ก = 1โ cos ๐ก, giving
sin ๐ก
1
sin ๐ก =
= tan ๐ก.
sec ๐ก sin ๐ก =
cos ๐ก
cos ๐ก
5. We use the relationship sin2 ๐ + cos2 ๐ = 1 to find cos ๐. Substitute sin ๐ = 1โ4:
( )2
1
+ cos2 ๐ = 1
4
1
+ cos2 ๐ = 1
16
1
15
cos2 ๐ = 1 โ
=
16
16
โ
โ
15
15
=±
.
cos ๐ = ±
16
4
โ
Because ๐ is in the first quadrant, cos ๐ is positive, so cos ๐ = 15โ4. To find tan ๐, use the relationship
tan ๐ =
1โ4
1
sin ๐
= โ .
= โ
cos ๐
15โ4
15
6. We use the relationship sin2 ๐ + cos2 ๐ = 1 to find cos ๐. Substitute sin ๐ = 3โ5:
( )2
3
+ cos2 ๐ = 1
5
9
+ cos2 ๐ = 1
25
9
16
cos2 ๐ = 1 โ
=
25
25
4
cos ๐ = ± .
5
Because ๐ is in the second quadrant, cos ๐ is negative, so cos ๐ = โ4โ5. To find tan ๐, use the relationship
tan ๐ =
3โ5
sin ๐
3
=
=โ .
cos ๐
โ4โ5
4
538
Chapter Nine /SOLUTIONS
7. We use the relationship sin2 ๐ + cos2 ๐ = 1 to find sin ๐. Substitute cos ๐ = โ2โ5:
( )2
2
=1
sin2 ๐ + โ
5
4
sin2 ๐ +
=1
25
4
21
sin2 ๐ = 1 โ
=
25
25
โ
21
sin ๐ = ±
.
5
โ
Because ๐ is in the third quadrant, sin ๐ is negative, so sin ๐ = โ 21โ5. To find tan ๐, use the relationship
โ
โ
โ 21โ5
21
sin ๐
tan ๐ =
=
=
.
cos ๐
โ2โ5
2
8. We use the relationship sin2 ๐ + cos2 ๐ = 1 to find sin ๐. Substitute cos ๐ = 1โ3:
( )2
1
=1
3
1
sin2 ๐ + = 1
9
sin2 ๐ +
1
8
sin2 ๐ = 1 โ =
9
9
โ
8
.
sin ๐ = ±
3
โ
Because ๐ is in the fourth quadrant, sin ๐ is negative, so sin ๐ = โ 8โ3. To find tan ๐, use the relationship
โ
โ
โ 8โ3
sin ๐
tan ๐ =
=
= โ 8.
cos ๐
1โ3
9. We have:
tan ๐ก cos ๐ก โ
sin ๐ก
sin ๐ก
sin ๐ก
=
โ
cos ๐ก โ (
)
sin ๐ก
tan ๐ก
cos ๐ก
cos ๐ก
cos ๐ก
= sin ๐ก โ sin ๐ก โ
sin ๐ก
= sin ๐ก โ cos ๐ก.
because tan ๐ก =
sin ๐ก
cos ๐ก
10. We have:
2 cos ๐ก (3 โ 7 tan ๐ก) = 6 cos ๐ก โ 14 cos ๐ก โ
tan ๐ก
sin ๐ก
= 6 cos ๐ก โ 14 cos ๐ก โ
cos ๐ก
= 6 cos ๐ก โ 14 sin ๐ก.
11. We have:
2 cos ๐ก โ cos ๐ก (1 โ 3 tan ๐ก) = 2 cos ๐ก โ cos ๐ก + 3 cos ๐ก โ
tan ๐ก
sin ๐ก
= cos ๐ก + 3 cos ๐ก โ
cos ๐ก
= cos ๐ก + 3 sin ๐ก.
9.2 SOLUTIONS
12. We have:
2 cos ๐ก (3 sin ๐ก โ 4 tan ๐ก) = 6 sin ๐ก cos ๐ก โ 8 tan ๐ก โ
cos ๐ก
sin ๐ก
= 6 sin ๐ก cos ๐ก โ 8
โ
cos ๐ก
cos ๐ก
= 6 sin ๐ก cos ๐ก โ 8 sin ๐ก.
13. Writing sin 2๐ผ = 2 sin ๐ผ cos ๐ผ, we have
2 sin ๐ผ cos ๐ผ
sin 2๐ผ
=
= 2 sin ๐ผ.
cos ๐ผ
cos ๐ผ
14. Writing cos2 ๐ = 1 โ sin2 ๐, we have
cos2 ๐ โ 1
1 โ sin2 ๐ โ 1
โ sin2 ๐
=
=
= โ sin ๐.
sin ๐
sin ๐
sin ๐
15. Writing cos 2๐ก = cos2 ๐ก โ sin2 ๐ก and factoring, we have
(cos ๐ก โ sin ๐ก)(cos ๐ก + sin ๐ก)
cos2 ๐ก โ sin2 ๐ก
cos 2๐ก
=
=
= cos ๐ก โ sin ๐ก.
cos ๐ก + sin ๐ก
cos ๐ก + sin ๐ก
cos ๐ก + sin ๐ก
16. Adding fractions gives
1
2
1
1 + sin ๐ + 1 โ sin ๐
2
=
.
+
=
=
1 โ sin ๐ 1 + sin ๐
(1 โ sin ๐)(1 + sin ๐)
cos2 ๐
1 โ sin2 ๐
17. Combining terms and using cos2 ๐ + sin2 ๐ = 1, we have
cos ๐ โ 1
sin ๐
(cos ๐ โ 1)(cos ๐ + 1) + sin2 ๐
cos2 ๐ โ 1 + sin2 ๐
0
+
=
=
=
=0
sin ๐
cos ๐ + 1
sin ๐(cos ๐ + 1)
sin ๐(cos ๐ + 1)
sin ๐(cos ๐ + 1)
18. Using tan ๐ก = sin ๐กโ cos ๐ก, we have
1
1
1
1
โ
=
โ
sin ๐ก cos ๐ก tan ๐ก
sin ๐ก cos ๐ก sin ๐กโ cos ๐ก
1
cos ๐ก
=
โ
sin ๐ก cos ๐ก sin ๐ก
1 โ cos2 ๐ก
=
sin ๐ก cos ๐ก
sin2 ๐ก
=
sin ๐ก cos ๐ก
sin ๐ก
=
cos ๐ก
= tan ๐ก.
19. We have:
sin
โ
โ
๐
โ = tan ๐.
cos ๐
20. We have:
๐ผ
๐ผ
sin
2 = 2โ
2
๐ผ
๐ผ
cos
cos
2
2
๐ผ
= 2 tan .
2
2 sin
539
540
Chapter Nine /SOLUTIONS
21. We have:
3 sin(๐ + 1)
3 sin(๐ + 1)
= โ
4 cos(๐ + 1)
4 cos(๐ + 1)
3
= tan(๐ + 1).
4
22. We have:
(
)
(
sin ๐2 โ ๐ 2
)
(
1
=
)
(
) = tan ๐2 โ ๐ 2 .
( 2
)
cos ๐2 โ ๐ 2
cos ๐ โ ๐ 2
( 2
)
2
sin ๐ โ ๐
23. We have
)
2
๐+3
โ
)
(
2
cos
3
( ๐ +)
2
.
tan
๐+3
(
(
2 sin
2
โ
๐+3
)
5
(
2
3 cos
๐+3
) =
10
3
=
10
3
sin
24. We have:
(
(
)
)
1
1
sin 1 โ
sin 1 โ
2
๐ง = 2
๐ง
(
(
)โ
)
1
1
3
3
cos 1 โ
cos 1 โ
๐ง
๐ง)
(
2
1
= tan 1 โ
.
3
๐ง
25. We solve the Pythagorean identity for sin ๐.
sin2 ๐ + cos2 ๐ = 1
sin2 ๐ = 1 โ cos2 ๐
(sin ๐)2 = 1 โ cos2 ๐.
If sin ๐ โฅ 0,
sin ๐ =
โ
1 โ cos2 ๐.
If sin ๐ < 0,
โ
sin ๐ = โ 1 โ cos2 ๐.
26. The relevant identities are cos2 ๐ + sin2 ๐ = 1 and cos 2๐ = cos2 ๐ โ sin2 ๐ = 2 cos2 ๐ โ 1 = 1 โ 2 sin2 ๐. See Table 9.1.
Table 9.1
๐ in rad.
sin2 ๐
cos2 ๐
sin 2๐
cos 2๐
1
0.708
0.292
0.909
โ0.416
๐โ2
1
0
0
โ1
2
0.827
0.173
โ0.654
5๐โ6
1โ4
3โ4
โ0.757
โ
โ 3โ2
1โ2
9.2 SOLUTIONS
541
Problems
27. Since cos 2๐ก has period ๐ and sin ๐ก has period 2๐, if the result we want holds for 0 โค ๐ก โค 2๐, it holds for all ๐ก. So letโs
concentrate on the interval 0 โค ๐ก โค 2๐.
Solving cos 2๐ก = 0 gives ๐ก = ๐โ4, 3๐โ4, 5๐โ4, 7๐โ4.
From the graph in Figure 9.29, we see cos 2๐ก > 0 for 0 โค ๐ก < ๐โ4, 3๐โ4 < ๐ก < 5๐โ4, 7๐โ4 < ๐ก โค 2๐.
Solving 1 โ 2 sin2 ๐ก = 0 gives
sin2 ๐ก =
1
2
1
sin ๐ก = ± โ ,
2
so ๐ก = ๐โ4, 3๐โ4, 5๐โ4, 7๐โ4.
โ
โ
โ
From
the
graph
of
๐ฆ
=
sin
๐ก
and
the
lines
๐ฆ
=
1โ
2
and
๐ฆ
=
โ1โ
2
in
Figure
9.30,
we
see
that
โ1โ
2 < sin ๐ก <
โ
intervals
that
cos
2๐ก
>
0.
1โ 2 on the same
โ
โ
Now if โ1โ 2 < sin ๐ก < 1โ 2, then
1
2
1 โ 2 sin2 ๐ก > 0.
sin2 ๐ก <
Thus, cos 2๐ก and 1 โ 2 sin2 ๐ก have the same sign for all ๐ก.
๐ฆ
๐ฆ
๐ฆ = cos 2๐ก
1
5๐
4
3๐
4
๐
4
๐
2
๐
7๐
4
3๐
2
1
โ
2
๐
๐ก
2๐
โ โ1
๐
4
๐
2
3๐
4
5๐
4
3๐
2
๐ฆ = sin ๐ก
๐ก
2๐
7๐
4
2
โ1
Figure 9.29
Figure 9.30
28. (a) cos 2๐ = 1 โ 2 sin2 ๐ = 1 โ 2(1 โ cos2 ๐) = 1 โ 2 + 2 cos2 ๐ = 2 cos2 ๐ โ 1 = 2(cos ๐)2 โ 1.
(b) cos 2๐ = 1 โ 2 sin2 ๐ = (1 โ sin2 ๐) โ sin2 ๐ = cos2 ๐ โ sin2 ๐ = (cos ๐)2 โ (sin ๐)2 .
29. We have
tan 2๐ =
sin 2๐
2 sin ๐ cos ๐
.
=
cos 2๐
cos2 ๐ โ sin2 ๐
Dividing both top and bottom by cos2 ๐ gives
2 sin ๐ cos ๐
2 tan ๐
cos2 ๐
tan 2๐ =
.
=
1 โ tan2 ๐
cos2 ๐ โ sin2 ๐
cos2 ๐
โ
30. We know that cos2 ๐ = 1 โ sin2 ๐ = 1 โ (3โ5)2 = 16โ25, and since ๐ is in the second quadrant, cos ๐ = โ 16โ25 = โ4โ5.
Thus sin 2๐ = 2 sin ๐ cos ๐ = 2(3โ5)(โ4โ5) = โ24โ25. Furthermore, cos 2๐ = 1 โ 2 sin2 ๐ = 1 โ 2(3โ5)2 = 7โ25, and
sin 2๐
= โ24
โ
257 = โ24
.
tan 2๐ = cos
2๐
25
7
31. Multiply the denominator by 1 + cos ๐ก to get sin2 ๐ก:
sin ๐ก
sin ๐ก (1 + cos ๐ก)
=
1 โ cos ๐ก
(1 โ cos ๐ก) (1 + cos ๐ก)
sin ๐ก(1 + cos ๐ก)
=
1 โ cos2 ๐ก
sin ๐ก(1 + cos ๐ก)
=
sin2 ๐ก
1 + cos ๐ก
.
=
sin ๐ก
542
Chapter Nine /SOLUTIONS
32. Get a common denominator:
cos ๐ฅ
cos ๐ฅ
sin ๐ฅ
โ tan ๐ฅ =
โ
1 โ sin ๐ฅ
1 โ sin ๐ฅ cos ๐ฅ
cos2 ๐ฅ โ sin ๐ฅ(1 โ sin ๐ฅ)
=
(1 โ sin ๐ฅ)(cos ๐ฅ)
cos2 ๐ฅ โ sin ๐ฅ + sin2 ๐ฅ
(1 โ sin ๐ฅ)(cos ๐ฅ)
1 โ sin ๐ฅ
1
=
=
.
(1 โ sin ๐ฅ) cos ๐ฅ
cos ๐ฅ
=
33. In order to get tan to appear, divide by cos ๐ฅ cos ๐ฆ:
sin ๐ฅ cos ๐ฆ
cos ๐ฅ sin ๐ฆ
+
cos ๐ฅ cos ๐ฆ cos ๐ฅ cos ๐ฆ
sin ๐ฅ cos ๐ฆ + cos ๐ฅ sin ๐ฆ
tan ๐ฅ + tan ๐ฆ
=
=
sin ๐ฅ sin ๐ฆ
cos ๐ฅ cos ๐ฆ
cos ๐ฅ cos ๐ฆ โ sin ๐ฅ sin ๐ฆ
1 โ tan ๐ฅ tan ๐ฆ
โ
cos ๐ฅ cos ๐ฆ cos ๐ฅ cos ๐ฆ
34. Using the trigonometric identity cos2 ๐ = 1 โ sin2 ๐, we have
sin2 ๐ โ cos2 ๐ = sin ๐
sin2 ๐ โ (1 โ sin2 ๐) = sin ๐
2 sin2 ๐ โ sin ๐ โ 1 = 0
(2 sin ๐ + 1)(sin ๐ โ 1) = 0
1
sin ๐ = โ
or sin ๐ = 1.
2
If sin ๐ = 1, then ๐ = ๐โ2. On the other hand, if sin ๐ = โ1โ2, we first calculate the associated reference angle, which
is sinโ1 (1โ2) = ๐โ6. Using a graph of the sine function on the interval 0 โค ๐ โค 2๐, we see that the two solutions to
sin ๐ = โ1โ2 are given by ๐ = ๐ + ๐โ6 = 7๐โ6 and ๐ = 2๐ โ ๐โ6 = 11๐โ6. Combining the above observations, we see
that there are three solutions to the original equation: ๐โ2, 7๐โ6, and 11๐โ6.
35. Using the trigonometric identity sin(2๐) = 2 sin ๐ cos ๐, we have
sin(2๐) โ cos ๐
=
0
2 sin ๐ cos ๐ โ cos ๐
=
0
cos ๐(2 sin ๐ โ 1)
=
0
1
.
2
If cos ๐ = 0, then we have two solutions: ๐ = ๐โ2 and ๐ = 3๐โ2. On the other hand, if sin ๐ = 1โ2, we first calculate
the associated reference angle, which is sinโ1 (1โ2) = ๐โ6. Using a graph of the sine function on the interval 0 โค ๐ โค 2๐,
we see that the two solutions to sin ๐ = 1โ2 are given by ๐ = ๐โ6 and ๐ = ๐ โ ๐โ6 = 5๐โ6. Combining the above
observations, we see that there are four solutions to the original equation: ๐โ2, 3๐โ2, ๐โ6 and 5๐โ6.
cos ๐ = 0
sin ๐ =
or
36. Using the trigonometric identity sec2 ๐ = tan2 ๐ + 1, we have
sec2 ๐
2
=
1 โ tan ๐
tan ๐ + 1
=
1 โ tan ๐
tan2 ๐ + tan ๐
=
0
tan ๐(tan ๐ + 1)
=
0
tan ๐ = 0
or
tan ๐ = โ1.
If tan ๐ = 0, then we have three solutions: ๐ = 0 and ๐ = ๐ and ๐ = 2๐. On the other hand, if tan ๐ = โ1, we first calculate
the associated reference angle, which is tanโ1 (1) = ๐โ4. Using a graph of the tangent function on the interval 0 โค ๐ โค 2๐,
we see that the two solutions to tan ๐ = โ1 are given by ๐ = ๐ โ ๐โ4 = 3๐โ4 and ๐ = 2๐ โ ๐โ4 = 7๐โ4. Combining the
above observations, we see that there are five solutions to the original equation: 0, ๐, 2๐, 3๐โ4, and 7๐โ4.
9.2 SOLUTIONS
543
37. Using the trigonometric identity tan(2๐) = 2 tan ๐โ(1 โ tan2 ๐), we have
tan(2๐) + tan ๐
2 tan ๐
1 โ tan2 ๐
2 tan ๐
=
0
=
โ tan ๐
=
โ tan ๐ + tan3 ๐
=
0
tan ๐(tan ๐ โ 3)
=
0
tan ๐ = 0
or
โ
tan ๐ = ± 3.
3
tan ๐ โ 3 tan ๐
2
โ
If tan ๐ = 0, then we have three solutions: ๐ = 0 and ๐ =โ๐ and ๐ = 2๐. On the other hand, if tan ๐ = 3, we
first calculate the associated reference angle, which is tanโ1 ( 3)โ= ๐โ3. Using a graph of the tangent function on the
+ ๐โ3 = 4๐โ3.
interval 0 โค ๐ โค 2๐,โwe see that the two solutions to tan ๐ = 3 are given by ๐ = ๐โ3 and ๐ = ๐ โ
Finally, if tan ๐ = โ 3, we again have a reference angle of ๐โ3, and the two solutions to tan ๐ = โ 3 are given by
๐ = ๐ โ ๐โ3 = 2๐โ3 and ๐ = 2๐ โ ๐โ3 = 5๐โ3. Combining the above observations, we see that there are seven solutions
to the original equation: 0, ๐, ๐โ3, 4๐โ3, 2๐โ3, 5๐โ3, and 2๐.
38. Not an identity. False for ๐ฅ = 2.
39. Not an identity. False for ๐ฅ = 2.
40. Not an identity. False for ๐ฅ = 2.
41. Not an identity. False for ๐ฅ = ๐โ2.
42. Not an identity. False for ๐ฅ = 2.
43. If we let ๐ฅ = 1, then we have
sin(๐ฅ2 ) = sin(12 ) = 0.841 โ 1.683 = 2 sin 1 = 2 sin ๐ฅ.
Therefore, since the equation is not true for ๐ฅ = 1, it is not an identity.
sin 2๐ฅ
2 sin ๐ฅ cos ๐ฅ
sin ๐ฅ
2 sin ๐ฅ cos ๐ฅ
44. Identity.
=
=
=
= tan ๐ฅ.
1 + cos 2๐ฅ
cos ๐ฅ
1 + 2 cos2 ๐ฅ โ 1
2 cos2 ๐ฅ
45. If we let ๐ด = 1, then we have
sin(2๐ด)
sin 2
=
= โ2.185 โ 3.115 = 2 tan 1 = 2 tan ๐ด.
cos(2๐ด)
cos 2
Therefore, since the equation is not true for ๐ด = 1, it is not an identity.
46. We have
โ(1 โ sin2 ๐)
sin2 ๐ โ 1
=
cos ๐
cos ๐
โ cos2 ๐
=
cos ๐
= โ cos ๐.
Therefore, the equation is an identity.
47. Not an identity. False for ๐ฅ = 0.
sin ๐ฅ
sin2 ๐ฅ 1 โ cos2 ๐ฅ
=
=
.
cos ๐ฅ
cos ๐ฅ
cos ๐ฅ
49. Working on the left side, we have
48. Identity. sin ๐ฅ tan ๐ฅ = sin ๐ฅ โ
sin ๐ก
1
1
=
+
tan ๐ก
cos ๐ก sin ๐กโ cos ๐ก
sin ๐ก cos ๐ก
+
=
cos ๐ก sin ๐ก
sin2 ๐ก + cos2 ๐ก
=
cos ๐ก sin ๐ก
1
=
.
sin ๐ก cos ๐ก
Therefore, the left side equals the right side and the equation is an identity.
tan ๐ก +
544
Chapter Nine /SOLUTIONS
50. If we let ๐ฅ = 1, then we have
sin
( )
1
= sin 1 = 0.841 โ 0 = sin 1 โ sin 1 = sin 1 โ sin ๐ฅ.
๐ฅ
Therefore, since the equation is not true for ๐ฅ = 1, it is not an identity.
sin 2๐ฅ
2 sin ๐ฅ cos ๐ฅ
2 tan ๐ฅ
cos2 ๐ฅ
= sin 2๐ฅ.
=
=
51. Identity.
โ
2
1
1 + tan ๐ฅ cos2 ๐ฅ
cos2 ๐ฅ + sin2 ๐ฅ
52. If we let ๐ = 1, then we have
cos(2๐)
sin ๐
cos ๐
sin 1 cos 1
cos 2
โ
=
โ
= 0.915 โ โ0.458 =
=
.
cos ๐
sin ๐
cos 1 sin 1
sin 2
sin(2๐)
Therefore, since the equation is not true for ๐ = 1, it is not an identity.
cos 2๐ฅ
1 โ tan2 ๐ฅ cos2 ๐ฅ
cos2 ๐ฅ โ sin2 ๐ฅ
= cos 2๐ฅ.
=
=
โ
2
2
1
1 + tan ๐ฅ cos ๐ฅ
cos2 ๐ฅ + sin2 ๐ฅ
54. (a) We can rewrite the equation as follows:
53. Identity.
0 = cos 2๐ + cos ๐ = 2 cos2 ๐ โ 1 + cos ๐.
Factoring, we get
(2 cos ๐ โ 1)(cos ๐ + 1) = 0.
Thus the solutions occur when cos ๐ = โ1 or cos ๐ = 12 . These are special values of cosine. If cos ๐ = โ1 then we
have ๐ = 180โฆ . If cos ๐ =
1
2
we have ๐ = 60โฆ or 300โฆ . Thus the solutions are
๐ = 60โฆ , 180โฆ , and 300โฆ .
(b) Using the Pythagorean identity, we can substitute cos2 ๐ = 1 โ sin2 ๐ and get
2(1 โ sin2 ๐) = 3 sin ๐ + 3.
This gives
โ2 sin2 ๐ โ 3 sin ๐ โ 1 = 0.
Factoring, we get
โ2 sin2 ๐ โ 3 sin ๐ โ 1 = โ(2 sin ๐ + 1)(sin ๐ + 1) = 0.
Thus the solutions occur when sin ๐ = โ 12 or when sin ๐ = โ1. If sin ๐ = โ 12 , we have
๐=
7๐
6
and
If sin ๐ = โ1, we have
๐=
11๐
.
6
3๐
.
2
โ
55. Note the hypotenuse of the triangle is 1 + ๐ฆ2 .
๐ฆ
(a) ๐ฆ = = tan ๐.
1
(b) cos ๐ = sin(๐โ2 โ ๐) = sin ๐.
)2
(
โ
1
1
1
, we have 1 + ๐ฆ2 =
(c) Since cos ๐ = โ
. (Alternatively, 1 + ๐ฆ2 = 1 + tan2 ๐.)
, or 1 + ๐ฆ2 =
cos ๐
cos ๐
1 + ๐ฆ2
1
1
(d) Triangle area = (base)(height) = (1)(๐ฆ). But ๐ฆ = tan ๐, so the area is 12 tan ๐.
2
2
โ
56. (a) By the Pythagorean theorem, the side adjacent to ๐ has length 1 โ ๐ฆ2 . So
โ
โ
cos ๐ = 1 โ ๐ฆ2 โ1 = 1 โ ๐ฆ2 .
(b) Since sin ๐ = ๐ฆโ1, we have
๐ฆ
.
tan ๐ = โ
1 โ ๐ฆ2
9.2 SOLUTIONS
545
(c) Using the double-angle formula,
cos(2๐) = 1 โ 2 sin2 ๐ = 1 โ 2๐ฆ2 .
(d) Supplementary angles have equal sines:
sin(๐ โ ๐) = sin ๐ = ๐ฆ.
โ
(e) Since cos(๐โ2 โ ๐) = ๐ฆ, we have sin(cos (๐ฆ)) = sin(๐โ2 โ ๐) = 1 โ ๐ฆ2 . So
โ1
sin2 (cosโ1 (๐ฆ)) = 1 โ ๐ฆ2 .
57. We have cos ๐ = ๐ฅโ3, so sin ๐ =
โ
โ
1 โ (๐ฅโ3)2 =
9โ๐ฅ2
.
3
Therefore,
)
9 โ ๐ฅ2 ( ๐ฅ ) 2๐ฅ โ
=
9 โ ๐ฅ2 .
sin 2๐ = 2 sin ๐ cos ๐ = 2
3
3
9
( )2
2
๐ฅ+1
2
58. We have sin ๐ = ๐ฅ+1
,
so
cos
2๐
=
1
โ
2
sin
๐
=
1
โ
2
.
= 1 โ 2(๐ฅ+1)
5
5
25
โ
59. (a) Let ๐ = cosโ1 ๐ฅ, so cos ๐ = ๐ฅ. Then, since 0 โค ๐ โค ๐, sin ๐ = 1 โ ๐ฅ2 and tan ๐ =
(โ
tan 2๐ =
2 tan ๐
.
1โtan2 ๐
โ1
Now 1 โ tan2 ๐ = 1 โ
1โ๐ฅ2
๐ฅ2
(b) Let ๐ = tan ๐ฅ, so tan ๐ = ๐ฅ. Then sin ๐ =
)(
)
(
2๐ฅ
1
โ
= 1+๐ฅ
2 โ๐ฅ 2
.
2
2
1+๐ฅ
=
2๐ฅ2 โ1
,
๐ฅ2
๐ฅ
โ
1+๐ฅ2
so tan 2๐
โ
2
= 2 1โ๐ฅ
๐ฅ
1
โ
and cos ๐ =
1+๐ฅ2
โ
๐ฅ2
2๐ฅ2 โ1
=
โ
1โ๐ฅ2
,
๐ฅ
โ
2๐ฅ 1โ๐ฅ2
.
2๐ฅ2 โ1
โ1
, so sin(2 tan
and tan(2 cosโ1 ๐ฅ) =
๐ฅ) = sin 2๐ = 2 sin ๐ cos ๐ =
1+๐ฅ
60. We will use the identity cos(2๐ฅ) = 2 cos2 ๐ฅ โ 1, where ๐ฅ will be 2๐.
cos 4๐ = cos(2๐ฅ)
= 2 cos2 ๐ฅ โ 1 (using the identity for cos(2๐ฅ))
= 2(2 cos2 ๐ โ 1)2 โ 1 (using the identity for cos(2๐))
61. First use sin(2๐ฅ) = 2 sin ๐ฅ cos ๐ฅ, where ๐ฅ = 2๐. Then
sin(4๐) = sin(2๐ฅ) = 2 sin(2๐) cos(2๐).
Since sin(2๐) = 2 sin ๐ cos ๐ and cos(2๐) = 2 cos2 ๐ โ 1, we have
sin 4๐ = 2(2 sin ๐ cos ๐)(2 cos2 ๐ โ 1).
62. (a) Since ๐โ2 < ๐ก โค ๐ we have 0 โค ๐ โ ๐ก < ๐โ2 so the double-angle formula for sine can be used for the angle ๐ = ๐ โ ๐ก.
Therefore sin 2๐ = 2 sin ๐ cos ๐ tells us that
sin 2(๐ โ ๐ก) = 2 sin(๐ โ ๐ก) cos(๐ โ ๐ก).
(b) By periodicity, sin 2(๐ โ ๐ก) = sin(2๐ โ 2๐ก) = sin(โ2๐ก). By oddness, sin(โ2๐ก) = โ sin 2๐ก. Thus
sin 2(๐ โ ๐ก) = โ sin 2๐ก.
(c) We have cos(๐ โ๐ก) = โ cos(โ๐ก) = โ cos ๐ก, where the first equality is by what was given and the second by the evenness
of cosine.
Similarly, we have sin(๐ โ ๐ก) = โ sin(โ๐ก) = โ(โ sin ๐ก) = sin ๐ก where the first equality is by what was given and
the second by the oddness of sine.
(d) Substitution of the results of parts (b) and (c) into part (a) shows that
โ sin 2๐ก = 2 sin ๐ก(โ cos ๐ก).
Multiplication by โ1 gives
sin 2๐ก = 2 sin ๐ก cos ๐ก.
546
Chapter Nine /SOLUTIONS
63. (a) Since โ๐ โค ๐ก < 0 we have 0 < โ๐ก โค ๐ so the double-angle formula for sine can be used for the angle ๐ = โ๐ก.
Therefore sin 2๐ = 2 sin ๐ cos ๐ tells us that
sin(โ2๐ก) = 2 sin(โ๐ก) cos(โ๐ก).
(b) Since sine is odd, we have sin(โ2๐ก) = โ sin 2๐ก. Since sine is odd and cosine is even, we have
2 sin(โ๐ก) cos(โ๐ก) = 2(โ sin ๐ก) cos ๐ก = โ2 sin ๐ก cos ๐ก.
Substitution of these results into the results of part (a) shows that
โ sin(2๐ก) = โ2 sin ๐ก cos ๐ก.
Multiplication by โ1 gives
sin 2๐ก = 2 sin ๐ก cos ๐ก.
64. (a) Since ๐โ2 < ๐ก โค ๐ we have 0 โค ๐ โ ๐ก < ๐โ2 so the double-angle formula for cosine can be used for the angle
๐ = ๐ โ ๐ก. Therefore cos 2๐ = 1 โ 2 sin2 ๐ tells us that
cos 2(๐ โ ๐ก) = 1 โ 2 sin2 (๐ โ ๐ก).
(b) By periodicity, cos 2(๐ โ ๐ก) = cos(2๐ โ 2๐ก) = cos(โ2๐ก). By evenness, cos(โ2๐ก) = cos 2๐ก. Thus
cos 2(๐ โ ๐ก) = cos 2๐ก.
(c) We have 1 โ 2 sin2 (๐ โ ๐ก) = 1 โ 2(โ sin(โ๐ก))2 = 1 โ 2(sin ๐ก)2 where the first equality is by what is given and the second
by the oddness of sine.
(d) Substitution of the results of parts (b) and (c) into part (a) gives
cos 2๐ก = 1 โ 2 sin2 ๐ก.
65. (a) Since โ๐ โค ๐ก < 0 we have 0 < โ๐ก โค ๐ so the double-angle formula for cosine can be used for the angle ๐ = โ๐ก.
Therefore cos 2๐ = 1 โ 2 sin2 ๐ tells us that
cos(โ2๐ก) = 1 โ 2 sin2 (โ๐ก).
(b) Since cosine is even we have cos(โ2๐ก) = cos 2๐ก. Since sine is odd we have
โ2 sin2 (โ๐ก) = 1 โ 2(โ sin ๐ก)2 = 1 โ 2 sin2 ๐ก.
Substitution of these results into the results of part (a) gives
cos 2๐ก = 1 โ 2 sin2 ๐ก.
66. By graphing we can see which expressions appear to be identically equal. The graphs all show the same window, โ2๐ โค
๐ฅ โค 2๐, โ4 โค ๐ฆ โค 4. The following pairs of expressions look identical:
๐ and ๐;
๐ and ๐;
๐ and ๐ and ๐ ;
๐ and ๐;
โ and ๐.
We can check the identities algebraically. For example, for ๐ and ๐:
2 cos2 ๐ก + sin ๐ก + 1 = 2(1 โ sin2 ๐ก) + sin ๐ก + 1 = โ2 sin2 ๐ก + sin ๐ก + 3.
(a)
(b)
4
3
2
1
โ2๐
โ๐ โ1
โ2
โ3
โ4
๐
2๐
(c)
4
3
2
1
โ2๐
โ๐ โ1
โ2
โ3
โ4
๐
2๐
4
3
2
1
โ2๐
โ๐ โ1
โ2
โ3
โ4
๐
2๐
9.3 SOLUTIONS
(d)
(e)
4
3
2
1
โ2๐
(g)
โ๐ โ1
โ2
โ3
โ4
๐
2๐
โ2๐
(j)
โ๐ โ1
โ2
โ3
โ4
๐
2๐
โ๐ โ1
โ2
โ3
โ4
๐
2๐
โ๐ โ1
โ2
โ3
โ4
๐
โ2๐
โ2๐
โ๐ โ1
โ2
โ3
โ4
(i)
โ๐ โ1
โ2
โ3
โ4
๐
โ2๐
โ๐ โ1
โ2
โ3
โ4
(l)
โ๐ โ1
โ2
โ3
โ4
๐
(m)
2๐
โ๐ โ1
โ2
โ3
โ4
โ2๐
๐
2๐
๐
2๐
๐
2๐
4
3
2
1
โ๐ โ1
โ2
โ3
โ4
4
3
2
1
โ2๐
๐
4
3
2
1
2๐
4
3
2
1
โ2๐
4
3
2
1
2๐
4
3
2
1
(k)
4
3
2
1
โ2๐
โ2๐
(h)
4
3
2
1
(f)
4
3
2
1
2๐
Solutions for Section 9.3
Exercises
1. Applying the sum-of-angles formula for sine, we have
sin(๐ด + ๐ต) = sin ๐ด cos ๐ต + cos ๐ด sin ๐ต
= (0.84)(0.39) + (0.54)(0.92) = 0.8244.
2. Applying the difference-of-angles formula for sine, we have
sin(๐ด โ ๐ต) = sin ๐ด cos ๐ต โ cos ๐ด sin ๐ต
= (0.84)(0.39) โ (0.54)(0.92) = โ0.1692.
3. Applying the sum-of-angles formula for cosine, we have
cos(๐ด + ๐ต) = cos ๐ด cos ๐ต โ sin ๐ด sin ๐ต
= (0.54)(0.39) โ (0.84)(0.92) = โ0.5622.
547
548
Chapter Nine /SOLUTIONS
4. Applying the difference-of-angles formula for cosine, we have
cos(๐ด โ ๐ต) = cos ๐ด cos ๐ต + sin ๐ด sin ๐ต
= (0.54)(0.39) + (0.84)(0.92) = 0.9834.
5. Applying the sum-of-angles formula for sine, we have
sin(๐ + ๐ ) = sin ๐ cos ๐ + cos ๐ sin ๐
( )( ) ( )( )
7
416
8
24
15
=
+
=
.
25
17
25
17
425
6. Applying the difference-of-angles formula for sine, we have
sin(๐ โ ๐ ) = sin ๐ cos ๐ โ cos ๐ sin ๐
( )( ) ( )( )
304
8
24
15
7
โ
=โ
.
=
25
17
25
17
425
7. Applying the sum-of-angles formula for cosine, we have
cos(๐ + ๐ ) = cos ๐ cos ๐ โ sin ๐ sin ๐
( )( ) ( )( )
24
8
7
15
87
=
โ
=
.
25
17
25
17
425
8. Applying the difference-of-angles formula for cosine, we have
cos(๐ โ ๐ ) = cos ๐ cos ๐ + sin ๐ sin ๐
( )( ) ( )( )
297
8
7
15
24
+
=
.
=
25
17
25
17
425
9. Write sin 15โฆ = sin(45โฆ โ 30โฆ ), and then apply the appropriate trigonometric identity.
sin 15โฆ = sin(45โฆ โ 30โฆ )
= sin 45โฆ cos 30โฆ โ sin 30โฆ cos 45โฆ
โ
โ
6
2
โ
=
4
4
Similarly, sin 75โฆ = sin(45โฆ + 30โฆ ).
sin 75โฆ = sin(45โฆ + 30โฆ )
= sin 45โฆ cos 30โฆ + sin 30โฆ cos 45โฆ
โ
โ
6
2
+
=
4
4
Also, note that cos 75โฆ = sin(90โฆ โ 75โฆ ) = sin 15โฆ , and cos 15โฆ = sin(90โฆ โ 15โฆ ) = sin 75โฆ .
10. Since 345โฆ is 300โฆ + 45โฆ , we can use the sum-of-angle formula for sine and say that
โ
โ
โ
โ
โ
sin 345 = sin 300 cos 45 + sin 45 cos 300 = (โ 3โ2)( 2โ2) + ( 2โ2)(1โ2) = (โ 6 + 2)โ4.
11. Since 105โฆ is 60โฆ + 45โฆ , we can use the sum-of-angle formula for sine and say that
โ
โ
โ
โ
โ
sin 105 = sin 60 cos 45 + sin 45 cos 60 = ( 3โ2)( 2โ2) + ( 2โ2)(1โ2) = ( 6 + 2)โ4.
9.3 SOLUTIONS
12. Since 285โฆ is 240โฆ + 45โฆ , we can use the sum-of-angle formula for cosine and say that
โ
โ
โ
โ
โ
cos 285 = cos 240 cos 45 โ sin 240 sin 45 = (โ1โ2)( 2โ2) โ (โ 3โ2)( 2โ2) = (โ 2 + 6)โ4.
13. (a) We have sin(15โฆ + 42โฆ ) = sin 15โฆ cos 42โฆ + sin 42โฆ cos 15โฆ = 0.839.
(b) See Figure 9.31.
1
โ360โฆ โ180โฆ
180โฆ
360โฆ
๐ฅ (degrees)
โ1
Figure 9.31
14. (a) We have sin(15โฆ โ 42โฆ ) = sin 15โฆ cos 42โฆ โ sin 42โฆ cos 15โฆ = โ0.454.
(b) See Figure 9.32.
1
โ360โฆ โ180โฆ
180โฆ
360โฆ
๐ฅ (degrees)
โ1
Figure 9.32
15. (a) We have cos(15โฆ + 42โฆ ) = cos 15โฆ cos 42โฆ โ sin 15โฆ sin 42โฆ = 0.545.
(b) See Figure 9.33.
1
โ360โฆ โ180โฆ
180โฆ
360โฆ
๐ฅ (degrees)
โ1
Figure 9.33
16. (a) We have cos(15โฆ โ 42โฆ ) = cos 15โฆ cos 42โฆ + sin 15โฆ sin 42โฆ = 0.891.
(b) See Figure 9.34.
1
โ360โฆ โ180โฆ
180โฆ
โ1
Figure 9.34
360โฆ
๐ฅ (degrees)
549
550
Chapter Nine /SOLUTIONS
Problems
17. First, we note that the unlabeled side of the triangle has length
โ
4 โ ๐ฆ2 .
(a) Using an angle difference formula, we have
cos(๐ โ ๐) = cos ๐ cos ๐ + sin ๐ sin ๐
โ
โ
4 โ ๐ฆ2 ๐ฆ ๐ฆ
4 โ ๐ฆ2
=
โ
+ โ
2
2 2
2
โ
๐ฆ 4 โ ๐ฆ2
.
=
2
(b) Using an angle difference formula, we have
sin(๐ โ ๐) = sin ๐ cos ๐ โ cos ๐ sin ๐
โ
โ
4 โ ๐ฆ2
4 โ ๐ฆ2
๐ฆ ๐ฆ
โ
= โ
โ
2 2
2
2
๐ฆ2 โ (4 โ ๐ฆ2 )
=
4
๐ฆ2 โ 2
=
.
2
(c) We have
โ
4 โ ๐ฆ2 ๐ฆ
โ
2
2
โ
4 โ ๐ฆ2 โ ๐ฆ
=
.
2
cos ๐ โ cos ๐ =
(d) Since ๐ + ๐ = ๐โ2, we have
sin(๐ + ๐) = sin
( )
๐
= 1.
2
18. (a) cos(๐ก โ ๐โ2) = cos ๐ก cos ๐โ2 + sin ๐ก sin ๐โ2 = cos ๐ก โ
0 + sin ๐ก โ
1 = sin ๐ก.
(b) sin(๐ก + ๐โ2) = sin ๐ก cos ๐โ2 + sin ๐โ2 cos ๐ก = sin ๐ก โ
0 + 1 โ
cos ๐ก = cos ๐ก.
19. For the sine, we have sin 2๐ก = sin(๐ก + ๐ก) = sin ๐ก cos ๐ก + sin ๐ก cos ๐ก = 2 sin ๐ก cos ๐ก. This is the double-angle formula for sine.
For cosine, we have cos 2๐ก = cos(๐ก + ๐ก) = cos ๐ก cos ๐ก โ sin ๐ก sin ๐ก = cos2 ๐ก โ sin2 ๐ก. This is the double-angle formula for
cosine.
20. (a) Applying the sum-of-angles formula for sine, we have
sin(๐ด + ๐ต) = sin ๐ด cos ๐ต + cos ๐ด sin ๐ต
= (0.67)(0.48) + (0.74)(0.87) = 0.9654.
(b) Applying the sum-of-angles formula for cosine, we have
cos(๐ด + ๐ต) = cos ๐ด cos ๐ต โ sin ๐ด sin ๐ต
= (0.74)(0.48) โ (0.67)(0.87) = โ0.2277.
(c) Since tan ๐ = sin ๐โ cos ๐, we have
tan(๐ด + ๐ต) =
sin(๐ด + ๐ต)
0.9654
=
= โ4.2398.
cos(๐ด + ๐ต)
โ0.2277
9.3 SOLUTIONS
21. We have
cos 3๐ก = cos(2๐ก + ๐ก)
= cos 2๐ก cos ๐ก โ sin 2๐ก sin ๐ก
= (2 cos2 ๐ก โ 1) cos ๐ก โ (2 sin ๐ก cos ๐ก) sin ๐ก
= cos ๐ก((2 cos2 ๐ก โ 1) โ 2 sin2 ๐ก)
= cos ๐ก(2 cos2 ๐ก โ 1 โ 2(1 โ cos2 ๐ก))
= cos ๐ก(2 cos2 ๐ก โ 1 โ 2 + 2 cos2 ๐ก)
= cos ๐ก(4 cos2 ๐ก โ 3)
= 4 cos3 ๐ก โ 3 cos ๐ก,
as required.
22. We are to prove that
cos((๐ + 1)๐) = (2 cos ๐)(cos(๐๐)) โ cos((๐ โ 1)๐).
This holds if, and only if,
cos((๐ + 1)๐) + cos((๐ โ 1)๐) = (2 cos ๐)(cos(๐๐)).
Using the sum-of-cosines formula,
cos ๐ข + cos ๐ฃ = 2 cos
๐ข+๐ฃ
๐ขโ๐ฃ
cos
,
2
2
with ๐ข = (๐ + 1)๐ and ๐ฃ = (๐ โ 1)๐ gives the result:
(๐ + 1)๐ โ (๐ โ 1)๐
(๐ + 1)๐ + (๐ โ 1)๐
cos
2
2
= 2 cos(๐๐) cos ๐.
cos((๐ + 1)๐) + 2 cos((๐ โ 1)๐) = 2 cos
23. We manipulate the equation for the average rate of change as follows:
cos(๐ฅ + โ) โ cos ๐ฅ
cos ๐ฅ cos โ โ sin ๐ฅ sin โ โ cos ๐ฅ
=
โ
โ
cos ๐ฅ cos โ โ cos ๐ฅ sin ๐ฅ sin โ
=
โ
โ
โ
(
)
(
)
cos โ โ 1
sin โ
= cos ๐ฅ
โ sin ๐ฅ
.
โ
โ
24. We manipulate the equation for the average rate of change as follows:
sin(๐ฅ + โ) โ sin ๐ฅ
sin ๐ฅ cos โ + sin โ cos ๐ฅ โ sin ๐ฅ
=
โ
โ
sin ๐ฅ cos โ โ sin ๐ฅ sin โ cos ๐ฅ
=
+
โ
โ
(
)
(
)
cos โ โ 1
sin โ
= sin ๐ฅ
+ cos ๐ฅ
.
โ
โ
25. We manipulate the equation for the average rate of change as follows:
tan ๐ฅ + tan โ
โ tan ๐ฅ
tan(๐ฅ + โ) โ tan ๐ฅ
1
= โ tan ๐ฅ tan โ
โ
โ
(tan ๐ฅ + tan โ โ tan ๐ฅ + tan2 ๐ฅ tan โ)โ(1 โ tan ๐ฅ tan โ)
=
โ
tan โ + tan2 ๐ฅ tan โ
=
(1 โ tan ๐ฅ tan โ) โ
โ
551
552
Chapter Nine /SOLUTIONS
26. (a)
(b)
(c)
(d)
(e)
27. (a)
sin โ
sin โ
+ tan2 ๐ฅ โ
cos
โ
cos
โ
= (
)
sin โ
โ
โ
1 โ tan ๐ฅ โ
cos โ
sin โ
(1 + tan2 ๐ฅ)
cos
โ
= (
)
sin โ
โ
โ
1 โ tan ๐ฅ
cos โ
(
)
1
sin โ
โ
2๐ฅ
cos โ
cos
= (
)
sin โ
1 โ tan ๐ฅ โ
โ
โ
cos โ
1
โ
sin โ
2๐ฅ
cos
=
(cos โ โ tan ๐ฅ sin โ) โ
โ
1
โ
sin โ
( )
2๐ฅ
1
cos
=
โ
cos โ โ sin โ tan ๐ฅ
โ
1
1 sin โ
โ
.
=
cos โ โ sin โ tan ๐ฅ
cos2 ๐ฅ โ
โ
โ
๐ฃ
1 + cos 2๐ข
1 + cos ๐ฃ
From cos 2๐ข = 2 cos2 ๐ข โ 1, we obtain cos ๐ข = ±
and letting ๐ข = 2๐ฃ , cos = ±
.
2
2
2
โ
1 โ cos ๐ฃ
1
โ
±
sin ๐ฃ
2
1
1
1 โ cos ๐ฃ
2
we simplify to get tan ๐ฃ = ±
From tan ๐ฃ =
.
= โ
1
2
2
1 + cos ๐ฃ
1 + cos ๐ฃ
cos ๐ฃ
±
2
2
1
1
1
The sign of sin ๐ฃ is +, the sign of cos ๐ฃ is โ, and the sign of tan ๐ฃ is โ.
2
2
2
1
1
1
The sign of sin ๐ฃ is โ, the sign of cos ๐ฃ is โ, and the sign of tan ๐ฃ is +.
2
2
2
1
1
1
The sign of sin ๐ฃ is โ, the sign of cos ๐ฃ is +, and the sign of tan ๐ฃ is โ.
2
2
2
Since ฮ๐ถ๐ด๐ท and ฮ๐ถ๐ท๐ต are both right triangles, it is easy to calculate the sine and cosine of their angles:
๐1
๐
โ
cos ๐ =
๐
๐2
sin ๐ =
๐
โ
cos ๐ = .
๐
sin ๐ =
(b) We can calculate the areas of the triangles using the formula Area = 21 Base โ
Height:
1
๐ โ
โ
2 1
1
= (๐ sin ๐)(๐ cos ๐),
2
1
Area ฮ๐ถ๐ท๐ต = ๐2 โ
โ
2
1
= (๐ sin ๐)(๐ cos ๐).
2
Area ฮ๐ถ๐ด๐ท =
(c) We find the area of the whole triangle by summing the area of the two constituent triangles:
Area ฮ๐ด๐ต๐ถ = Area ฮ๐ถ๐ด๐ท + Area ๐ถ๐ท๐ต
9.3 SOLUTIONS
553
1
1
(๐ sin ๐)(๐ cos ๐) + (๐ sin ๐)(๐ cos ๐)
2
2
1
= ๐๐(sin ๐ cos ๐ + sin ๐ cos ๐)
2
1
= ๐๐ sin(๐ + ๐)
2
1
= ๐๐ sin ๐ถ.
2
=
28. (a) If ๐ต and ๐ถ are acute angles, draw the altitude from ๐ด, dividing side ๐ into two pieces, ๐1 and ๐2 , as shown in Figure 9.35.
Then ๐1 = ๐ cos ๐ถ and ๐2 = ๐ cos ๐ต, so ๐ = ๐1 + ๐2 = ๐ cos ๐ถ + ๐ cos ๐ต.
๐ด
๐
๐ด
๐
๐
๐
๐ถ
๐ต
๐1
๐2
๐ถ
๐ต
โ
Figure 9.35
๐
๐2
๐
๐1
โฒ
Figure 9.36
If one of the angles ๐ต or ๐ถ (say ๐ต) is obtuse, draw the altitude from ๐ด as shown in Figure 9.36. Let ๐1 be the
extension of side ๐, so ๐2 = ๐1 +๐, and let ๐ be the exterior angle at ๐ต, so that ๐ = 180โฆ โ๐ต. Therefore cos ๐ = โ cos ๐ต.
Then ๐2 = ๐ cos ๐ถ and ๐1 = ๐ cos ๐ = โ๐ cos ๐ต. Thus ๐ = ๐2 โ ๐1 = ๐ cos ๐ถ โ (โ๐ cos ๐ต) = ๐ cos ๐ถ + ๐ cos ๐ต.
(b) From the Law of Sines, sin๐ ๐ด = sin๐ ๐ต , so ๐ = sin๐ ๐ด โ
sin ๐ต, and similarly ๐ = sin๐ ๐ด โ
sin ๐ถ. Substituting these expressions
into the result of part (a), we have
๐
๐
๐ = ๐ cos ๐ถ + ๐ cos ๐ต =
sin ๐ต cos ๐ถ +
sin ๐ถ cos ๐ต,
sin ๐ด
sin ๐ด
or
๐
๐=
(sin ๐ต cos ๐ถ + sin ๐ถ cos ๐ต) .
sin ๐ด
Thus sin ๐ด = sin ๐ต cos ๐ถ + sin ๐ถ cos ๐ต. But ๐ด + ๐ต + ๐ถ = 180โฆ , so ๐ด = 180โฆ โ (๐ต + ๐ถ), and hence sin ๐ด = sin(๐ต + ๐ถ).
Therefore,
sin(๐ต + ๐ถ) = sin ๐ต cos ๐ถ + sin ๐ถ cos ๐ต.
29. (a) The coordinates of ๐1 are (cos ๐, sin ๐); for ๐2 they are (cos(โ๐), sin(โ๐)) = (cos ๐, โ sin ๐); for ๐3 they are (cos(๐ +
๐), sin(๐ + ๐)); and for ๐4 they are (1, 0).
(b) The triangles ๐1 ๐๐2 and ๐3 ๐๐4 are congruent by the side-angle-side property because โ ๐1 ๐๐2 = ๐ + ๐ = โ ๐3 ๐๐4 .
Therefore their corresponding sides ๐1 ๐2 and ๐3 ๐4 are equal.
(c) We have
(๐1 ๐2 )2 = (cos ๐ โ cos ๐)2 + (sin ๐ + sin ๐)2
= cos2 ๐ โ 2 cos ๐ cos ๐ + cos2 ๐ + sin2 ๐ + 2 sin ๐ sin ๐ + sin2 ๐
= cos2 ๐ + sin2 ๐ + cos2 ๐ + sin2 ๐ โ 2 cos ๐ cos ๐ + 2 sin ๐ sin ๐
= 2 โ 2(cos ๐ cos ๐ โ sin ๐ sin ๐)
We also have
(๐3 ๐4 )2 = (cos(๐ + ๐) โ 1)2 + (sin(๐ + ๐) โ 0)2
= cos2 (๐ + ๐) โ 2 cos(๐ + ๐) + 1 + sin2 (๐ + ๐)
= 2 โ 2 cos(๐ + ๐)
The distances ๐1 ๐2 and ๐3 ๐4 are the square roots of these expressions (but we will use the squares of the distances).
(d) (๐3 ๐4 )2 = (๐1 ๐2 )2 by part (b), so
2 โ 2 cos(๐ + ๐) = 2 โ 2(cos ๐ cos ๐ โ sin ๐ sin ๐)
cos(๐ + ๐) = cos ๐ cos ๐ โ sin ๐ sin ๐.
554
Chapter Nine /SOLUTIONS
Solutions for Section 9.4
Exercises
โ
โ
1. We have ๐ด = 82 + (โ6)2 = 100 = 10. Since cos ๐ = 8โ10 = 0.8 and sin ๐ = โ6โ10 = โ0.6, we know that ๐ is in
the fourth quadrant. Thus,
tan ๐ = โ
6
= โ0.75
8
๐ = tanโ1 (โ0.75) = โ0.644,
and
so 8 sin ๐ก โ 6 cos ๐ก = 10 sin(๐ก โ 0.644).
โ
โ
2. We have ๐ด = 82 + 62 = 100 = 10. Since cos ๐ = 8โ10 = 0.8 and sin ๐ = 6โ10 = 0.6 are both positive, ๐ is in the
first quadrant. Thus,
6
tan ๐ = = 0.75
and
๐ = tanโ1 (0.75) = 0.644,
8
so 8 sin ๐ก + 6 cos ๐ก = 10 sin(๐ก + 0.644).
3. Since ๐1 = โ1 and ๐2 = 1, we have
๐ด=
โ
โ
(โ1)2 + 12 = 2
and
1
1
and sin ๐ = โ
cos ๐ = โ โ
and tan ๐ = โ1.
2
2
From the signs of cos ๐ and sin ๐, we see that ๐ is in the second quadrant. Since
๐
tanโ1 (โ1) = โ ,
4
and the tangent function has period ๐, we take
๐=๐โ
Thus
โ sin ๐ก + cos ๐ก =
๐
3๐
=
.
4
4
)
(
โ
3๐
2 sin ๐ก +
.
4
4. Since ๐1 = โ2 and ๐2 = 5, we have
๐ด=
โ
โ
(โ2)2 + 52 = 29
and
5
5
โ2
and sin ๐ = โ
and tan ๐ = โ .
cos ๐ = โ
2
29
29
The signs of cos ๐ and sin ๐ show that ๐ must be in the second quadrant. Since
( )
5
tanโ1 โ
= โ1.190
2
and the tangent function has period ๐, we take
๐ = ๐ โ 1.190 = 1.951.
Thus,
โ2 sin 3๐ก + 5 cos 3๐ก =
โ
29 sin(3๐ก + 1.951).
9.4 SOLUTIONS
555
๐ฆ
5.
6
3
๐
๐ก
2๐
For the graphs to intersect, ๐ก + 5 sin ๐ก = ๐ก. So sin ๐ก = 0, or ๐ก = any integer multiple of ๐.
๐ฆ
6.
2
๐ (๐ฅ) = ๐โ๐ฅ (2 cos ๐ฅ + sin ๐ฅ)
1
3
๐ฅ
1
The maximum value of ๐ (๐ฅ) is 2, which occurs when ๐ฅ = 0. The minimum appears to be ๐ฆ โ โ0.094, at ๐ฅ โ 2.820.
7. The function ๐ฆ = 10๐โ๐กโ2 cos 2๐๐ก matches graph (I). We see that the oscillation is damped less and less each period, so the
amplitude (the function multiplying the cosine) must be decreasing and concave up. Only ๐โ๐กโ2 has that characteristic.
8. The function ๐ฆ = 10(1 โ 0.01๐ก2 ) cos 2๐๐ก matches graph (IV). We see that the oscillation is damped more and more each
period, so the amplitude (the function multiplying the cosine) must be decreasing and concave down. Only 10(1 โ 0.01๐ก2 )
has that characteristic.
9. The function ๐ฆ = (10 โ ๐ก) cos 2๐๐ก matches graph (II). We see that the oscillation is damped equally each period, so the
amplitude (the function multiplying the cosine) must be decreasing and linear. Only 10 โ ๐ก has that characteristic.
10. The function ๐ฆ = (10 โ ๐ก) cos ๐ก matches graph (III). It is hard to see how the oscillation is damped, but the period is very
clearly not 1 as in the other graphs. If we draw ๐ฆ = ±(10 โ ๐ก) on the graph very accurately, we can see that it just touches
the peaks and troughs of the oscillating function.
11. (a) Substituting into ๐ , we have
(
(
)) (
(
))
๐
๐
๐ (3) โ ๐ (2) = 10,000 โ 5000 cos
โ
3 โ 10,000 โ 5000 cos
โ
2
6
6
๐
๐
= โ5000 cos + 5000 cos
2
3
( )
1
= 0 + 5000
= 2500.
2
This means that the rabbit population increases by 2500 rabbits between March 1 (at ๐ก = 2) and April 1 (at ๐ก = 3).
(b) Using a graphing calculator to zoom in, or using the inverse cosine function, we see that ๐ (๐ก) = 12,000 for ๐ก = 3.786
and ๐ก = 8.214. This means that the rabbit population reaches 12,000 sometime during late April (at ๐ก = 3.786) and
falls back to 12,000 sometime during early September (at ๐ก = 8.214).
Problems
12. Looking at the graph, which appears to be a damped oscillation, we first see that it starts at zero and goes up, so we begin
with sin ๐ก. Since there are 3 complete periods of oscillation from 0 to 6๐, the period is 2๐, and so we need only account
for the changed amplitude of sin ๐ก. The function ๐ฆ = 3๐โ๐กโ10 on the graph is the amplitude function, so we multiply it by
sin ๐ก to get
๐ฆ = 3๐โ๐กโ10 sin ๐ก.
556
Chapter Nine /SOLUTIONS
13. (a) This is linear growth: ๐ = 5000 + 300๐ก.
(b) This is exponential growth: ๐ = 3200(1.04)๐ก .
(c) The population is oscillating, so we can use a trigonometric model. Since the population starts at its lowest value, we
use a reflected cosine function of the form
๐ (๐ก) = โ๐ด cos(๐ต๐ก) + ๐.
Low = 1200; High = 3000.
Midline ๐ = 12 (3000 + 1200) = 2100.
Amplitude ๐ด = 3000 โ 2100 = 900.
The period is 5, so 5 = 2๐โ๐ต, and we have ๐ต = 2๐โ5. Thus,
)
(
2๐
๐ก + 2100.
๐ (๐ก) = โ900 cos
5
๐๐ก
are
6
equal to zero when ๐ก = 0. Thus, ๐ = ๐ (0) = 20. We see that in the 12-month period between Jan 1 and Jan 1 (a whole
period of the periodic component), the value of the stock rose by $30.00. Therefore, the linear component grows at
the rate of $30.00/year, or in terms of months, 30โ12 = $2.50/month. So ๐ = 2.5. Thus we have
14. (a) We start the time count on Jan 1, so substituting ๐ก = 0 into ๐ (๐ก) gives us the value of ๐, since both ๐๐ก and ๐ด sin
๐ = ๐ (๐ก) = 2.5๐ก + 20 + ๐ด sin
๐๐ก
.
6
At an arbitrary data point, say (Apr 1, 37.50), we can solve for ๐ด. Since January 1 corresponds to ๐ก = 0, April 1 is
๐ก = 3. We have
3๐
๐
37.50 = ๐ (3) = 2.5(3) + 20 + ๐ด sin
= 7.5 + 20 + ๐ด sin = 27.5 + ๐ด.
6
2
Simplifying gives ๐ด = 10, and the function is
๐ (๐ก) = 2.5๐ก + 20 + 10 sin
๐๐ก
.
6
(b) The stock appreciates the most during the months when the sine function climbs the fastest. By looking at Figure 9.37
we see that this occurs roughly when ๐ก = 0 and ๐ก = 11, January and December.
50
25
๐ก
3
6
9 12
Figure 9.37
(c) Again, we look to Figure 9.37 to see when the graph actually decreases. It seems that the graph is decreasing roughly
between the fourth and eighth months, that is, between May and September.
15. (a) We know that the minimum of ๐ (๐ก) is 40 and that the maximum is 90. Thus the midline height is
90 + 40
= 65
2
and the amplitude is
90 โ 65 = 25.
We also know that ๐ (๐ก) has a period of 24 hours and is at a minimum when ๐ก = 0. Thus a formula for ๐ (๐ก) is
)
(
๐
๐ก .
๐ (๐ก) = 65 โ 25 cos
12
9.4 SOLUTIONS
557
(b) The amplitude is 30. The period is 24 hours, so the pattern repeats itself each day. The midline value is 80. So ๐(๐ก)
goes up to a maximum of 80 + 30 = 110 and down to a low of 80 โ 30 = 50 megawatts.
(c) From the graph in Figure 9.38, we can find that ๐ก1 โ 4.160 and ๐ก2 โ 13.148. Thus, the power required in both cities is
the same at approximately 4 am and 1 pm.
๐ฆ (megawatts)
๐ฆ (megawatts)
110
90
200
๐(๐ก)
โ(๐ก)
50
40
100
๐ (๐ก)
๐ก1 6
12 ๐ก2
18
24
๐ก (hours)
๐ก
6
Figure 9.38
12 15.346 18
24
Figure 9.39: โ(๐ก) = ๐ (๐ก) + ๐(๐ก)
(d) The function โ(๐ก) in Figure 9.39 tells us the total amount of electricity required by both cities at a particular time of
day. Using the trace key on a calculator, we find the maximum occurs at ๐ก = 15.346. So at 3:21 pm (since 0.346 hours
is about 21 minutes) each day the most total power will be needed. The maximum power is 184.051 mw.
(e) Add the two functions to obtain
(
(
)
(
))
๐
๐
โ(๐ก) = 145 โ 30 sin
๐ก + 25 cos
๐ก
12
12
which can be written in the form
(
โ(๐ก) = 145 โ ๐ด sin
๐
๐ก+๐
12
)
โ
โ
302 + 252 = 1525 โ 39.051 and ๐ = tanโ1 (25โ30) โ 0.6947. Thus
(
)
๐
โ(๐ก) โ 145 โ 39.051 sin
๐ก + 0.6947 .
12
โ
The function has an exact maximum of 145 + 1525 (about 184).
where ๐ด =
16. (a) As ๐ก โ โโ, ๐๐ก gets very close to 0, which means that cos(๐๐ก ) gets very close to cos 0 = 1. This means that the
horizontal asymptote of ๐ as ๐ก โ โโ is ๐ฆ = 1.
(b) As ๐ก increases, ๐๐ก increases at a faster and faster rate. We also know that as ๐ increases, cos ๐ varies steadily between
โ1 and 1. But since ๐๐ก is increasing faster and faster as ๐ก gets large, cos(๐๐ก ) will vary between โ1 and 1 at a faster
and faster pace. So the graph of ๐ (๐ก) = cos(๐๐ก ) begins to wiggle back and forth between โ1 and 1, faster and faster.
Although ๐ is oscillating between โ1 and 1, ๐ is not periodic, because the interval on which ๐ completes a full cycle
is not constant.
(c) The vertical axis is crossed when ๐ก = 0, so ๐ (0) = cos(๐0 ) = cos 1 โ 0.540 is the vertical intercept.
(d) Notice that the least positive zero of cos ๐ข is ๐ข = ๐โ2. Thus the least zero ๐ก1 of ๐ (๐ก) = cos(๐๐ก ) occurs where ๐๐ก1 = ๐โ2
since ๐๐ก is always positive. So we have
๐
2
๐
๐ก1 = ln .
2
๐๐ก1 =
(
)
(e) We know that if cos ๐ข = 0, then cos(๐ข + ๐) = 0. This means that if cos(๐๐ก1 ) = 0, then cos ๐๐ก1 + ๐ = 0 will be the
first zero of ๐ coming after ๐ก1 . Therefore,
(
)
๐ (๐ก2 ) = cos(๐๐ก2 ) = cos ๐๐ก1 + ๐ = 0.
This means that ๐๐ก2 = ๐๐ก1 + ๐. So
)
( )
(
)
(
3๐
๐
.
+ ๐ = ln
๐ก2 = ln ๐๐ก1 + ๐ = ln(๐ln(๐โ2) + ๐) = ln
2
2
Similar reasoning shows that the set of all zeros is {ln( ๐2 ), ln( 3๐
), ln( 5๐
)...}.
2
2
558
Chapter Nine /SOLUTIONS
17. (a) As ๐ฅ โ โ,
1
๐ฅ
โ 0 and we know sin 0 = 0. Thus, ๐ฆ = 0 is the equation of the asymptote.
(b) As ๐ฅ โ 0 and ๐ฅ > 0, we have ๐ฅ1 โ โ. This means that for small changes of ๐ฅ the change in ๐ฅ1 is large. Since ๐ฅ1 is a
large number of radians, the function will oscillate more and more frequently as ๐ฅ becomes smaller.
(c) No,(because
the interval on which ๐ (๐ฅ) completes a full cycle is not constant as ๐ฅ increases.
)
1
1
= 0 means that ๐ฅ1 = sinโ1 (0) + ๐๐ for ๐ equal to some integer. Therefore, ๐ฅ = ๐๐
, and the greatest zero of
(d) sin
๐ฅ
๐ (๐ฅ) = sin ๐ฅ1 corresponds to the smallest ๐, that is, ๐ = 1. Thus, ๐ง1 = ๐1 .
(e) There are an infinite number of zeros because ๐ง =
(f) If ๐ =
1
๐๐
1
๐๐
for all ๐ > 0 are zeros.
then the largest zero of ๐ (๐ฅ) less then ๐ would be ๐ =
1
.
(๐+1)๐
18. Use the sum-of-angles identity for cosine on the second term to get
๐ผ cos(๐๐ + ๐๐ )๐ก = ๐ผ cos ๐๐ ๐ก cos ๐๐ ๐ก โ ๐ผ sin ๐๐ ๐ก sin ๐๐ ๐ก
and factor the term cos ๐๐ ๐ก to show the equality.
19. (a) Types of video games are trendy for a length of time, during which they are extremely popular and sales are high,
later followed by a cooling-down period as the users become tired of that particular game type. The game players then
become interested in a different game typeโand so on.
(b) The sales graph does not fit the shape of the sine or cosine curve, and we would have to say that neither of those
functions would give us a reasonable model. However, from 1979โ1989 the graph does have a basic negative cosine
shape, but the amplitude varies.
(c) One way to modify the amplitude over time is to multiply the sine (or cosine) function by an exponential function,
such as ๐๐๐ก . So we choose a model of the form
๐ (๐ก) = ๐๐๐ก (โ๐ cos(๐ถ๐ก) + ๐ท),
where ๐ก is the number of years since 1979. Note the โ๐, which is due to the graph looking like an inverted cosine
at 1979. The average value starts at about 1.6, and the period appears to be about 6 years. The amplitude is initially
about 1.4, which is the distance between the average value of 1.6 and the first peak value of 3.0. This means
(
(
)
)
2๐
๐ (๐ก) = ๐๐๐ก โ1.4 cos
๐ก + 1.6 .
6
By trial and error on your graphing calculator, you can arrive at a value for the parameter ๐. A reasonable choice is
๐ = 0.05, which gives
)
)
(
(
2๐
๐ก + 1.6 .
๐ (๐ก) = ๐0.05๐ก โ1.4 cos
6
(d)
retail sales
(billions of $)
5
4
3
2
1
Sales
๐ (๐ก)
0
(e)
20. (a)
(b)
(c)
3
6
9
12
๐ก (years
after 1979)
Notice that even though multiplying by the exponential function does increase the amplitude over time, it does
not increase the period. Therefore, our model ๐ (๐ก) does not fit the actual curve all that well.
The predicted 1993 sales volume is ๐ (14) = 4.632 billion dollars.
2๐
2๐
We have ๐ =
=
= 1. Thus, the wavelength is 1 meter.
๐
2๐
2๐
2๐
1
The time for one wavelength to pass by is
=
= of a second. Thus, two wavelengths pass by each second.
๐
4๐
2
The number of wavelengths which pass a point in a given unit of time is referred to as the frequency. It is sometimes
written as 2 hertz (Hz), which equals 2 cycles per second.
The shape of the rope at the instant when ๐ก = 0 is described by the sinusoidal function ๐ฆ(๐ฅ, 0) = 0.06 sin(2๐๐ฅ)
9.4 SOLUTIONS
559
๐ฆ
0.06
0.04
0.02
๐ฅ
0.5
1
1.5
โ0.02
โ0.04
โ0.06
Figure 9.40
(d) Having the same graph means that 0.06 sin(2๐๐ฅ) = 0.06 sin(2๐๐ฅ โ 4๐๐ก) for all ๐ฅ. In order for this to happen, 2๐๐ฅ and
2๐๐ฅ โ 4๐๐ก must describe the same angle. This is the case any time 4๐๐ก is a multiple of 2๐. Thus, 4๐๐ก = 2๐๐ whenever
๐ก = ๐โ2 for any integer ๐.
21. (a) We have:
Average change in ๐ถ(๐ก) ๐ถ(6) โ ๐ถ(0)
382 โ 381
1
=
= ppm/month.
over Decโ05โJunโ06 =
6โ0
6
6
Also,
Average change in ๐ถ(๐ก) ๐ถ(66) โ ๐ถ(60)
392 โ 391
1
=
= ppm/month.
over Decโ10โJunโ11 =
66 โ 60
6
6
And lastly,
Average change in ๐ถ(๐ก)
๐ถ(81) โ ๐ถ(75)
391 โ 397
=
= โ1 ppm/month.
over MarโSepโ12 =
81 โ 75
6
So, on average, the concentration of carbon dioxide increased by 0.167 parts per million per month during the first
half of 2006 and 2011. It also decreased, on average, by 1 ppm per month during the middle months of 2012.
(b) ๐(๐ก) is a periodic function which measures the variation in the concentration of carbon dioxide due to the seasons. It
does not take into account the long-term changes in the concentration of carbon dioxide.
(c) We have:
Average change in ๐(๐ก) ๐(6) โ ๐(0)
0โ0
=
= 0 ppm/month.
over Decโ05โJunโ06 =
6โ0
6
Also,
Average change in ๐(๐ก) ๐(66) โ ๐(60)
0โ0
=
= 0 ppm/month.
over Decโ10โJunโ11 =
66 โ 60
6
And lastly,
Average change in ๐(๐ก)
๐(81) โ ๐(75)
โ3.5 โ 3.5
โ7
=
=
ppm/month.
over MarโSepโ12 =
81 โ 75
6
6
So, on average, there was no change in the concentration of carbon dioxide due to seasonal variations during the first
half of 2006 and 2011. This makes sense, because the carbon dioxide concentration grows and decays by 3.5 ppm
during these periods. (Note that 3.5 ppm is the amplitude of ๐(๐ก).)
Also, seasonal changes caused an average decrease in carbon dioxide of about โ1.167 ppm per month during the
middle months of 2012.
(d) We have:
Average change in ๐ถ(๐ก)
Average change in ๐(๐ก)
1
1
over Decโ05โJunโ06 โ over Decโ05โJunโ06 = 6 โ 0 = 6 ppm/month.
Also,
Average change in ๐ถ(๐ก)
Average change in ๐(๐ก)
1
1
over Decโ10โJunโ11 โ over Decโ10โJunโ11 = 6 โ 0 = 6 ppm/month.
And lastly,
Average change in ๐(๐ก)
Average change in ๐ถ(๐ก)
7
1
โ
over MarโSepโ12 = โ1 + = ppm/month.
over MarโSepโ12
6
6
560
Chapter Nine /SOLUTIONS
So, the difference between the average concentration and average the seasonal variation is 1โ6 ppm/month over each
of these common periods.
(e) The common difference between the two averages calculated in part (d), 1โ6 ppm/month, gives the average increase
in the concentration of carbon dioxide per month. This value is the slope of the rising midline,
๐(๐ก) = 381 + ๐กโ6,
the portion of the concentration model ๐ฆ = ๐ถ(๐ก) = ๐(๐ก) + ๐(๐ก) that captures the variation in the concentration of
carbon dioxide not due to the seasons.
The slope of the rising midline tells us that, independently of seasonal changes, the concentration of carbon
dioxide has been increasing by about 1โ6 ppm per month, on average, during the last few years.
Solutions for Section 9.5
Exercises
1. Though we could use the sum-of-angle and difference-of-angle formulas for cosine on each of the two parts, we can also
use the formula for the sum of cosines:
โ โ
โ
3 2
6
165 โ 75
165 + 75
โฆ
โฆ
sin
= โ2 sin 120 sin 45 = โ2
=โ
.
cos 165 โ cos 75 = โ2 sin
2
2
2 2
2
2. Though we could use the sum-of-angle and difference-of-angle formulas for cosine on each of the two parts, we can also
use the formula for the sum of cosines:
โ โ
โ
6
2 3
75 + 15
75 โ 15
โฆ
โฆ
cos 75 + cos 15 = 2 cos
cos
= 2 cos 45 cos 30 = 2
=
.
2
2
2 2
2
3. These cosine functions have the same amplitude and we use the relationship
cos ๐ข + cos ๐ฃ = 2 cos
๐ขโ๐ฃ
๐ข+๐ฃ
cos
.
2
2
Letting ๐ข = 5๐ก and ๐ฃ = 3๐ก, we have
cos(5๐ก) + cos(3๐ก) = 2 cos
5๐ก โ 3๐ก
5๐ก + 3๐ก
cos
= 2 cos(4๐ก) cos ๐ก.
2
2
4. These cosine functions have the same amplitude and we use the relationship
cos ๐ข + cos ๐ฃ = 2 cos
๐ข+๐ฃ
๐ขโ๐ฃ
cos
.
2
2
Letting ๐ข = 4๐ก and ๐ฃ = 6๐ก, we have
cos(4๐ก) + cos(6๐ก) = 2 cos
4๐ก + 6๐ก
4๐ก โ 6๐ก
cos
= 2 cos(5๐ก) cos ๐ก.
2
2
Notice that cos(โ๐ก) = cos ๐ก.
5. These sine functions have the same amplitude and we use the relationship
sin ๐ข + sin ๐ฃ = 2 sin
๐ข+๐ฃ
๐ขโ๐ฃ
cos
.
2
2
Letting ๐ข = 7๐ก and ๐ฃ = 3๐ก, we have
sin(7๐ก) + sin(3๐ก) = 2 sin
7๐ก + 3๐ก
7๐ก โ 3๐ก
cos
= 2 sin(5๐ก) cos(2๐ก).
2
2
9.5 SOLUTIONS
6. These sine functions have the same amplitude and we use the relationship
sin ๐ข โ sin ๐ฃ = 2 cos
๐ข+๐ฃ
๐ขโ๐ฃ
sin
.
2
2
Letting ๐ข = 7๐ก and ๐ฃ = 3๐ก, we have
sin(7๐ก) โ sin(3๐ก) = 2 cos
(
7. cos 35โฆ + cos 40โฆ = 2 cos
7๐ก + 3๐ก
7๐ก โ 3๐ก
sin
= 2 cos(5๐ก) sin(2๐ก).
2
2
)
( โฆ
)
35 โ 40โฆ
35โฆ + 40โฆ
cos
= 1.585. See Figure 9.41.
2
2
1
โ360โฆ โ180โฆ
180โฆ
360โฆ
๐ฅ (degrees)
โ1
Figure 9.41
(
8. cos 35โฆ โ cos 40โฆ = โ2 sin
)
( โฆ
)
35 โ 40โฆ
35โฆ + 40โฆ
sin
= 0.053. See Figure 9.42.
2
2
1
โ360โฆ โ180โฆ
180โฆ
360โฆ
๐ฅ (degrees)
โ1
Figure 9.42
(
9. sin 35โฆ + sin 40โฆ = 2 sin
)
( โฆ
)
35 โ 40โฆ
35โฆ + 40โฆ
cos
= 1.216. See Figure 9.43.
2
2
1
๐ฅ (degrees)
โ360โฆ โ180โฆ
180โฆ
360โฆ
โ1
Figure 9.43
(
10. sin 35โฆ โ sin 40โฆ = 2 cos
) ( โฆ
)
35 โ 40โฆ
35โฆ + 40โฆ
sin
= โ0.069. See Figure 9.44.
2
2
1
โ360โฆ โ180โฆ
180โฆ
โ1
Figure 9.44
360โฆ
๐ฅ (degrees)
561
562
Chapter Nine /SOLUTIONS
Problems
11. We can use the sum-of-angle identities
cos(๐ + ๐) = cos ๐ cos ๐ โ sin ๐ sin ๐
cos(๐ โ ๐) = cos ๐ cos ๐ + sin ๐ sin ๐
and subtract to obtain
cos(๐ + ๐) โ cos(๐ โ ๐) = โ2 sin ๐ sin ๐.
We put ๐ข = ๐ +๐ and ๐ฃ = ๐ โ๐ on the left side of the equation. Solving these simultaneous equations, we get ๐ = (๐ข+๐ฃ)โ2
and ๐ = (๐ข โ ๐ฃ)โ2. We put ๐ = (๐ข + ๐ฃ)โ2 and ๐ = (๐ข โ ๐ฃ)โ2 on the right side to get
(
) (
)
๐ข+๐ฃ
๐ขโ๐ฃ
cos ๐ข โ cos ๐ฃ = โ2 sin
sin
.
2
2
12. We can use the sum-of-angle identities
sin(๐ + ๐) = sin ๐ cos ๐ + sin ๐ cos ๐
sin(๐ โ ๐) = sin ๐ cos ๐ โ sin ๐ cos ๐
and add to get
sin(๐ + ๐) + sin(๐ โ ๐) = 2 sin ๐ cos ๐.
We put ๐ข = ๐ +๐ and ๐ฃ = ๐ โ๐ on the left side of the equation. Solving these simultaneous equations, we get ๐ = (๐ข+๐ฃ)โ2
and ๐ = (๐ข โ ๐ฃ)โ2. We put ๐ = (๐ข + ๐ฃ)โ2 and ๐ = (๐ข โ ๐ฃ)โ2 on the right side to get
)
(
)
(
๐ขโ๐ฃ
๐ข+๐ฃ
cos
.
sin ๐ข + sin ๐ฃ = 2 sin
2
2
13. We start with
(
sin ๐ข + sin ๐ฃ = 2 sin
)
(
)
๐ขโ๐ฃ
๐ข+๐ฃ
cos
.
2
2
Since โ sin ๐ฃ = sin(โ๐ฃ), we can write
sin ๐ข โ sin ๐ฃ = sin ๐ข + sin(โ๐ฃ)
(
)
(
)
๐ข + (โ๐ฃ)
๐ข โ (โ๐ฃ)
= 2 sin
cos
2
2
)
(
)
(
๐ข+๐ฃ
๐ขโ๐ฃ
cos
= 2 sin
2
2
(
)
(
)
๐ข+๐ฃ
๐ขโ๐ฃ
= 2 cos
sin
.
2
2
14. We can use the identity sin ๐ข + sin ๐ฃ = 2 sin((๐ข + ๐ฃ)โ2) cos((๐ข โ ๐ฃ)โ2). If we put ๐ข = 4๐ฅ and ๐ฃ = ๐ฅ then our equation
becomes
)
(
)
(
4๐ฅ โ ๐ฅ
4๐ฅ + ๐ฅ
cos
0 = 2 sin
2
2
( )
( )
5
3
= 2 sin
๐ฅ cos
๐ฅ
2
2
The product on the right-hand side of this equation will be equal to zero precisely when sin(5๐ฅโ2) = 0 or when cos(3๐ฅโ2) =
0. We will have sin(5๐ฅโ2) = 0 when 5๐ฅโ2 = ๐๐, for ๐ an integer, or in other words for ๐ฅ = (2๐โ5)๐. This will occur in the
stated interval for ๐ฅ = 2๐โ5, ๐ฅ = 4๐โ5, ๐ฅ = 6๐โ5, and ๐ฅ = 8๐โ5. We will have cos(3๐ฅโ2) = 0 when 3๐ฅโ2 = ๐๐ + ๐โ2,
that is, when ๐ฅ = (2๐ + 1)๐โ3. This will occur in the stated interval for ๐ฅ = ๐โ3, ๐ฅ = ๐, and ๐ฅ = 5๐โ3. So the given
expression is solved by
5๐
2๐ 4๐ 6๐ 8๐ ๐
,
,
,
, , ๐, and .
๐ฅ=
5 5 5 5 3
3
9.6 SOLUTIONS
563
15. (a) First consider the height โ = ๐ (๐ก) of the
( hub
) of the wheel that you are on. This is similar to the basic Ferris wheel
๐
problem. Therefore ๐1 (๐ก) = 25 + 15 sin
๐ก , because the vertical shift is 25, the amplitude is 15, and the period is 6.
3
Now the smaller wheel will also add or subtract height depending upon
The difference in height between your
)
( time.
๐
๐ก because the radius is 10 and the period is
position and the hub of the smaller wheel is given by ๐2 (๐ก) = 10 sin
2
4. Finally, adding the two together, we get:
๐
๐
๐1 (๐ก) + ๐2 (๐ก) = ๐ (๐ก) = 25 + 15 sin( ๐ก) + 10 sin( ๐ก)
3
2
(b)
โ (meters)
50
๐ (๐ก)
1.2
12
24
๐ก (minute)
Figure 9.45
Looking at the graph shown in Figure 9.45, we see that โ = ๐ (๐ก) is periodic, with period 12. This can be verified
by noting
(
)
(
)
๐
๐
๐ (๐ก + 12) = 25 + 15 sin
(๐ก + 12) + 10 sin
(๐ก + 12)
3
2
)
(
)
(
๐
๐
๐ก + 4๐ + 10 sin
๐ก + 6๐
= 25 + 15 sin
3
2
( )
( )
๐
๐
= 25 + 15 sin
๐ก + 10 sin
๐ก
3
2
= ๐ (๐ก).
(c) โ = ๐ (1.2) = 48.776 m.
Solutions for Section 9.6
Exercises
1. 5๐๐๐
2. ๐
๐3๐
2
3. 0๐๐๐ , for any ๐.
๐๐
4. 2๐ 2
5. We have (โ3)2 + (โ4)2 = 25, and arctan(4โ3) โ 4.069. So the number is 5๐๐4.069 .
โ
6. 10๐๐๐ , where ๐ = arctan(โ3) โ โ1.249 + ๐ = 1.893 is an angle in the second quadrant.
7. โ5 + 12๐
8. โ11 + 29๐
9. โ3 โ 4๐
10.
1
4
โ
9๐
8
11. We have (๐๐๐โ3 )2 = ๐๐2๐โ3 , thus cos
12. 3 โ 6๐
2๐
3
+ ๐ sin
2๐
3
= โ 12 + ๐
โ
3
.
2
564
Chapter Nine /SOLUTIONS
13. We have
โ
4
10 cos
14.
โ
๐๐๐โ3 = ๐(๐๐โ3)โ2 = ๐๐๐โ6 , thus cos
โ
4
๐
+ ๐ 10 sin ๐8 is one solution.
8
๐
6
+ ๐ sin ๐6 =
โ
3
2
+ 2๐ .
Problems
โ
โ
โ
4๐๐๐โ2 = (4๐๐๐โ2 )1โ2 = 2๐๐๐โ4 = 2 cos ๐4 + ๐2 sin ๐4 = 2 + ๐ 2
โ
โ
โ
โ
3๐
3๐ 1
3๐
2
2
3๐
One value of โ๐ is ๐๐ 2 = (๐๐ 2 ) 2 = ๐๐ 4 = cos 3๐
+
๐
sin
=
โ
+
๐
4
4
2
2
โ
โ
โ
๐
๐
๐ 1
3
One value of 3 ๐ is ๐๐ 2 = (๐๐ 2 ) 3 = ๐๐ 6 = cos ๐6 + ๐ sin ๐6 = 23 + 2๐
โ
โ
โ ๐
โ ๐ โ
โ
โ
๐ 1
One value of 7๐ is 7๐๐ 2 = (7๐๐ 2 ) 2 = 7๐๐ 4 = 7 cos ๐4 + ๐ 7 sin ๐4 = 214 + ๐ 214
โ
โ
( )
โ
โ
4
4
One value of โ1 is ๐๐๐ = (๐๐๐ )1โ4 = ๐๐๐โ4 = cos ๐4 + ๐ sin( ๐4 ) = 22 + ๐ 22 .
โ
โ
โ
โ
โ
โ
โ ๐
๐
1
๐ 2
3
3
3
3
3
One value of (1 + ๐)2โ3 is ( 2๐๐ 4 )2โ3 = (2 2 ๐๐ 4 ) 3 = 2๐๐ 6 = 2 cos ๐6 + ๐ 2 sin ๐6 = 2 โ
23 + ๐ 2 โ
12
โ
One value ofโ( 3 + ๐)1โ2
โ is ๐
โ
๐
๐
๐
(2๐๐ 6 )1โ2 = 2๐๐ 12 = 2 cos 12
+ ๐ 2 sin 12
โ 1.366 + 0.366๐
โ
One๐value of ( 3 +๐๐)โ1โ2 is
๐
๐
) + ๐ โ1 sin(โ 12
) โ 0.683 โ 0.183๐
(2๐๐ 6 )โ1โ2 = โ1 ๐๐(โ 12 ) = โ1 cos(โ 12
2
2
2
โ
โ
โ
โ
โ
โ
โ
โ
2
Since 5 + 2๐ = 3๐๐๐ , where ๐ = arctan โ2 โ 0.730, one value of ( 5 + 2๐) 2 is (3๐๐๐ ) = 3 2 ๐๐ 2๐ = 3 2 cos 2๐ +
5
โ
โ
โ
โ
๐3 2 sin 2๐ โ 3 2 (0.513) + ๐3 2 (0.859) โ 2.426 + 4.062๐
15. One value of
16.
17.
18.
19.
20.
21.
22.
23.
โ
4๐ is
24. Substituting ๐ด1 = 2 โ ๐ด2 into the second equation gives
(1 โ ๐)(2 โ ๐ด2 ) + (1 + ๐)๐ด2 = 0
so
2๐๐ด2 = โ2(1 โ ๐)
โ(1 โ ๐)
โ๐(1 โ ๐)
= ๐(1 โ ๐) = 1 + ๐
๐ด2 =
=
๐
๐2
Therefore ๐ด1 = 2 โ (1 + ๐) = 1 โ ๐.
25. Substituting ๐ด2 = ๐ โ ๐ด1 into the second equation gives
๐๐ด1 โ (๐ โ ๐ด1 ) = 3,
so
๐๐ด1 + ๐ด1 = 3 + ๐
3+๐
3+๐ 1โ๐
3 โ 3๐ + ๐ โ ๐2
=
โ
=
1+๐
1+๐ 1โ๐
2
= 2โ๐
๐ด1 =
Therefore ๐ด2 = ๐ โ (2 โ ๐) = โ2 + 2๐.
26. If the roots are complex numbers, we must have (2๐)2 โ 4๐ < 0 so ๐2 โ ๐ < 0. Then the roots are
โ
โ
โ2๐ ± (2๐)2 โ 4๐
= โ๐ ± ๐2 โ ๐
๐ฅ=
2
โ
= โ๐ ± โ1(๐ โ ๐2 )
โ
= โ๐ ± ๐ ๐ โ ๐2 .
โ
Thus, ๐ = โ๐ and ๐ = ๐ โ ๐2 .
9.6 SOLUTIONS
565
27. (a) The polar coordinates of ๐ are ๐ = 1 and ๐ = ๐โ2, as in Figure 9.46. Thus, the polar form of ๐ is ๐ = ๐๐๐๐ = 1๐๐๐โ2 = ๐๐๐โ2 .
(b) Since ๐ง = ๐๐๐๐ and ๐ = ๐๐๐โ2 , we have ๐๐ง = ๐๐๐โ2 โ
๐๐๐๐ = ๐๐๐(๐+๐โ2) . The polar coordinates of ๐ง are (๐, ๐), while the polar
coordinates of ๐๐ง are (๐, ๐ + ๐โ2). The points ๐ง and ๐๐ง are related as in Figure 9.47.
๐ฆ
๐
๐ฆ
๐๐ง
๐
๐โ2
๐ง
๐
๐โ2
๐
๐ฅ
Figure 9.46
๐ฅ
Figure 9.47
28. Using Eulerโs formula, we have:
๐๐(2๐) = cos 2๐ + ๐ sin 2๐
On the other hand,
2
๐๐(2๐) = (๐๐๐ ) = (cos ๐ + ๐ sin ๐)2 = (cos2 ๐ โ sin2 ๐) + ๐(2 cos ๐ sin ๐)
Equating imaginary parts, we find
sin 2๐ = 2 sin ๐ cos ๐.
29. Using Eulerโs formula, we have:
๐๐(2๐) = cos 2๐ + ๐ sin 2๐
On the other hand,
2
๐๐(2๐) = (๐๐๐ ) = (cos ๐ + ๐ sin ๐)2 = (cos2 ๐ โ sin2 ๐) + ๐(2 cos ๐ sin ๐)
Equating real parts, we find
cos 2๐ = cos2 ๐ โ sin2 ๐.
30. Since ๐โ๐๐ = cos(โ๐) + ๐ sin(โ๐), we want to investigate ๐โ๐๐ . By the definition of negative exponents,
๐โ๐๐ =
1
1
.
=
cos ๐ + ๐ sin ๐
๐๐๐
Multiplying by the conjugate cos ๐ โ ๐ sin ๐ gives
๐โ๐๐ =
1
cos ๐ โ ๐ sin ๐
cos ๐ โ ๐ sin ๐
โ
=
= cos ๐ โ ๐ sin ๐.
cos ๐ + ๐ sin ๐ cos ๐ โ ๐ sin ๐
cos2 ๐ + sin2 ๐
Thus
cos(โ๐) + ๐ sin(โ๐) = cos ๐ โ ๐ sin ๐,
so equating real parts, we see that cosine is even: cos(โ๐) = cos ๐.
31. Since ๐โ๐๐ = cos(โ๐) + ๐ sin(โ๐), we want to investigate ๐โ๐๐ . By the definition of negative exponents,
๐โ๐๐ =
1
1
=
.
๐๐๐
cos ๐ + ๐ sin ๐
Multiplying by the conjugate cos ๐ โ ๐ sin ๐ gives
๐โ๐๐ =
1
cos ๐ โ ๐ sin ๐
cos ๐ โ ๐ sin ๐
= cos ๐ โ ๐ sin ๐.
โ
=
cos ๐ + ๐ sin ๐ cos ๐ โ ๐ sin ๐
cos2 ๐ + sin2 ๐
Thus
cos(โ๐) + ๐ sin(โ๐) = cos ๐ โ ๐ sin ๐,
so equating imaginary parts, we see that sine is odd: sin(โ๐) = โ sin ๐.
566
Chapter Nine /SOLUTIONS
32. The number ๐ง = ๐2๐ is given in polar form with (๐, ๐) = (1, 2). Two more sets of polar coordinates for ๐ง are (1, 2 + 2๐),
and (1, 2 + 4๐). Three cube roots of ๐ง are given by
( 2๐ )1โ3
1๐
= 11โ3 ๐1โ3โ
2๐ = ๐2๐โ3 = cos(2โ3) + ๐ sin(2โ3)
= 0.786 + 0.618๐.
(
1๐(2+2๐)๐
)1โ3
= 11โ3 ๐1โ3โ
(2+2๐)๐ = ๐(2+2๐)๐โ3 = cos((2 + 2๐)โ3) + ๐ sin((2 + 2๐)โ3)
= โ0.928 + 0.371๐.
( (2+4๐)๐ )1โ3
1๐
= 11โ3 ๐1โ3โ
(2+4๐)๐ = ๐(2+4๐)๐โ3 = cos((2 + 4๐)โ3) + ๐ sin((2 + 4๐)โ3)๐
= 0.143 โ 0.909๐.
33. One polar form for ๐ง = โ8 is ๐ง = 8๐๐๐ with (๐, ๐) = (8, ๐). Two more sets of polar coordinates for ๐ง are (8, 3๐), and (8, 5๐).
Three cube roots of ๐ง are given by
( ๐๐ )1โ3
8๐
= 81โ3 ๐1โ3โ
๐๐ = 2๐๐๐โ3 = 2 cos(๐โ3) + ๐2 sin(๐โ3)
= 1 + 1.732๐.
(
8๐3๐๐
)1โ3
= 81โ3 ๐1โ3โ
3๐๐ = 2๐๐๐ = 2 cos ๐ + ๐2 sin ๐
(
8๐5๐๐
)1โ3
= 81โ3 ๐1โ3โ
5๐๐ = 2๐5๐๐โ3 = 2 cos(5๐โ3) + ๐2 sin(5๐โ3)
= โ2.
= 1 โ 1.732๐.
34. Three polar forms for ๐ง = 8 have (๐, ๐) equal to (8, 0), (8, 2๐), and (8, 4๐). Three cube roots of ๐ง are given by
( 0๐ )1โ3
= 81โ3 ๐1โ3โ
0๐ = 2๐0๐ = 2 cos 0 + ๐2 sin 0
8๐
= 2.
(
8๐2๐๐
)1โ3
= 81โ3 ๐1โ3โ
2๐๐ = 2๐2๐๐โ3 = 2 cos(2๐โ3) + ๐2 sin(2๐โ3)
(
8๐4๐๐
)1โ3
= 81โ3 ๐1โ3โ
4๐๐ = 2๐4๐๐โ3 = 2 cos(4๐โ3) + ๐2 sin(4๐โ3)
= โ1 + 1.732๐.
= โ1 โ 1.732๐.
โ
35. One
(๐, ๐) = ( 2, ๐โ4). Two more sets of polar coordinates for ๐ง are
โ polar form of the
โ complex number
โ ๐ง = 1 + ๐ has โ
( 2, ๐โ4 + 2๐) = ( 2, 9๐โ4) and ( 2, ๐โ4 + 4๐) = ( 2, 17๐โ4). Three cube roots of ๐ง are given by
)1โ3 (
(โ
)1โ3 1โ3โ
๐๐โ4
๐
= 21โ6 ๐๐๐โ12 = 21โ6 cos(๐โ12) + ๐21โ6 sin(๐โ12)
= 21โ2
2๐๐๐โ4
= 1.084 + 0.291๐.
(โ
)1โ3 (
)
1โ2 1โ3 1โ3โ
9๐๐โ4
9๐๐โ4
= 2
๐
= 21โ6 ๐9๐๐โ12 = 21โ6 cos(9๐โ12) + ๐21โ6 sin(9๐โ12)
2๐
= โ0.794 + 0.794๐.
)1โ3 (
(โ
)
1โ3
2๐17๐โ๐4
= 21โ2
๐1โ3โ
17๐๐โ4 = 21โ6 ๐17๐๐โ12 = 21โ6 cos(17๐โ12) + ๐21โ6 sin(17๐โ12)
= โ0.291 โ 1.084๐.
36. By de Moivreโs formula we have
(cos ๐โ4 + ๐ sin ๐โ4)4 = cos(4 โ
๐โ4) + ๐ sin(4 โ
๐โ4) = โ1 + ๐0 = โ1.
37. By de Moivreโs formula we have
(cos 2๐โ3 + ๐ sin 2๐โ3)3 = cos(3 โ
2๐โ3) + ๐ sin(3 โ
2๐โ3) = 1 + ๐0 = 1.
SOLUTIONS to Review Problems For Chapter Nine
38. By de Moivreโs formula we have
(cos 2 + ๐ sin 2)โ1 = cos(โ2) + ๐ sin(โ2) = cos 2 โ ๐ sin 2.
39. By de Moivreโs formula we have
(cos ๐โ4 + ๐ sin ๐โ4)
โ7
โ
โ
2
2
= cos(โ7๐โ4) + ๐ sin(โ7๐โ4) =
+๐
.
2
2
40. From the exponent rules, we know
๐๐๐ โ
๐โ๐๐ = ๐๐๐โ๐๐ = ๐0 = 1.
Using Eulerโs formula, we rewrite this as
(cos ๐ + ๐ sin ๐) (cos ๐ โ ๐ sin ๐) = 1.
โโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโ
๐โ๐๐
๐๐๐
Multiplying out the left-hand side gives
(cos ๐ + ๐ sin ๐) (cos ๐ โ ๐ sin ๐) = cos2 ๐ โ ๐ sin ๐ cos ๐ + ๐ sin ๐ cos ๐ โ ๐2 sin2 ๐ = 1.
Since โ๐2 = +1, simplifying the left side gives the Pythagorean identity
cos2 ๐ + sin2 ๐ = 1.
41. Using the exponent rules, we see from Eulerโs formula that
๐๐(๐+๐) = ๐๐๐ โ
๐๐๐
= (cos ๐ + ๐ sin ๐)(cos ๐ + ๐ sin ๐)
= cos ๐ cos ๐ + ๐ cos ๐ sin ๐ + ๐ sin ๐ cos ๐ + ๐2 sin ๐ sin ๐
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโ
๐(cos ๐ sin ๐+sin ๐ cos ๐)
โ sin ๐ sin ๐
= cos ๐ cos ๐ โ sin ๐ sin ๐ +๐ (sin ๐ cos ๐ + cos ๐ sin ๐) .
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Real part
Imaginary part
But Eulerโs formula also gives
๐๐(๐+๐) = cos(๐ + ๐) +๐ sin(๐ + ๐) .
โโโโโโโ
โโโโโโโโโ
Real part
Imaginary part
Two complex numbers are equal only if their real and imaginary parts are equal. Setting real parts equal gives
cos(๐ + ๐) = cos ๐ cos ๐ โ sin ๐ sin ๐.
Setting imaginary parts equal gives
sin(๐ + ๐) = sin ๐ cos ๐ + sin ๐ cos ๐.
Solutions for Chapter 9 Review
Exercises
1. We have:
(1 โ sin ๐ก) (1 โ cos ๐ก) โ cos ๐ก sin ๐ก = 1 โ cos ๐ก โ sin ๐ก + sin ๐ก cos ๐ก โ cos ๐ก sin ๐ก multiply out
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
(1โsin ๐ก)(1โcos ๐ก)
= 1 โ cos ๐ก โ sin ๐ก.
567
568
Chapter Nine /SOLUTIONS
2. We have:
2 cos ๐ก โ 3 sin ๐ก โ (2 sin ๐ก โ 3 cos ๐ก) = 2 cos ๐ก โ 3 sin ๐ก โ 2 sin ๐ก + 3 cos ๐ก
= 5 cos ๐ก โ 5 sin ๐ก.
3. We have:
1
โ
sin ๐ก + 3 tan ๐ก
cos ๐ก
sin ๐ก
+3 tan ๐ก
=
cos ๐ก
โโโ
sec ๐ก sin ๐ก + 3 tan ๐ก =
tan ๐ก
= 4 tan ๐ก.
4. We have:
) (
)
cos ๐ก
sin ๐ก
โ
โ
sin ๐ก
sin ๐ก
cos ๐ก
โโโ โโโ
(
cot ๐ก tan ๐ก sin ๐ก =
cot ๐ก
tan ๐ก
= sin ๐ก.
5. We have:
(
sec ๐ก
= (
csc ๐ก
1
cos ๐ก
)
1
sin ๐ก
)
cos ๐ก
)
1
โ
sin ๐ก
cos ๐ก
= tan ๐ก.
=
6. We have:
(
sin ๐ก
cot ๐ก
= ( )
1
csc ๐ก
sin ๐ก
cos ๐ก
โ
sin ๐ก
sin ๐ก
= cos ๐ก.
=
7. We have:
multiply out
(sec ๐ก cot ๐ก โ csc ๐ก tan ๐ก) sin ๐ก cos ๐ก = sec ๐ก cot ๐ก sin ๐ก cos ๐ก โ csc ๐ก tan ๐ก sin ๐ก cos ๐ก
)(
)
)(
)
(
(
1
1
cos ๐ก
sin ๐ก
sin ๐ก cos ๐ก โ
sin ๐ก cos ๐ก
=
cos ๐ก
sin ๐ก
sin ๐ก
cos ๐ก
โโโ โโโ
โโโ โโโ
sec ๐ก
cot ๐ก
csc ๐ก
tan ๐ก
= cos ๐ก โ sin ๐ก.
8. We have:
1
=
2 csc ๐ก cos ๐ก โ 3 cot ๐ก
1
)
1
2
cos ๐ก โ 3 cot ๐ก
sin ๐ก
โโโ
(
csc ๐ก
=
1
)
(
cos ๐ก
cos ๐ก
โ3
2
sin ๐ก
sin ๐ก
โโโ
cot ๐ก
=
1
sin ๐ก
= โ tan ๐ก.
) =โ
cos ๐ก
cos ๐ก
โ
sin ๐ก
(
SOLUTIONS to Review Problems For Chapter Nine
9. Using 1 โ cos2 ๐ = sin2 ๐, we have
sin2 ๐
1 โ cos2 ๐
=
= sin ๐.
sin ๐
sin ๐
10. Writing cot ๐ฅ = cos ๐ฅโ sin ๐ฅ and csc ๐ฅ = 1โ sin ๐ฅ, we have
cot ๐ฅ
cos ๐ฅ
1
=
โ
= cos ๐ฅ.
csc ๐ฅ
sin ๐ฅ 1โ sin ๐ฅ
11. Writing cos 2๐ = 2 cos2 ๐ โ 1, we have
cos 2๐ + 1
2 cos2 ๐ โ 1 + 1
2 cos2 ๐
=
=
= 2 cos ๐.
cos ๐
cos ๐
cos ๐
12. Multiplying out and using the fact that 1 โ tan2 ๐ = 1โ cos2 ๐, we have
cos2 ๐(1 + tan ๐)(1 โ tan ๐) = cos2 ๐(1 โ tan2 ๐) = cos2 ๐ โ
1
= 1.
cos2 ๐
13. 8 โ 5๐
14. (2 + 3๐)(3 + 5๐) = 6 + 9๐ + 10๐ โ 15 = โ9 + 19๐.
โ
15. We have (2)2 + (โ4)2 = 20, and arctan(โ2) โ โ1.107. So the number is 20๐โ1.107๐ .
โ
16. We have (3)2 + (5)2 = 34, and arctan(5โ3) โ 1.030. So the number is 34๐1.030๐ .
Problems
17. We first solve for cos ๐ผ,
2 cos ๐ผ = 1
1
cos ๐ผ =
2
๐ 5๐
๐ผ= ,
.
3 3
18. We first solve for tan ๐ผ,
tan ๐ผ =
โ
3 โ 2 tan ๐ผ
โ
3
โ
3
tan ๐ผ =
3
๐ 7๐
๐ผ= ,
6 6
3 tan ๐ผ =
19. We first solve for tan ๐ผ,
4 tan ๐ผ + 3 = 2
4 tan ๐ผ = โ1
1
tan ๐ผ = โ
4
๐ผ = 2.897, 6.038.
569
570
Chapter Nine /SOLUTIONS
20. We first solve for sin ๐ผ,
3 sin2 ๐ผ + 4 = 5
3 sin2 ๐ผ = 1
1
sin2 ๐ผ =
3
โ
sin ๐ผ = ±
โ
sin ๐ผ =
1
3
โ
sin ๐ผ = โ 13
1
3
๐ผ = 0.616, 2.526
๐ผ = 3.757, 5.668
21. (a) The graph resembles a cosine function with midline ๐ = 8, amplitude ๐ด = 10, and period ๐ = 60, so
(
)
2๐
๐ฆ = 10 cos
๐ฅ + 8.
60
(b) We find the zeros at ๐ฅ1 and ๐ฅ2 by setting ๐ฆ = 0. Solving gives
(
)
2๐
10 cos
๐ฅ +8 = 0
60
(
)
2๐
8
cos
๐ฅ =โ
60
10
2๐
๐ฅ = cosโ1 (โ0.8)
60
60
๐ฅ=
cosโ1 (โ0.8)
2๐
= 23.8550.
Judging from the graph, this is the value of ๐ฅ1 . By symmetry, ๐ฅ2 = 60 โ ๐ฅ1 = 36.1445.
22. (a) The midline, ๐ท = 10, the amplitude ๐ด = 4, and the period 1, so
1=
2๐
๐ต
and
๐ต = 2๐.
Therefore the formula is
๐ (๐ก) = 4 sin(2๐๐ก) + 10.
(b) Solving ๐ (๐ก) = 12, we have
12 = 4 sin(2๐๐ก) + 10
2 = 4 sin(2๐๐ก)
1
sin 2๐๐ก =
2
๐ 5๐ 13๐ 17๐
,
,
2๐๐ก = ,
6 6
6
6
1 5 13 17
๐ก=
,
,
,
12 12 12 12
The spring is 12 centimeters from the ceiling at 1โ12 sec, 5โ12 sec, 13โ12 sec, 17โ12 sec.
23. (a) The average monthly temperature in Fairbanks is shown in Figure 9.48.
(b) These data are best modeled by a vertically reflected cosine curve, which is reasonable for something like temperature
that oscillates with a 12-month period.
(c) The midline temperature is (61.3 + (โ11.5))โ2 = 24.9. The amplitude is 61.3 โ 24.9 = 36.4 Since the period is 12,
we have ๐ต = 2๐โ12 = ๐โ6. There is no horizontal shift, so ๐ถ = 0. Hence our function is
( )
๐
๐ก .
๐ (๐ก) = 24.9 โ 36.4 cos
6
571
SOLUTIONS to Review Problems For Chapter Nine
(d) To solve ๐ (๐ก) = 32, we must solve the equation
( )
๐
๐ก
32 = 24.9 โ 36.4 cos
6
( )
๐
7.1 = โ36.4 cos
๐ก
6
( )
๐
๐ก = โ0.1950.197
cos
6
๐
๐ก = cosโ1 (โ0.195) = 1.767
6
๐ก = 3.375
๐
๐ก = 2๐ โ 1.767 = 4.516
6
๐ก = 8.625
The temperature in Fairbanks reaches the freezing point in the middle of April and the middle of September.
(e) See Figure 9.49.
temperature (โฆ ๐น )
75
temperature (โฆ ๐น )
75
(
๐ (๐ก) = 24.9 โ 36.4 cos
๐
๐ก
6
)
32
month
โ1
โ15
12
month
โ1
โ15
4
12
8
Figure 9.49
Figure 9.48
(f) The amplitude, period, and midline would be the same, but the function would be reflected vertically:
( )
๐
๐ฆ = 24.9 + 36.4 cos
๐ก .
6
24. They are both right. The first student meant that sin 2๐ = 2 sin ๐ is not an identity, meaning that it is not true for all ๐. The
second student had found one value for ๐ for which it was true.
25. Graphs of the four functions are in Figures 9.50 โ9.53. The graphs in Figures 9.51 and 9.52 suggest that (tan2 ๐ฅ)(sin2 ๐ฅ)
and tan2 ๐ฅ โ sin2 ๐ฅ may be identical.
2
2
1
1
๐ฅ
โ2๐
2๐
๐ฅ
โ2๐
โ1
2๐
โ1
2
2
Figure 9.51: (tan2 ๐ฅ)(sin2 ๐ฅ)
Figure 9.50: tan ๐ฅ + sin ๐ฅ
2
2
1
1
๐ฅ
โ2๐
2๐
โ1
๐ฅ
โ2๐
2๐
โ1
2
2
Figure 9.52: tan ๐ฅ โ sin ๐ฅ
Figure 9.53: tan2 ๐ฅโ sin2 ๐ฅ
572
Chapter Nine /SOLUTIONS
To prove the identity, use tan ๐ฅ = sin ๐ฅโ cos ๐ฅ to rewrite each side in terms of sine and cosine. We have
(
)
sin ๐ฅ 2
sin4 ๐ฅ
(tan2 ๐ฅ)(sin2 ๐ฅ) =
(sin2 ๐ฅ) =
.
cos ๐ฅ
cos2 ๐ฅ
In addition,
)
(
sin ๐ฅ 2
โ sin2 ๐ฅ
tan2 ๐ฅ โ sin2 ๐ฅ =
cos ๐ฅ
sin2 ๐ฅ
=
โ sin2 ๐ฅ
cos2 ๐ฅ
)
(
1
โ1
= sin2 ๐ฅ
2
cos ๐ฅ
sin2 ๐ฅ(1 โ cos2 ๐ฅ)
=
cos2 ๐ฅ
2
sin ๐ฅ(sin2 ๐ฅ)
=
cos2 ๐ฅ
4
sin ๐ฅ
=
.
cos2 ๐ฅ
Since both expressions equal
sin4 ๐ฅ
, they are identical.
cos2 ๐ฅ
opp
๐ฆ
= = ๐ฆ.
adj
1
opp
๐ฆ
.
(b) cos ๐ =
= โ
hyp
1 + ๐ฆ2
(c) Since tan ๐ = ๐ฆ, we have ๐ =(tanโ1 ๐ฆ. Other
) ( answers are
) possible.
๐ฆ
2๐ฆ
1
(d) cos(2๐) = 2 cos ๐ sin ๐ = 2 โ
.
=
โ
1
+
๐ฆ2
2
2
1+๐ฆ
1+๐ฆ
26. (a) tan ๐ =
27. Since csc ๐ = 1โ sin ๐, we have csc ๐ = 1โ(8โ11) = 11โ8. Since cos2 ๐ + sin2 ๐ = 1,
( )2
8
=1
cos2 ๐ +
11
64
cos2 ๐ = 1 โ
121
โ
57
cos ๐ = ±
.
121
โ
Since 0 โค ๐ โค ๐โ2, we know that cos ๐ โฅ 0, so cos ๐ = 57โ121. Since tan ๐ = sin ๐โ cos ๐, we have tan ๐ =
โ
โ
โ
โ
(8โ11)โ 57โ121 = 8 121โ11 57 = 8โ 57.
28. Since sin ๐ = 1โ csc ๐, we have sin ๐ = 1โ94. Using the Pythagorean identity, cos2 ๐ + sin2 ๐ = 1, we have
( )2
1
cos2 ๐ +
=1
94
1
cos2 ๐ = 1 โ 2
94
โ
โ
8835
8835
cos ๐ = ±
=±
.
8836
94
โ
Since 0 โค ๐ โค ๐โ2, we know that cos ๐ โฅ 0, so cos ๐ = 8835โ94.
โ
โ
Using the identity tan ๐ = sin ๐โ cos ๐, we see that tan ๐ = (1โ94)โ( 8835โ94) = 1โ 8835.
29. By the Pythagorean identity, we know that cos2 ๐ + sin2 ๐ = 1, so
0.272 + sin2 ๐ = 1
sin2 ๐ = 1 โ 0.272
โ
sin ๐ = ± 0.927 โ ±0.963.
However, we only need one value, so we take sin ๐ = 0.963, Since tan ๐ = sin ๐โ cos ๐, we have tan ๐ =
3.566.
โ
0.927โ0.27 โ
SOLUTIONS to Review Problems For Chapter Nine
30. No. Since sin ๐ cannot be greater than 1, sin ๐ = 3 is impossible. The problem is that
and cos ๐ could be 0.4. We only know the ratio is 3โ4.
573
sin ๐
is a ratio, so sin ๐ could be 0.3
cos ๐
31. We have 2โ7 = cos 2๐ = 2 cos2 ๐ โ 1. Solving for cos ๐ gives
9
7
9
cos2 ๐ =
14
โ
โ
Since ๐ is in the first quadrant, cos ๐ = + 9โ14 = 3โ 14.
2 cos2 ๐ =
32. We will use one of the three double-angle formulas for cosine to solve this equation algebraically. Since the equation
involves sin ๐, we will try the double-angle formula for cosine which involves the sine:
cos 2๐ = 1 โ 2 sin2 ๐.
This gives
1 โ 2 sin2 ๐ = sin ๐,
and we can rewrite this equation as follows:
2(sin ๐)2 + sin ๐ โ 1 = 0.
Factoring, we have
(2 sin ๐ โ 1)(sin ๐ + 1) = 0.
The fact that the product (2 sin ๐ โ 1)(sin ๐ + 1) equals zero implies that
2 sin ๐ โ 1 = 0 or
sin ๐ + 1 = 0.
Solving sin ๐ + 1 = 0, we have sin ๐ = โ1. This means ๐ = 3๐โ2. Solving the other equation, we have
2 sin ๐ โ 1 = 0
1
sin ๐ = .
2
This gives
๐
5๐
๐
or ๐ = ๐ โ =
.
6
6
6
In summary, there are three solutions for 0 โค ๐ < 2๐ โถ ๐ = ๐โ6, 5๐โ6, and 3๐โ2. Figure 9.54 illustrates these solutions
graphically as the points where the graphs of cos 2๐ and sin ๐ intersect.
๐=
๐ฆ
๐ฆ = cos 2๐
1
3๐
2
๐
6
โ1
5๐
6
2๐
๐
๐ฆ = sin ๐
Figure 9.54: There are three solutions to the equation cos 2๐ = sin ๐, for 0 โค ๐ < 2๐
33.
cos(2๐ผ) = โ sin ๐ผ
1 โ 2 sin2 ๐ผ + sin ๐ผ = 0
โ2 sin2 ๐ผ + sin ๐ผ + 1 = 0
2 sin2 ๐ผ โ sin ๐ผ โ 1 = 0
(2 sin ๐ผ + 1)(sin ๐ผ โ 1) = 0
574
Chapter Nine /SOLUTIONS
2 sin ๐ผ + 1 = 0
sin ๐ผ โ 1 = 0
2 sin ๐ผ = โ1
1
sin ๐ผ = โ
2
7๐ 11๐
,
๐ผ=
6
6
sin ๐ผ = 1
๐
๐ผ=
2
34. Let ๐ = cosโ1 ( 135 ). We can use the Pythagorean theorem and create a triangle with sides 5, 12, and 13 as in Figure 9.55. We
see that sin ๐ =
120
.
169
12
.
13
However we want sin(2๐), so we use the double-angle identity sin(2๐) = 2 sin ๐ cos ๐ = 2( 12
)( 5 ) =
13 13
You can check this on a calculator by finding that sin(2 cosโ1 (5โ13)) โ 0.7100591716, which is 120โ169 in decimal
form.
13
12
๐
5
Figure 9.55
35. Start with the right side, which is more complex. Use a double-angle identity, so both sides are expressed as trigonometric
functions of ๐.
1 โ (2 cos2 ๐ โ 1)
1 โ cos 2๐
=
2 cos ๐ sin ๐
2 cos ๐ sin ๐
2(1 โ cos2 ๐)
=
2 cos ๐ sin ๐
2(sin2 ๐)
=
2 cos ๐ sin ๐
sin2 ๐
=
cos ๐ sin ๐
sin ๐
=
cos ๐
= tan ๐.
36. Start with the left side, which is more complex, and reduce it using the Pythagorean identity:
(sin2 2๐๐ก + cos2 2๐๐ก)3 = (1)3 = 1.
37. Start with the expression on the left and factor it as the difference of two squares, and then apply the Pythagorean identity
to one factor.
sin4 ๐ฅ โ cos4 ๐ฅ = (sin2 ๐ฅ)2 โ (cos2 ๐ฅ)2
= (sin2 ๐ฅ โ cos2 ๐ฅ)(sin2 ๐ฅ + cos2 ๐ฅ)
= (sin2 ๐ฅ โ cos2 ๐ฅ)(1)
= (sin2 ๐ฅ โ cos2 ๐ฅ).
38. Because both sides are equally complicated, many different approaches are possible. We multiply the right side by (1 +
sin ๐)โ(1 + sin ๐) in order to introduce a factor of 1 + sin ๐ to the numerator (the left side already has one) and to simplify
SOLUTIONS to Review Problems For Chapter Nine
the denominator. In the calculation which follows, we work only on the right side:
cos ๐
cos ๐
1 + sin ๐
=
โ
1 โ sin ๐
1 โ sin ๐ 1 + sin ๐
cos ๐(1 + sin ๐)
=
1 โ sin2 ๐
cos ๐(1 + sin ๐)
=
cos2 ๐
1 + sin ๐
=
.
cos ๐
39. (a) cos (
๐ = ๐ฅ. )
โ
โ
๐
โ ๐ = sin ๐ = 1 โ cos2 ๐ = 1 โ ๐ฅ2 .
(b) cos
2
)2
(โ
(
)
1 โ ๐ฅ2
sin ๐ 2
1 โ ๐ฅ2
2
.
(c) tan ๐ =
=
=
cos ๐
๐ฅ
๐ฅ2
โ
(d) sin(2๐) = 2 sin ๐ cos ๐ = 2 1 โ ๐ฅ2 (๐ฅ).
(e) cos(4๐) = 1 โ 2 sin2โ
(2๐). Now we use part (d):
cos(4๐) = 1 โ 2(2๐ฅ 1 โ ๐ฅ2 )2 = 1 โ 8๐ฅ2 (1 โ ๐ฅ2 ).
โ
(f) Using part (a), we see that cosโ1 (๐ฅ) = ๐, so sin(cosโ1 ๐ฅ) = sin(๐) = 1 โ ๐ฅ2 .
40. We first solve for cos ๐ผ,
3 cos2 ๐ผ + 2 = 3 โ 2 cos ๐ผ
3 cos2 ๐ผ + 2 cos ๐ผ โ 1 = 0
(3 cos ๐ผ โ 1)(cos ๐ผ + 1) = 0
3 cos ๐ผ โ 1 = 0
cos ๐ผ =
cos ๐ผ + 1 = 0
1
3
cos ๐ผ = โ1
๐ผ = 1.231, 5.052
๐ผ=๐
41. We first solve for sin ๐ผ,
3 sin2 ๐ผ + 3 sin ๐ผ + 4 = 3 โ 2 sin ๐ผ
3 sin2 ๐ผ + 5 sin ๐ผ + 1 = 0
โ
25 โ 12
sin ๐ผ =
6
โ
โ5 ± 13
sin ๐ผ =
6
โ5 ±
sin ๐ผ =
โ
โ5+ 13
6
sin ๐ผ =
๐ผ = 3.376, 6.049
โ
โ5โ 13
6
No solution (โ1 โค sin ๐ผ โค 1)
42. Using the formula for cos(๐ด + ๐ต) with ๐ด = 2๐ and ๐ต = ๐:
cos 3๐ = cos(2๐ + ๐) = cos 2๐ cos ๐ โ sin 2๐ sin ๐
= (2 cos2 ๐ โ 1) cos ๐ โ (2 sin ๐ cos ๐) sin ๐
= 2 cos3 ๐ โ cos ๐ โ 2 cos ๐(sin2 ๐)
= 2 cos3 ๐ โ cos ๐ โ 2 cos ๐(1 โ cos2 ๐)
= 4 cos3 ๐ โ 3 cos ๐
575
576
Chapter Nine /SOLUTIONS
43. Start with the double-angle identity
cos(2๐ฅ) = 2 cos2 ๐ฅ โ 1.
Next, solve for cos ๐ฅ:
2 cos2 ๐ฅ = 1 + cos(2๐ฅ)
1
cos2 ๐ฅ = (1 + cos(2๐ฅ))
2
โ
1
cos ๐ฅ =
(1 + cos(2๐ฅ)).
2
Note that we chose the positive square root. We made this choice because we assumed that 0 โค ๐ โค ๐โ2 which implies
that cos ๐ฅ โฅ 0. Now we substitute ๐ฅ = ๐โ2:
( ) โ
1
๐
=
(1 + cos ๐).
cos
2
2
44. Since 0 < ln ๐ฅ < ๐2 and 0 < ln ๐ฆ < ๐2 , the angles represented by ln ๐ฅ and ln ๐ฆ are in the first quadrant. This means that both
their sine and cosine values will be positive. Since ln(๐ฅ๐ฆ) = ln ๐ฅ + ln ๐ฆ, we can write
sin(ln(๐ฅ๐ฆ)) = sin (ln ๐ฅ + ln ๐ฆ) .
By the sum-of-angle formula we have
sin (ln ๐ฅ + ln ๐ฆ) = sin(ln ๐ฅ) cos(ln ๐ฆ) + cos(ln ๐ฅ) sin(ln ๐ฆ).
Since cosine is positive, we have
โ
โ
cos(ln ๐ฅ) =
2
1 โ sin (ln ๐ฅ) =
and
โ
โ
cos(ln ๐ฆ) =
โ
( )2
8
1
=
1โ
3
3
1 โ sin2 (ln ๐ฆ) =
1โ
( )2
1
=
5
โ
24
.
5
Thus,
sin (ln ๐ฅ + ln ๐ฆ) = sin(ln ๐ฅ) cos(ln ๐ฆ) + cos(ln ๐ฅ) sin(ln ๐ฆ)
(โ ) (โ )
( )
24
8 (1)
1
+
=
3
5
3
5
โ
โ
24 + 8
=
15
โ 0.515.
45. (a) The graph of ๐(๐) = sin ๐ โ cos ๐ is shown in Figure 9.56.
๐ฆ
1
๐
โ1
Figure 9.56
2๐
๐
SOLUTIONS to Review Problems For Chapter Nine
577
โ
(b) We know ๐1 sin ๐ก + ๐2 cos ๐ก = ๐ด sin(๐ก + ๐), where ๐ด = ๐21 + ๐22 and tan ๐ = ๐2 โ๐1 . We let ๐1 = 1 and ๐2 = โ1. This
โ
gives ๐ด = 2 and ๐ = tanโ1 (โ1) = โ๐โ4, so
)
(
โ
๐
.
๐(๐) = 2 sin ๐ โ
4
46. (a)
(b)
(c)
(d)
Note
โ that we have chosen ๐ต = 1 and ๐ = 0. We can check that this is correct by plotting the original function and
2 sin(๐ โ ๐โ4) together.
We know that sin ๐ก = cos(๐ก โ ๐โ2), that is, the sine graph may be obtained by shifting the cosine graph ๐โ2 units
to the right. Thus,
) โ
)
(
(
โ
๐ ๐
3๐
= 2 cos ๐ โ
.
๐(๐) = 2 cos ๐ โ โ
4
2
4
The population ๐2 swings from a low of 3๐ โ 2๐ = ๐ to a high of 3๐ + 2๐ = 5๐, whereas ๐1 swings from a low of
7๐ โ ๐ = 6๐ to a high of 7๐ + ๐ = 8๐. Thus, ๐2 has larger swings.
The period of ๐2 is ๐ + 2, and the period of ๐1 is ๐. Since ๐2 has the longer period, it makes slower swings from low
to high.
At its smallest, ๐1 = 6๐, while at its largest, ๐2 = 5๐, so this statement describes ๐1 .
The population ๐2 reaches a low of ๐, where as ๐1 reaches a low of 6๐, so ๐2 appears more vulnerable to extinction.
47. See Figure 9.57. They appear to be the same graph. This suggests the truth of the identity cos ๐ก = sin(๐ก + ๐2 ).
๐ฆ
๐ก
โ2๐
2๐
(
)
Figure 9.57: Graphs showing cos(๐ก) = sin ๐ก + ๐2
โ
โ
โ
โ
โ
โ
48. (a) ๐ง1 ๐ง2 = (โ3 โ ๐ 3)(โ1 + ๐ 3) = 3 + ( 3)2 + ๐( 3 โ 3 3) = 6 โ ๐2 3.
โ
โ
โ
โ
โ
โ
โ
๐ง1
โ3 โ ๐ 3 โ1 โ ๐ 3
3 โ ( 3)2 + ๐( 3 + 3 3)
๐โ
4 3
=
= ๐ 3.
=
โ โ
โ =
โ
๐ง2
4
โ1 + ๐ 3 โ1 โ ๐ 3
(โ1)2 + ( 3)2
โ
(b) We find
to ๐ง1 = โ3 โ ๐ 3.
โ (๐1 , ๐1 ) corresponding
โ
โ
โ
๐1 = (โ3)2 + ( 3)2 = 12 = 2 3.
โ
โ
3
โ 3
7๐
๐1
tan ๐1 =
=
, so ๐1 =
.
โ3
โ3โ
3
โ 6 7๐
Thus โ3 โ ๐ 3 = ๐1 ๐๐๐1 = 2 3 ๐๐ 6 .
โ
๐1
โ 3
๐ง1
โ
We find
(๐
,
๐
)
corresponding
to
๐ง
=
โ1
+
๐
3.
2
2
2
โ
โ
๐2 = (โ1)2 + ( 3)2 = 2;
โ
โ
3
2๐
= โ 3, so ๐2 =
.
tan ๐2 =
โ1 โ
3
๐ 2๐
๐๐2
Thus, โ1 + ๐ 3 = ๐2 ๐ = 2๐ 3 .
โ
๐ง2
๐2
โ1
๐2
3
578
Chapter Nine /SOLUTIONS
๐ง1
.
๐ง2
( โ 7๐ ) ( 2๐ )
โ
โ 11๐
7๐ 2๐
2๐๐ 3 = 4 3๐๐( 6 + 3 ) = 4 3๐๐ 6
๐ง1 ๐ง2 = 2 3๐๐ 6
]
[โ
]
โ
โ
โ [
3
11๐
1
11๐
=4 3
+ ๐ sin
โ๐
= 6 โ ๐2 3.
= 4 3 cos
6
6
2
2
We now calculate ๐ง1 ๐ง2 and
โ 7๐
โ ๐
โ
7๐ 2๐
๐ง1
2 3๐๐ 6
=
= 3๐๐( 6 โ 3 ) = 3๐๐ 2
2๐
๐ง2
2๐๐ 3
)
โ (
โ
๐
๐
= 3 cos + ๐ sin
= ๐ 3.
2
2
These agree with the values found in (a).
49. (a) Since ๐ง = 3 + 2๐, we have ๐๐ง = ๐(3 + 2๐) = 3๐ + 2๐2 = โ2 + 3๐. See Figure 9.58.
๐ฆ
๐๐ง = โ2 + 3๐
๐ง = 3 + 2๐
๐2
๐1
๐ฅ
Figure 9.58
(b) The slope of the line ๐1 in Figure 9.58 is 2โ3, and the slope of the line ๐2 is โ3โ2. Since the product (2โ3)(โ3โ2) = โ1
of these two slopes is โ1, the lines are perpendicular.
STRENGTHEN YOUR UNDERSTANDING
1. True, because the factor ๐โ๐ก decreases the oscillations of cos ๐ก as ๐ก grows.
2. True. Substitute in tan ๐ = sin ๐โ cos ๐ and simplify to see that this is an identity.
3. True. This is the definition of an identity.
โ
2
๐
๐
.
4. False. An odd function would require ๐ (โ๐) = โ๐ (๐), but ๐ (โ ) = ๐ ( ) =
4
4
2
5. True. This is an identity. Substitute using tan2 ๐ = sin2 ๐โ cos2 ๐ and simplify to obtain 2 = 2 sin2 ๐ + 2 cos2 ๐. Divide by
2 to reach the Pythagorean identity.
6. False. This is not the Pythagorean identity, since the square is on the variable ๐ฝ. As a counterexample, let ๐ฝ = 1. Note that
cos ๐ฝ 2 โ (cos ๐ฝ)2 and cos2 ๐ฝ = (cos ๐ฝ)2 .
7. True. First find sin ๐ผ and then use the double-angle formula. Since cos2 ๐ผ +sin2 ๐ผ = 1, we have sin2 ๐ผ = 1โ 94 = 59 . Because
โ
๐ผ is in the third quadrant, its sine is negative, so sin ๐ผ = โ
5
.
3
โ
We find sin(2๐ผ) = 2 sin ๐ผ cos ๐ผ = 2(โ
โ
5
)(โ 23 ) = 4 9 5 .
3
โฆ
โฆ
8. False. Although true for the value ๐ = 45โฆ , it is not true for all values of ๐. A counterexample is sin 0 โ cos 0 .
9. True. There are many ways to prove this identity. We use the identity cos 2๐ = cos2 ๐ โ sin2 ๐ to substitute in the right side
of the equation. This becomes 21 (1 โ (cos2 ๐ โ sin2 ๐)). Now substitute using 1 โ cos2 ๐ = sin2 ๐ (a form of the Pythagorean
identity.) The right side then simplifies to sin2 ๐, which is the left side.
10. False. A counterexample is cos(4 โ
0โฆ ) = 1 โ โ cos(โ4 โ
0โฆ ) = โ1.
11. False. For a counterexample, let ๐ = ๐ = 90โฆ . Then sin(๐ + ๐) = sin 180โฆ = 0, but sin ๐ + sin ๐ = sin 90โฆ + sin 90โฆ =
1 + 1 = 2.
12. False. For a counterexample let ๐ = 90โฆ . Then sin(2๐) = sin 180โฆ = 0, but 2 sin ๐ = 2 sin 90โฆ = 2.
STRENGTHEN YOUR UNDERSTANDING
579
13. True. Start with the sine sum-of-angle identity:
sin(๐ + ๐) = sin ๐ cos ๐ + sin ๐ cos ๐
and let ๐ = ๐โ2, so
sin(๐ + ๐โ2) = sin ๐ cos(๐โ2) + sin(๐โ2) cos ๐.
Simplify to
sin(๐ + ๐โ2) = sin ๐ โ
0 + 1 โ
cos ๐ = cos ๐.
14. False. We have ๐ (๐ก) = sin ๐ก cos ๐ก = (1โ2) sin 2๐ก which is periodic with period ๐.
15. True. We have sin(๐ก โ ๐) = sin((๐ก โ ๐) + 2๐) = sin(๐ก + ๐) where the first equality is by periodicity of the sine function.
16. False. For example, ๐ก = ๐โ2 gives cos(๐ก โ ๐โ2) = 1 and cos(๐ก + ๐โ2) = โ1. The correct identity is cos(๐ก โ ๐โ2) =
โ cos(๐ก + ๐โ2).
17. True. Since ๐ด cos(๐ต๐ก) = ๐ด sin(๐ต๐ก + ๐โ2) = ๐ด sin(๐ต(๐ก + ๐โ(2๐ต))), the graph of ๐ด cos(๐ต๐ก) is a shift of ๐ด sin(๐ต๐ก) to the left
by ๐โ(2๐ต).
18. True. We have
๐ (๐ฅ + 2๐) = sin 2(๐ฅ + 2๐) + sin 3(๐ฅ + 2๐)
= sin(2๐ฅ + 4๐) + sin(3๐ฅ + 6๐)
= sin 2๐ฅ + sin 3๐ฅ = ๐ (๐ฅ)
which shows that ๐ (๐ฅ) is periodic. The period is 2๐.
19. False. The sum of two nonzero sinusoidal functions with different periods is not a sinusoidal function. A graph of ๐ (๐ฅ) on
the interval 0 โค ๐ฅ โค 4๐ shows a more complicated shape that the graphs of a sinusoid.
20. False. If the periods are different the sum may not be sinusoidal. As a counterexample, graph ๐ (๐ก) = sin ๐ก + sin 2๐ก, to see
that ๐ (๐ก) is not sinusoidal.
โ
21. True. We use the assumption that ๐1 and ๐2 are nonzero. The amplitude of the single sine function is ๐ด = ๐21 + ๐22 . Thus,
๐ด is greater than either ๐1 or ๐2 .
โ
22. True. We have ๐ (๐ก) = ๐ด sin(2๐๐ก + ๐) where ๐ด = 32 + 42 = 5, cos ๐ = 53 and sin ๐ = 45 .
23. False. The amplitude of ๐ increases exponentially.
24. True. The maximum of ๐ occurs when sin(๐๐กโ12) = โ1, so the maximum value of the function is 55 + 10 = 65.
25. True. Hertz is a measure of cycles per second and so a single cycle will take 1/60th of a second.
26. True. The zeros occur when cos(๐๐ก) + 1 = 0, so cos(๐๐ก) = โ1. Hence, ๐๐ก = ๐๐, where ๐ is an odd integer. Thus, ๐ก = ๐ is
an odd integer.
27. False. The variable ๐ต affects the period; the variable ๐ด affects the amplitude.
28. True; divide by ๐๐ก , which is never zero, and obtain tan ๐ก = 2โ3.
29. True. Since 0 โค cosโ1 (๐ฅ) โค ๐, we have 0 โค sin(cosโ1 ๐ฅ) โค 1. Thus, cosโ1 (sin(cosโ1 ๐ฅ)) is an angle ๐ whose cosine is
between 0 and 1. In addition, we have 0 โค ๐ โค ๐, as this is part of the definition of cosโ1 ๐ฅ. Hence 0 โค ๐ โค ๐โ2.
30. True; we need ๐ + ๐ sin ๐ก to be positive for the natural logarithm to be defined. Since sin ๐ก โฅ โ1, we have ๐ + ๐ sin ๐ก โฅ
๐ โ ๐ > 0.
โ
31. True, since ๐ is real for all ๐ โฅ 0.
32. True, since (๐ฅ โ ๐๐ฆ)(๐ฅ + ๐๐ฆ) = ๐ฅ2 + ๐ฆ2 is real.
33. False, since (1 + ๐)2 = 2๐ is not real.
34. False. Let ๐ (๐ฅ) = ๐ฅ. Then ๐ (๐) = ๐ but ๐ (๐ฬ) = ๐ฬ = โ๐.
35. True. We can write any nonzero complex number ๐ง as ๐๐๐๐ฝ , where ๐ and ๐ฝ are real numbers with ๐ > 0. Since ๐ > 0, we
can write ๐ = ๐๐ for ๐ = ln ๐. Therefore, ๐ง = ๐๐๐๐ฝ = ๐๐ ๐๐๐ฝ = ๐๐+๐๐ฝ = ๐๐ค where ๐ค = ๐ + ๐๐ฝ is a complex number.
36. False, since (1 + 2๐)2 = โ3 + 4๐.
37. True. This is Eulerโs formula, fundamental in higher mathematics.
38. True. (1 + ๐)2 = 12 + 2 โ
1 โ
๐ + ๐2 = 1 + 2๐ โ 1 = 2๐.
39. True. Since ๐4 = 1, we have ๐101 = (๐4 )25 ๐ = 1 โ
๐ = ๐.
© Copyright 2026 Paperzz