Solutions to homework problems, chapter 9

9.1 SOLUTIONS
523
CHAPTER NINE
Solutions for Section 9.1
Exercises
1. We draw a graph of ๐‘ฆ = cos ๐‘ก for โˆ’๐œ‹ โ‰ค ๐‘ก โ‰ค 3๐œ‹ and trace along it on a calculator to find points at which ๐‘ฆ = 0.4. We
read off the ๐‘ก-values at the points ๐‘ก0 , ๐‘ก1 , ๐‘ก2 , ๐‘ก3 in Figure 9.1. If ๐‘ก is in radians, we find ๐‘ก0 = โˆ’1.159, ๐‘ก1 = 1.159, ๐‘ก2 = 5.124,
๐‘ก3 = 7.442. We can check these values by evaluating:
cos(โˆ’1.159) = 0.40,
cos(1.159) = 0.40,
cos(5.124) = 0.40,
cos(7.442) = 0.40.
Notice that because the cosine function is periodic, the equation cos ๐‘ก = 0.4 has infinitely many solutions. The symmetry
of the graph suggests that the solutions are related.
๐‘ฆ
๐‘ฆ = cos ๐‘ก
๐‘ฆ = 0.4
โˆ’๐œ‹
๐‘ก0
๐œ‹
๐‘ก1
๐‘ก2
๐‘ก3
2๐œ‹
๐‘ก
3๐œ‹
Figure 9.1: The points ๐‘ก0 , ๐‘ก1 , ๐‘ก2 , ๐‘ก3 are solutions to the equation cos ๐‘ก = 0.4
2. (a) Tracing along the graph in Figure 9.2, we see that the approximations for the two solutions are
๐‘ก1 โ‰ˆ 1.88
and
๐‘ก2 โ‰ˆ 4.41.
Note that the first solution, ๐‘ก1 โ‰ˆ 1.88, is in the second quadrant and the second solution, ๐‘ก2 โ‰ˆ 4.41, is in the third
quadrant. We know that the cosine function is negative in those two quadrants. You can check the two solutions by
substituting them into the equation:
cos 1.88 โ‰ˆ โˆ’0.304
and
cos 4.41 โ‰ˆ โˆ’0.298,
both of which are close to โˆ’0.3.
๐‘ฆ
๐‘ฆ = cos ๐‘ก
1
๐‘ก1
๐œ‹
๐‘ก2
2๐œ‹
๐‘ก
๐‘ฆ = โˆ’0.3
โˆ’1
Figure 9.2: The angles ๐‘ก1 and ๐‘ก2 are the two solutions to cos ๐‘ก = โˆ’0.3 for 0 โ‰ค ๐‘ก โ‰ค 2๐œ‹
(b) If your calculator is in radian mode, you should find
cosโˆ’1 (โˆ’0.3) โ‰ˆ 1.875,
which is one of the values we found in part (a) by using a graph. Using the cosโˆ’1 key gives only one of the solutions
to a trigonometric equation. We find the other solutions by using the symmetry of the unit circle. Figure 9.3 shows
that if ๐‘ก1 โ‰ˆ 1.875 is the first solution, then the second solution is
524
Chapter Nine /SOLUTIONS
๐‘ก2 = 2๐œ‹ โˆ’ ๐‘ก1
โ‰ˆ 2๐œ‹ โˆ’ 1.875 โ‰ˆ 4.408.
Thus, the two solutions are ๐‘ก โ‰ˆ 1.88 and ๐‘ก โ‰ˆ 4.41.
๐‘ก1
โœ™
โฅ
โจ
๐‘ก1
โˆ’๐‘ก1
๐‘ก2 = 2๐œ‹ โˆ’ ๐‘ก1
Figure 9.3: By the symmetry of the unit circle, ๐‘ก2 = 2๐œ‹ โˆ’ ๐‘ก1
3. Graph ๐‘ฆ = sin ๐œƒ on 0 โ‰ค ๐œƒ โ‰ค 2๐œ‹ and locate the two points with ๐‘ฆ-coordinate 0.65. The ๐œƒ-coordinates of these points are
approximately ๐œƒ = 0.708 and ๐œƒ = 2.434. See Figure 9.4.
๐‘ฆ
1
0.65
2๐œ‹
๐œƒ
2.434 ๐œ‹
0.708
โˆ’1
Figure 9.4
4. Graph ๐‘ฆ = tan ๐‘ฅ on 0 โ‰ค ๐‘ฅ โ‰ค 2๐œ‹ and locate the two points with ๐‘ฆ-coordinate 2.8. The ๐‘ฅ-coordinates of these points are
approximately ๐‘ฅ = 1.228 and ๐‘ฅ = 4.369. See Figure 9.5.
๐‘ฆ
4
2.8
0
๐‘ฅ
๐œ‹
1.228
4.369
2๐œ‹
โˆ’4
Figure 9.5
5. Graph ๐‘ฆ = cos ๐‘ก on 0 โ‰ค ๐‘ก โ‰ค 2๐œ‹ and locate the two points with ๐‘ฆ-coordinate โˆ’0.24. The ๐‘ก-coordinates of these points are
approximately ๐‘ก = 1.813 and ๐‘ก = 4.473. See Figure 9.6.
๐‘ฆ
1
1.813
๐œ‹
โˆ’0.24
โˆ’1
Figure 9.6
4.473
2๐œ‹
๐‘ก
9.1 SOLUTIONS
6. We have
5 sin(3๐œƒ) = 4
4
sin(3๐œƒ) =
5
( )
4
5
3๐œƒ = 53.130โ—ฆ
(3๐œƒ) = sinโˆ’1
๐œƒ = 0.3091 = 17.710โ—ฆ .
7. We have
9 tan(5๐œƒ) + 1 = 10
9 tan(5๐œƒ) = 9
tan(5๐œƒ) = 1
5๐œƒ = tanโˆ’1 (1)
5๐œƒ = 45โ—ฆ
๐œƒ = 0.1571 = 9โ—ฆ .
8. We have
โˆš
2 3 tan(2๐œƒ) + 1 = 3
โˆš
2 3 tan(2๐œƒ) = 2
2
tan(2๐œƒ) = โˆš
2 3
1
tan(2๐œƒ) = โˆš
3
(
โˆ’1
2๐œƒ = tan
)
1
โˆš
3
2๐œƒ = 30โ—ฆ
๐œƒ = 0.2618 = 15โ—ฆ .
9. We have
3 sin ๐œƒ + 3 = 5 sin ๐œƒ + 2
1 = 2 sin ๐œƒ
1
= sin ๐œƒ
2
( )
1
=๐œƒ
sinโˆ’1
2
โ—ฆ
0.5236 = 30 = ๐œƒ.
10. We have
6 cos(3๐œƒ) + 3 = 4 cos(3๐œƒ) + 4
2 cos(3๐œƒ) = 1
1
cos(3๐œƒ) =
2
3๐œƒ = cosโˆ’1
( )
1
2
3๐œƒ = 60โ—ฆ
๐œƒ = 0.3491 = 20โ—ฆ .
525
526
Chapter Nine /SOLUTIONS
11. We have
5 tan(4๐œƒ) + 4 = 2(tan(4๐œƒ) + 5)
5 tan(4๐œƒ) + 4 = 2 tan(4๐œƒ) + 10
3 tan(4๐œƒ) = 6
tan(4๐œƒ) = 2
4๐œƒ = tanโˆ’1 (2)
4๐œƒ = 63.435โ—ฆ
๐œƒ = 0.2768 = 15.859โ—ฆ .
12. Since the cosine function always has a value between โˆ’1 and 1, there are no solutions.
13. We use the inverse tangent function on a calculator to get 5๐œƒ + 7 = โˆ’0.236. Solving for ๐œƒ, we get ๐œƒ = โˆ’1.447.
14. We divide both sides by 2, giving us sin(4๐œƒ) = 0.3335. We then use the inverse sine function on a calculator to get
4๐œƒ = 0.340, so ๐œƒ = 0.085.
Problems
15. (a) We know that cos(๐œ‹โˆ•3) = 1โˆ•2. From the graph of ๐‘ฆ = cos ๐‘ก in Figure 9.7, we see that ๐‘ก = ๐œ‹โˆ•3, ๐‘ก = 5๐œ‹โˆ•3, ๐‘ก = โˆ’๐œ‹โˆ•3,
and ๐‘ก = โˆ’5๐œ‹โˆ•3 are all solutions, as are any values of ๐‘ก obtained by adding or subtracting multiples of 2๐œ‹ to these
values.
๐‘ฆ
1
๐‘ฆ = cos ๐‘ก
๐‘ฆ=
โˆ’2๐œ‹
โˆ’ 5๐œ‹
3
โˆ’ ๐œ‹3
1
2
๐‘ก
๐œ‹
3
5๐œ‹
3
2๐œ‹
โˆ’1
Figure 9.7: ๐‘ฆ = cos ๐‘ก has an infinite number of ๐‘ก-values for ๐‘ฆ = 1โˆ•2
(b) If we restrict our attention to the interval 0 โ‰ค ๐‘ก โ‰ค 2๐œ‹, we find two solutions, ๐‘ก = ๐œ‹โˆ•3 and ๐‘ก = 5๐œ‹โˆ•3. To see why this is
so, look at the unit circle in Figure 9.8. During one revolution around the circle, there are always two angles with the
same cosine (or sine, or tangent), unless the cosine is 1 or โˆ’1. Therefore, we expect the equation cos ๐‘ก = 1โˆ•2 to have
two solutions in the interval 0 โ‰ค ๐‘ก โ‰ค 2๐œ‹.
๐‘ก=
๐œ‹
3
๐‘ก=
5๐œ‹
3
1
โจ
1โˆ•2
โœฏ
Figure 9.8: During one revolution around the unit circle, the
two angles ๐œ‹โˆ•3 and 5๐œ‹โˆ•3 have the cosine value of 1โˆ•2
16. We know that one solution to the equation cos ๐‘ก = 0.4 is ๐‘ก = cosโˆ’1 (0.4) = 1.159. From Figure 9.9, we see by the symmetry
of the unit circle that another solution is ๐‘ก = โˆ’1.159. We know that additional solutions are given each time the angle ๐‘ก
wraps around the circle in either direction. This means that
1.159 + 1 โ‹… 2๐œ‹ = 7.442
wrap once around circle
9.1 SOLUTIONS
1.159 + 2 โ‹… 2๐œ‹ = 13.725
527
wrap twice around circle
1.159 + (โˆ’1) โ‹… 2๐œ‹ = โˆ’5.124
wrap once around circle the other way
and
โˆ’1.159 + 1 โ‹… 2๐œ‹ = 5.124
wrap once around circle
โˆ’1.159 + 2 โ‹… 2๐œ‹ = 11.407
wrap once around circle
โˆ’1.159 + (โˆ’1) โ‹… 2๐œ‹ = โˆ’7.442.
wrap once around circle the other way
๐‘ฆ 0.4
โœ›โœฒ
๐‘ก = 1.159
๐‘ฅ
๐‘ก = โˆ’1.159
Figure 9.9: Two solutions to the
equation cos ๐‘ก = 0.4
17. We have ๐‘ฅ = cosโˆ’1 (0.6) = 0.927. A graph of cos ๐‘ฅ shows that the second solution is ๐‘ฅ = 2๐œ‹ โˆ’ 0.927 = 5.356.
18. Collecting the sin ๐‘ฅ terms on the left gives
2 sin ๐‘ฅ = 1 โˆ’ sin ๐‘ฅ
3 sin ๐‘ฅ = 1
sin ๐‘ฅ = 1โˆ•3
๐‘ฅ = sinโˆ’1 (1โˆ•3) = 0.340.
A graph of sin ๐‘ฅ shows the second solution is ๐‘ฅ = ๐œ‹ โˆ’ 0.340 = 2.802.
19. Multiplying both sides by cos ๐‘ฅ gives
5 cos ๐‘ฅ = 1โˆ• cos ๐‘ฅ
5 cos2 ๐‘ฅ = 1
cos2 ๐‘ฅ = 1โˆ•5
โˆš
cos ๐‘ฅ = ±
1
.
5
( โˆš
)
โˆš
Thus ๐‘ฅ = cosโˆ’1 1โˆ•5 = 1.107 or ๐‘ฅ = cosโˆ’1 โˆ’ 1โˆ•5 = 2.034. A graph of cos ๐‘ฅ shows that there are other solutions
โˆš
โˆš
with cos ๐‘ฅ = 1โˆ•5 given by ๐‘ฅ = 2๐œ‹ โˆ’ 1.107 = 5.176 and with cos ๐‘ฅ = โˆ’ 1โˆ•5 given by ๐‘ฅ = 2๐œ‹ โˆ’ 2.034 = 4.249. Thus
the solutions are
1.107, 2.034, 4.249, 5.176.
20. Looking at the graph of ๐‘ฆ = sin(2๐‘ฅ) in Figure 9.10, we see it crosses the line ๐‘ฆ = 0.3 four times between 0 and 2๐œ‹, so there
will be four solutions. Since 2๐‘ฅ = sinโˆ’1 (0.3) = 0.30469, one solution is
๐‘ฅ=
0.30469
= 0.1523.
2
528
Chapter Nine /SOLUTIONS
The period of ๐‘ฆ = sin(2๐‘ฅ) is ๐œ‹, so the other solutions in 0 โ‰ค ๐‘ฅ โ‰ค 2๐œ‹ are
๐‘ฅ = 0.1523 + ๐œ‹ = 3.294
๐‘ฅ = ๐œ‹โˆ•2 โˆ’ 0.1523 = 1.418
๐‘ฅ = 3๐œ‹โˆ•2 โˆ’ 0.1523 = 4.560.
๐‘ฆ
sin(2๐‘ฅ)
1
0.3
๐œ‹
๐œ‹โˆ•2
3๐œ‹โˆ•2
๐‘ฅ
2๐œ‹
โˆ’1
Figure 9.10
21. Since sin(๐‘ฅ โˆ’ 1) = 0.25, we know
๐‘ฅ โˆ’ 1 = sinโˆ’1 (0.25) = 0.253.
๐‘ฅ = 1.253.
Another solution for ๐‘ฅ โˆ’ 1 is given by
๐‘ฅ โˆ’ 1 = ๐œ‹ โˆ’ 0.253 = 2.889
๐‘ฅ = 3.889.
22. Since 5 cos(๐‘ฅ + 3) = 1, we have
1
= 0.2
5
๐‘ฅ + 3 = cosโˆ’1 (0.2) = 1.3694
cos(๐‘ฅ + 3) =
๐‘ฅ = 1.3694 โˆ’ 3 = โˆ’1.6306.
This value of ๐‘ฅ is not in the interval 0 โ‰ค ๐‘ฅ โ‰ค 2๐œ‹. To obtain values of ๐‘ฅ in this interval, we find values of ๐‘ฅ + 3 in the
interval between 3 and 3 + 2๐œ‹, that is between 3 and 9.283. These values of ๐‘ฅ + 3 are
๐‘ฅ + 3 = 2๐œ‹ โˆ’ 1.369 = 4.914
๐‘ฅ + 3 = 2๐œ‹ + 1.369 = 7.653.
Thus
๐‘ฅ = 1.914, 4.653.
23. See Figure 9.11. The solutions to the equation cos ๐œƒ = โˆ’0.4226 are the angles corresponding to the points ๐‘ƒ and ๐‘„ on
the unit circle with ๐‘ฅ = โˆ’0.4226.
Since cosโˆ’1 (โˆ’0.4226) = 115โ—ฆ , point ๐‘ƒ corresponds to 115โ—ฆ . Since ๐‘ƒ and ๐‘„ both have reference angles of 65โ—ฆ , ๐‘„
corresponds to 180โ—ฆ + 65โ—ฆ = 245โ—ฆ . Thus the solutions of the equation are
๐œƒ = 115โ—ฆ and ๐œƒ = 180โ—ฆ + 65โ—ฆ = 245โ—ฆ ,
๐œƒ = 360 + 115โ—ฆ = 475โ—ฆ and ๐œƒ = 360โ—ฆ + 245โ—ฆ = 605โ—ฆ .
โ—ฆ
9.1 SOLUTIONS
529
๐‘ฆ
๐‘ƒ
โœฎ115
โ—ฆ
65โ—ฆ
๐‘ฅ
65โ—ฆ
๐‘„
Figure 9.11: Points corresponding to angles with cos ๐œƒ = โˆ’0.4226
24. (a) Since cos(65โ—ฆ ) = 0.4226, a calculator set in degrees gives cosโˆ’1 (0.4226) = 65โ—ฆ . We see in Figure 9.12 that all the
angles with a cosine of 0.4226 correspond either to the point ๐‘ƒ or to the point ๐‘„. We want solutions between 0โ—ฆ and
360โ—ฆ , so ๐‘„ is represented by 360โ—ฆ โˆ’ 65โ—ฆ = 295โ—ฆ . Thus, the solutions are
๐œƒ = 65โ—ฆ
and
๐œƒ = 295โ—ฆ .
(b) A calculator gives tanโˆ’1 (2.145) = 65โ—ฆ . Since tan ๐œƒ is positive in the first and third quadrants, the angles with a tangent
of 2.145 correspond either to the point ๐‘ƒ or the point ๐‘… in Figure 9.13. Since we are interested in solutions between
0โ—ฆ and 720โ—ฆ , the solutions are
๐œƒ = 65โ—ฆ ,
245โ—ฆ ,
65โ—ฆ + 360โ—ฆ ,
245โ—ฆ + 360โ—ฆ .
That is
๐œƒ = 65โ—ฆ ,
245โ—ฆ ,
425โ—ฆ ,
605โ—ฆ .
๐‘ฆ
๐‘ฆ
๐‘ƒ =
๐‘ƒ = (0.4226, 0.9063)
(cos 65โ—ฆ , sin 65โ—ฆ )
245โ—ฆ
65โ—ฆ
65โ—ฆ
๐‘ฅ
๐‘ฅ
โˆ’65โ—ฆ
๐‘„ = (0.4226, โˆ’0.9063)
๐‘… = (โˆ’0.4223, โˆ’0.9063)
Figure 9.12: The angles 65โ—ฆ and โˆ’65โ—ฆ
Figure 9.13: The angles 65โ—ฆ and 245โ—ฆ
25. By sketching a graph, we see that there are four solutions (see Figure 9.14). The first solution is given by ๐‘ฅ = cosโˆ’1 (0.6) =
0.927, which is equivalent to the length labeled โ€œ๐‘" in Figure 9.14. Next, note that, by the symmetry of the graph of the
cosine function, we can obtain a second solution by subtracting the length ๐‘ from 2๐œ‹. Therefore, a second solution to the
equation is given by ๐‘ฅ = 2๐œ‹ โˆ’ 0.927 = 5.356. Similarly, our final two solutions are given by ๐‘ฅ = 2๐œ‹ + 0.927 = 7.210 and
๐‘ฅ = 4๐œ‹ โˆ’ 0.927 = 11.639.
๐‘ฆ
0.6
โœฒ โœ›
๐‘
๐‘ฅ
2๐œ‹
Figure 9.14
4๐œ‹
530
Chapter Nine /SOLUTIONS
26. By sketching a graph, we see that there are two solutions (see Figure 9.15). The first solution is given by ๐‘ฅ = sinโˆ’1 (0.3) =
0.305, which is equivalent to the length labeled โ€œ๐‘" in Figure 9.15. Next, note that, by the symmetry of the graph of the
sine function, we can obtain the second solution by subtracting the length ๐‘ from ๐œ‹. Therefore, the other solution is given
by ๐‘ฅ = ๐œ‹ โˆ’ 0.305 = 2.837.
๐‘ฆ
0.3
๐‘ฅ
๐œ‹
โœฒ๐‘โœ›
2๐œ‹
Figure 9.15
27. By sketching a graph, we see that there are two solutions (see Figure 9.16). The first solution is given by ๐‘ฅ = cosโˆ’1 (โˆ’0.7) =
2.346, which corresponds to the leftmost point in Figure 9.16. To find the second solution, we first calculate the distance
labeled โ€œ๐‘" in Figure 9.16 to obtain ๐‘ = ๐œ‹ โˆ’ cosโˆ’1 (โˆ’0.7) = 0.795. Therefore, by the symmetry of the cosine function, the
second solution is given by ๐‘ฅ = ๐œ‹ + ๐‘ = 3.937.
๐‘ฆ
๐‘
โœ›โœฒ
๐‘ฅ
๐œ‹
2๐œ‹
โˆ’0.7
Figure 9.16
28. By sketching a graph, we see that there are four solutions (see Figure 9.17). To find the four solutions, we begin by
calculating sinโˆ’1 (โˆ’0.8) = โˆ’0.927. Therefore, the length labeled โ€œ๐‘" in Figure 9.17 is given by ๐‘ = โˆ’ sinโˆ’1 (โˆ’0.8) = 0.927.
Now, using the symmetry of the graph of the sine function, we can see that the four solutions are given by ๐‘ฅ = ๐œ‹ + ๐‘ =
4.069, ๐‘ฅ = 2๐œ‹ โˆ’ ๐‘ = 5.356, ๐‘ฅ = 3๐œ‹ + ๐‘ = 10.352, and ๐‘ฅ = 4๐œ‹ โˆ’ ๐‘ = 11.639.
๐‘ฆ
โœฒ๐‘โœ›
4๐œ‹
๐œ‹
โˆ’ ๐œ‹2
2๐œ‹
๐‘ฅ
3๐œ‹
โˆ’0.8
Figure 9.17
โˆš
โˆš
29. One solution is ๐œƒ = sinโˆ’1 (โˆ’ 2โˆ•2) = โˆ’๐œ‹โˆ•4, and a second solution is 5๐œ‹โˆ•4, since sin(5๐œ‹โˆ•4) = โˆ’ 2โˆ•2. All other solutions
are found by adding integer multiples of 2๐œ‹ to these two solutions. See Figure 9.18.
๐‘ฆ
1
โˆ’ 3๐œ‹
4
โˆ’ ๐œ‹4
5๐œ‹
4
2๐œ‹
โˆ’2๐œ‹
โˆš
๐‘ฆ=โˆ’
13๐œ‹
4
7๐œ‹
4
2
2
โˆ’1
Figure 9.18
15๐œ‹
4
4๐œ‹
๐œƒ
9.1 SOLUTIONS
531
โˆš
โˆš
30. One solution is ๐œƒ = cosโˆ’1 ( 3โˆ•2) = ๐œ‹โˆ•6, and a second solution is 11๐œ‹โˆ•6, since cos(11๐œ‹โˆ•6) = 3โˆ•2. All other solutions
are found by adding integer multiples of 2๐œ‹ to these two solutions. See Figure 9.19.
๐‘ฆ=
1
โˆš
3
2
๐‘ฆ
โˆ’ ๐œ‹6
โˆ’ 11๐œ‹
6
๐œƒ
๐œ‹
6
11๐œ‹
6
13๐œ‹
6
23๐œ‹
6
โˆ’1
Figure 9.19
โˆš
31. One solution is ๐œƒ = tanโˆ’1 (โˆ’ 3โˆ•3) = โˆ’๐œ‹โˆ•6, All other solutions are found by adding integer multiples of ๐œ‹ to โˆ’๐œ‹โˆ•6. See
Figure 9.20.
๐‘ฆ
2
โˆ’ 7๐œ‹
6
5๐œ‹
6
โˆ’ ๐œ‹6
5๐œ‹
2
๐œƒ
๐œ‹
โˆš
๐‘ฆ=โˆ’
11๐œ‹
6
3
3
โˆ’2
Figure 9.20
32.
sec2 ๐›ผ + 3 tan ๐›ผ = tan ๐›ผ
1 + tan2 ๐›ผ + 3 tan ๐›ผ = tan ๐›ผ
tan2 ๐›ผ + 2 tan ๐›ผ + 1 = 0
(tan ๐›ผ + 1)2 = 0
tan ๐›ผ = โˆ’1
3๐œ‹ 7๐œ‹
๐›ผ=
,
4
4
< ๐‘ก < 7๐œ‹
, 9๐œ‹ < ๐‘ก < 5๐œ‹
and 7๐œ‹
<๐‘ก<
33. From Figure 9.21 we can see that the solutions lie on the intervals ๐œ‹8 < ๐‘ก < ๐œ‹4 , 3๐œ‹
4
8 8
4
4
Using the trace mode on a calculator, we can find approximate solutions ๐‘ก = 0.52, ๐‘ก = 2.62, ๐‘ก = 3.67 and ๐‘ก = 5.76.
15๐œ‹
.
8
๐‘ฆ
๐‘ฆ = cos(2๐‘ก)
1
๐‘ฆ=
0.5
โˆ’0.5
๐œ‹
4
๐œ‹
2
3๐œ‹
4
๐œ‹
1
2
๐‘ก
5๐œ‹
4
3๐œ‹
2
7๐œ‹
4
2๐œ‹
โˆ’1
Figure 9.21
For a more precise answer we solve cos(2๐‘ก) = 21 algebraically, giving 2๐‘ก = arccos(1โˆ•2). One solution is 2๐‘ก = ๐œ‹โˆ•3.
But 2๐‘ก = 5๐œ‹โˆ•3, 7๐œ‹โˆ•3, and 11๐œ‹โˆ•3 are also angles that have a cosine of 1โˆ•2. Thus ๐‘ก = ๐œ‹โˆ•6, 5๐œ‹โˆ•6, 7๐œ‹โˆ•6, and 11๐œ‹โˆ•6 are the
solutions between 0 and 2๐œ‹.
532
Chapter Nine /SOLUTIONS
34. To solve
1
tan ๐‘ก
we multiply both sides of the equation by tan ๐‘ก. Multiplication gives us
tan ๐‘ก =
tan2 ๐‘ก = 1
tan ๐‘ก = ±1.
or
From Figure 9.22, we see that there are two solutions for tan ๐‘ก = 1, and two solutions for tan ๐‘ก = โˆ’1; they are approximately
๐‘ก = 0.79, ๐‘ก = 3.93, and ๐‘ก = 2.36, ๐‘ก = 5.50.
๐‘ฆ
๐‘ฆ = tan ๐‘ก
๐‘ฆ=1
1
๐œ‹
2
๐œ‹
4
3๐œ‹
4
๐œ‹
๐‘ก
5๐œ‹
4
7๐œ‹
4
3๐œ‹
2
2๐œ‹
๐‘ฆ = โˆ’1
โˆ’1
Figure 9.22
To find exact solutions, we have ๐‘ก = arctan(±1) = ±๐œ‹โˆ•4. There are other angles that have a tan of ±1, namely ±3๐œ‹โˆ•4.
So ๐‘ก = ๐œ‹โˆ•4, 3๐œ‹โˆ•4, 5๐œ‹โˆ•4, and 7๐œ‹โˆ•4 are the solutions in the interval from 0 to 2๐œ‹.
35. From Figure 9.23, we see that 2 sin ๐‘ก cos ๐‘ก โˆ’ cos ๐‘ก = 0 has four roots between 0 and 2๐œ‹. They are approximately ๐‘ก = 0.52,
๐‘ก = 1.57, ๐‘ก = 2.62, and ๐‘ก = 4.71.
๐‘ฆ
๐‘ฆ = 2 sin ๐‘ก cos ๐‘ก โˆ’ cos ๐‘ก
๐œ‹
2
๐œ‹
3๐œ‹
2
๐‘ก
2๐œ‹
Figure 9.23
To solve the problem symbolically, we factor out cos ๐‘ก:
2 sin ๐‘ก cos ๐‘ก โˆ’ cos ๐‘ก = cos ๐‘ก(2 sin ๐‘ก โˆ’ 1) = 0.
So solutions occur either when cos ๐‘ก = 0 or when 2 sin ๐‘ก โˆ’ 1 = 0. The equation cos ๐‘ก = 0 has solutions ๐œ‹โˆ•2 and 3๐œ‹โˆ•2. The
equation 2 sin ๐‘ก โˆ’ 1 = 0 has solution ๐‘ก = arcsin(1โˆ•2) = ๐œ‹โˆ•6, and also ๐‘ก = ๐œ‹ โˆ’ ๐œ‹โˆ•6 = 5๐œ‹โˆ•6. Thus the solutions to the
original problem are
๐œ‹ 3๐œ‹ ๐œ‹
5๐œ‹
๐‘ก= ,
,
and
.
2 2 6
6
36. The solutions to the equation are at points where the graphs of ๐‘ฆ = 3 cos2 ๐‘ก and ๐‘ฆ = sin2 ๐‘ก cross. From Figure 9.24, we
see that 3 cos2 ๐‘ก = sin2 ๐‘ก has four solutions between 0 and 2๐œ‹; they are approximately ๐‘ก = 1.05, ๐‘ก = 2.09, ๐‘ก = 4.19, and
๐‘ก = 5.24.
9.1 SOLUTIONS
533
๐‘ฆ
๐‘ฆ = 3 cos2 ๐‘ก
3
2
1
๐‘ฆ = sin2 ๐‘ก
0
๐œ‹
3
๐œ‹
2
๐‘ก
๐œ‹
2๐œ‹
3
4๐œ‹
3
3๐œ‹
2
2๐œ‹
5๐œ‹
3
Figure 9.24
To solve 3 cos2 ๐‘ก = sin2 ๐‘ก we divide both sides by cos2 ๐‘ก and rewrite the equation as
โˆš
3 = tan2 ๐‘ก
or
tan ๐‘ก = ± 3.
(Dividing by cos2 ๐‘ก is valid only if cos ๐‘ก โ‰  0. Since ๐‘ก = ๐œ‹โˆ•2 and ๐‘ก = 3๐œ‹โˆ•2 are not solutions, cos ๐‘ก โ‰  0.)
Using the inverse tangent and reference angles, we find that the solutions occur at the points
๐‘ก=
5๐œ‹
๐œ‹ 4๐œ‹ 2๐œ‹
,
,
and
.
3 3
3
3
37. Graph ๐‘ฆ = 12 โˆ’ 4 cos(3๐‘ก) on 0 โ‰ค ๐‘ก โ‰ค 2๐œ‹โˆ•3 and locate the two points with ๐‘ฆ-coordinate 14. (See Figure 9.25.) These points
have ๐‘ก-coordinates of approximately ๐‘ก = 0.698 and ๐‘ก = 1.396. There are six solutions in three cycles of the graph between
0 and 2๐œ‹.
๐‘ฆ
16
14
๐‘ฆ = 12 โˆ’ 4 cos(3๐‘ก)
8
๐‘ก
0.698 1.396
2๐œ‹
3
4๐œ‹
3
2๐œ‹
Figure 9.25
38. (a) Graph ๐‘ฆ = 3 โˆ’ 5 sin 4๐‘ก on the interval 0 โ‰ค ๐‘ก โ‰ค ๐œ‹โˆ•2, and locate values where the function crosses the ๐‘ก-axis. Alternatively, we can find the points where the graph 5 sin 4๐‘ก and the line ๐‘ฆ = 3 intersect. By looking at the graphs of these
two functions on the interval 0 โ‰ค ๐‘ก โ‰ค ๐œ‹โˆ•2, we find that they intersect twice. By zooming in we can identify these
points of intersection as roughly ๐‘ก1 โ‰ˆ 0.16 and ๐‘ก2 โ‰ˆ 0.625. See Figure 9.26.
534
Chapter Nine /SOLUTIONS
๐‘ฆ
๐‘ฆ = 3 โˆ’ 5 sin(4๐‘ก)
8
๐‘ก1
๐‘ก2
๐œ‹
2
๐œ‹
4
โˆ’2
๐‘ก
Figure 9.26
(b) Solve for sin(4๐‘ก) and then use arcsine:
5 sin(4๐‘ก) = 3
3
sin(4๐‘ก) =
5
4๐‘ก = arcsin
( )
3
.
5
arcsin(3โˆ•5)
โ‰ˆ 0.161 is a solution. But the angle ๐œ‹ โˆ’ arcsin(3โˆ•5) has the same sine as arcsin(3โˆ•5). Solving
4
๐œ‹ arcsin(3โˆ•5)
4๐‘ก = ๐œ‹ โˆ’ arcsin(3โˆ•5) gives ๐‘ก2 = โˆ’
โ‰ˆ 0.625 as a second solution.
4
4
39. (a) The maximum is $100,000 and the minimum is $20,000. Thus in the function
So ๐‘ก1 =
๐‘“ (๐‘ก) = ๐ด cos(๐ต(๐‘ก โˆ’ โ„Ž)) + ๐‘˜,
the midline is
๐‘˜=
100, 000 + 20, 000
= $60,000
2
and the amplitude is
100, 000 โˆ’ 20, 000
= $40,000.
2
The period of this function is 12 since the sales are seasonal. Since
๐ด=
period = 12 =
2๐œ‹
,
๐ต
we have
๐œ‹
.
6
The company makes its peak sales in mid-December, which is month โˆ’1 or month 11. Since the regular cosine curve
hits its peak at ๐‘ก = 0 while ours does this at ๐‘ก = โˆ’1, we find that our curve is shifted horizontally 1 unit to the left. So
we have
โ„Ž = โˆ’1.
๐ต=
So the sales function is
(
๐‘“ (๐‘ก) = 40,000 cos
)
)
(
๐œ‹
๐œ‹
๐œ‹
+ 60,000.
(๐‘ก + 1) + 60,000 = 40,000 cos
๐‘ก+
6
6
6
(b) Mid-April is month ๐‘ก = 3. Substituting this value into our function, we get
๐‘“ (3) = $40,000.
(c) To solve ๐‘“ (๐‘ก) = 60,000 for ๐‘ก, we write
๐œ‹
๐‘ก+
6
(
๐œ‹
0 = 40,000 cos
๐‘ก+
6
)
(
๐œ‹
๐œ‹
.
๐‘ก+
0 = cos
6
6
(
60,000 = 40,000 cos
)
๐œ‹
+ 60,000
6
)
๐œ‹
6
9.1 SOLUTIONS
535
Since the cosine function takes on the value 0 at ๐œ‹โˆ•2 and 3๐œ‹โˆ•2, the angle ( ๐œ‹6 ๐‘ก + ๐œ‹6 ) equals either ๐œ‹2 or 3๐œ‹2 . Solving for
๐‘ก, we get ๐‘ก = 2 or ๐‘ก = 8. So in mid-March and mid-September the company has sales of $60,000 (which is the average
or midline sales value).
40. (a) Let ๐‘ก be the time in hours since 12 noon. Let ๐‘‘ = ๐‘“ (๐‘ก) be the depth in feet in Figure 9.27.
High tide
๐‘‘ (feet)
17.2
โœ›
6.2 โœฒโœ›
โœ 
6.2 โœฒ
โ˜
11.4
โœ›
5.6
6
Low tide
โœฒ
12
18
24
๐‘ก (hours)
Figure 9.27
17.2 + 5.6
= 11.4 and the amplitude is 17.2 โˆ’ 11.4 = 5.8. The period is 12.4. Thus we get
2(
)
๐œ‹
๐‘ก .
๐‘‘ = ๐‘“ (๐‘ก) = 11.4 + 5.8 cos
6.2
(c) We find the first ๐‘ก value when ๐‘‘ = ๐‘“ (๐‘ก) = 8:
(
)
๐œ‹
8 = 11.4 + 5.8 cos
๐‘ก
6.2
(b) The midline is ๐‘‘ =
Using the cosโˆ’1 function, we have
(
)
๐œ‹
โˆ’3.4
= cos
๐‘ก
5.8
6.2
(
)
๐œ‹
โˆ’1 โˆ’3.4
cos
๐‘ก
=
5.8
6.2
)
(
6.2
โˆ’3.4
๐‘ก=
โ‰ˆ 4.336 hours.
cosโˆ’1
๐œ‹
5.8
Since 0.336(60) โ‰ˆ 20 minutes, the latest time the boat can set sail is 4:20 pm.
41. The curve is(a sine
) curve with an amplitude of 5, a period of 8 and a vertical shift of โˆ’3. Thus the equation for the curve
๐œ‹
๐‘ฅ โˆ’ 3. Solving for ๐‘ฆ = 0, we have
is ๐‘ฆ = 5 sin
4
( )
๐œ‹
5 sin
๐‘ฅ =3
4
( )
3
๐œ‹
๐‘ฅ =
sin
4
5
( )
3
๐œ‹
๐‘ฅ = sinโˆ’1
4
5
( )
4
โˆ’1 3
โ‰ˆ 0.819.
๐‘ฅ = sin
๐œ‹
5
This is the ๐‘ฅ-coordinate of ๐‘ƒ . The ๐‘ฅ-coordinate of ๐‘„ is to the left of 4 by the same distance ๐‘ƒ is to the right of ๐‘‚, by the
symmetry of the sine curve. Therefore,
๐‘ฅ โ‰ˆ 4 โˆ’ 0.819 = 3.181
is the ๐‘ฅ-coordinate of ๐‘„.
42. (a) The value of sin ๐‘ก will be between โˆ’1 and 1. This means that ๐‘˜ sin ๐‘ก will be between โˆ’๐‘˜ and ๐‘˜. Thus, ๐‘ก2 = ๐‘˜ sin ๐‘ก will
be between 0 and ๐‘˜. So
โˆš
โˆš
โˆ’ ๐‘˜ โ‰ค ๐‘ก โ‰ค ๐‘˜.
(b) Plotting 2 sin ๐‘ก and ๐‘ก2 on a calculator, we see that ๐‘ก2 = 2 sin ๐‘ก for ๐‘ก = 0 and ๐‘ก โ‰ˆ 1.40.
(c) Compare the graphs of ๐‘˜ sin ๐‘ก, a sine wave, and ๐‘ก2 , a parabola. As ๐‘˜ increases, the amplitude of the sine wave increases,
and so the sine wave intersects the parabola in more points.
(d) Plotting ๐‘˜ sin ๐‘ก and ๐‘ก2 on a calculator for different values of ๐‘˜, we see that if ๐‘˜ โ‰ˆ 20, this equation will have a negative
solution at ๐‘ก โ‰ˆ โˆ’4.3, but that if ๐‘˜ is any smaller, there will be no negative solution.
536
Chapter Nine /SOLUTIONS
43. (a) In Figure 9.28, the earthโ€™s center is labeled ๐‘‚ and two radii are extended, one through ๐‘†, your shipโ€™s position, and
one through ๐ป, the point on the horizon. Your line of sight to the horizon is tangent to the surface of the earth. A line
tangent to a circle at a given point is perpendicular to the circleโ€™s radius at that point. Thus, since your line of sight is
tangent to the earthโ€™s surface at ๐ป, it is also perpendicular to the earthโ€™s radius at ๐ป. This means that triangle ๐‘‚๐ถ๐ป
is a right triangle. Its hypotenuse is ๐‘Ÿ + ๐‘ฅ and its legs are ๐‘Ÿ and ๐‘‘. From the Pythagorean theorem, we have
๐‘Ÿ2 + ๐‘‘ 2 = (๐‘Ÿ + ๐‘ฅ)2
๐‘‘ 2 = (๐‘Ÿ + ๐‘ฅ)2 โˆ’ ๐‘Ÿ2
= ๐‘Ÿ2 + 2๐‘Ÿ๐‘ฅ + ๐‘ฅ2 โˆ’ ๐‘Ÿ2 = 2๐‘Ÿ๐‘ฅ + ๐‘ฅ2 .
Since ๐‘‘ is positive, we have ๐‘‘ =
โˆš
2๐‘Ÿ๐‘ฅ + ๐‘ฅ2 .
๐ถ
๐‘ฅ
๐‘‘
๐‘†
๐ป
๐‘™
Line of sight
๐‘Ÿ
๐‘Ÿ
๐œƒ
๐‘‚
Figure 9.28
(b) We begin by using the formula obtained in part (a):
โˆš
๐‘‘ = 2๐‘Ÿ๐‘ฅ + ๐‘ฅ2
โˆš
= 2(6,370,000)(50) + 502
โ‰ˆ 25,238.908.
Thus, you would be able to see a little over 25 kilometers from the crowโ€™s nest ๐ถ.
Having found a formula for ๐‘‘, we will now try to find a formula for ๐‘™, the distance along the earthโ€™s surface from
the ship to the horizon ๐ป. In Figure 9.28, ๐‘™ is the arc length specified by the angle ๐œƒ (in radians). The formula for arc
length is
๐‘™ = ๐‘Ÿ๐œƒ.
In this case, we must determine ๐œƒ. From Figure 9.28 we see that
cos ๐œƒ =
adjacent
๐‘Ÿ
=
.
hypotenuse
๐‘Ÿ+๐‘ฅ
Thus,
๐œƒ = cosโˆ’1
(
๐‘Ÿ
๐‘Ÿ+๐‘ฅ
)
since 0 โ‰ค ๐œƒ โ‰ค ๐œ‹โˆ•2. This means that
๐‘™ = ๐‘Ÿ๐œƒ = ๐‘Ÿ cosโˆ’1
(
๐‘Ÿ
๐‘Ÿ+๐‘ฅ
)
(
= 6,370,000 cosโˆ’1
6,370,000
6,370,050
)
โ‰ˆ 25,238.776 meters.
9.2 SOLUTIONS
537
There is very little differenceโ€”about 0.13 m or 13 cmโ€”between the distance ๐‘‘ that you can see and the distance
๐‘™ that the ship must travel to reach the horizon. If this is surprising, keep in mind that Figure 9.28 has not been drawn
to scale. In reality, the mast height ๐‘ฅ is significantly smaller than the earthโ€™s radius ๐‘Ÿ so that the point ๐ถ in the crowโ€™s
nest is very close to the shipโ€™s position at point ๐‘†. Thus, the line segment ๐‘‘ and the arc ๐‘™ are almost indistinguishable.
Solutions for Section 9.2
Exercises
1. No, these expressions are not equal everywhere. They have different amplitudes (1 and 3) and different periods (2๐œ‹โˆ•3 and
2๐œ‹).
The value of the two functions are different at ๐‘ก = ๐œ‹โˆ•2, since sin(3๐œ‹โˆ•2) = โˆ’1 and 3 sin(๐œ‹โˆ•2) = 3.
2. No, these expressions are not equal everywhere. (In fact, cos2 ๐‘ก = โˆ’(sin2 ๐‘ก โˆ’ 1).)
The value of the two functions are different at ๐‘ก = 0, since cos2 0 = 1 and sin2 0 โˆ’ 1 = โˆ’1.
3. Yes, these expressions are equal everywhere. Expanding the first expression, we get
(cos ๐‘ก โˆ’ sin ๐‘ก)(cos ๐‘ก + sin ๐‘ก) = cos2 ๐‘ก โˆ’ sin2 ๐‘ก.
4. Yes, these expressions are equal everywhere they are defined. (They are both defined for all ๐‘ก except where cos ๐‘ก = 0.) We
use sec ๐‘ก = 1โˆ• cos ๐‘ก, giving
sin ๐‘ก
1
sin ๐‘ก =
= tan ๐‘ก.
sec ๐‘ก sin ๐‘ก =
cos ๐‘ก
cos ๐‘ก
5. We use the relationship sin2 ๐œƒ + cos2 ๐œƒ = 1 to find cos ๐œƒ. Substitute sin ๐œƒ = 1โˆ•4:
( )2
1
+ cos2 ๐œƒ = 1
4
1
+ cos2 ๐œƒ = 1
16
1
15
cos2 ๐œƒ = 1 โˆ’
=
16
16
โˆš
โˆš
15
15
=±
.
cos ๐œƒ = ±
16
4
โˆš
Because ๐œƒ is in the first quadrant, cos ๐œƒ is positive, so cos ๐œƒ = 15โˆ•4. To find tan ๐œƒ, use the relationship
tan ๐œƒ =
1โˆ•4
1
sin ๐œƒ
= โˆš .
= โˆš
cos ๐œƒ
15โˆ•4
15
6. We use the relationship sin2 ๐œƒ + cos2 ๐œƒ = 1 to find cos ๐œƒ. Substitute sin ๐œƒ = 3โˆ•5:
( )2
3
+ cos2 ๐œƒ = 1
5
9
+ cos2 ๐œƒ = 1
25
9
16
cos2 ๐œƒ = 1 โˆ’
=
25
25
4
cos ๐œƒ = ± .
5
Because ๐œƒ is in the second quadrant, cos ๐œƒ is negative, so cos ๐œƒ = โˆ’4โˆ•5. To find tan ๐œƒ, use the relationship
tan ๐œƒ =
3โˆ•5
sin ๐œƒ
3
=
=โˆ’ .
cos ๐œƒ
โˆ’4โˆ•5
4
538
Chapter Nine /SOLUTIONS
7. We use the relationship sin2 ๐œƒ + cos2 ๐œƒ = 1 to find sin ๐œƒ. Substitute cos ๐œƒ = โˆ’2โˆ•5:
( )2
2
=1
sin2 ๐œƒ + โˆ’
5
4
sin2 ๐œƒ +
=1
25
4
21
sin2 ๐œƒ = 1 โˆ’
=
25
25
โˆš
21
sin ๐œƒ = ±
.
5
โˆš
Because ๐œƒ is in the third quadrant, sin ๐œƒ is negative, so sin ๐œƒ = โˆ’ 21โˆ•5. To find tan ๐œƒ, use the relationship
โˆš
โˆš
โˆ’ 21โˆ•5
21
sin ๐œƒ
tan ๐œƒ =
=
=
.
cos ๐œƒ
โˆ’2โˆ•5
2
8. We use the relationship sin2 ๐œƒ + cos2 ๐œƒ = 1 to find sin ๐œƒ. Substitute cos ๐œƒ = 1โˆ•3:
( )2
1
=1
3
1
sin2 ๐œƒ + = 1
9
sin2 ๐œƒ +
1
8
sin2 ๐œƒ = 1 โˆ’ =
9
9
โˆš
8
.
sin ๐œƒ = ±
3
โˆš
Because ๐œƒ is in the fourth quadrant, sin ๐œƒ is negative, so sin ๐œƒ = โˆ’ 8โˆ•3. To find tan ๐œƒ, use the relationship
โˆš
โˆš
โˆ’ 8โˆ•3
sin ๐œƒ
tan ๐œƒ =
=
= โˆ’ 8.
cos ๐œƒ
1โˆ•3
9. We have:
tan ๐‘ก cos ๐‘ก โˆ’
sin ๐‘ก
sin ๐‘ก
sin ๐‘ก
=
โ‹… cos ๐‘ก โˆ’ (
)
sin ๐‘ก
tan ๐‘ก
cos ๐‘ก
cos ๐‘ก
cos ๐‘ก
= sin ๐‘ก โˆ’ sin ๐‘ก โ‹…
sin ๐‘ก
= sin ๐‘ก โˆ’ cos ๐‘ก.
because tan ๐‘ก =
sin ๐‘ก
cos ๐‘ก
10. We have:
2 cos ๐‘ก (3 โˆ’ 7 tan ๐‘ก) = 6 cos ๐‘ก โˆ’ 14 cos ๐‘ก โ‹… tan ๐‘ก
sin ๐‘ก
= 6 cos ๐‘ก โˆ’ 14 cos ๐‘ก โ‹…
cos ๐‘ก
= 6 cos ๐‘ก โˆ’ 14 sin ๐‘ก.
11. We have:
2 cos ๐‘ก โˆ’ cos ๐‘ก (1 โˆ’ 3 tan ๐‘ก) = 2 cos ๐‘ก โˆ’ cos ๐‘ก + 3 cos ๐‘ก โ‹… tan ๐‘ก
sin ๐‘ก
= cos ๐‘ก + 3 cos ๐‘ก โ‹…
cos ๐‘ก
= cos ๐‘ก + 3 sin ๐‘ก.
9.2 SOLUTIONS
12. We have:
2 cos ๐‘ก (3 sin ๐‘ก โˆ’ 4 tan ๐‘ก) = 6 sin ๐‘ก cos ๐‘ก โˆ’ 8 tan ๐‘ก โ‹… cos ๐‘ก
sin ๐‘ก
= 6 sin ๐‘ก cos ๐‘ก โˆ’ 8
โ‹… cos ๐‘ก
cos ๐‘ก
= 6 sin ๐‘ก cos ๐‘ก โˆ’ 8 sin ๐‘ก.
13. Writing sin 2๐›ผ = 2 sin ๐›ผ cos ๐›ผ, we have
2 sin ๐›ผ cos ๐›ผ
sin 2๐›ผ
=
= 2 sin ๐›ผ.
cos ๐›ผ
cos ๐›ผ
14. Writing cos2 ๐œƒ = 1 โˆ’ sin2 ๐œƒ, we have
cos2 ๐œƒ โˆ’ 1
1 โˆ’ sin2 ๐œƒ โˆ’ 1
โˆ’ sin2 ๐œƒ
=
=
= โˆ’ sin ๐œƒ.
sin ๐œƒ
sin ๐œƒ
sin ๐œƒ
15. Writing cos 2๐‘ก = cos2 ๐‘ก โˆ’ sin2 ๐‘ก and factoring, we have
(cos ๐‘ก โˆ’ sin ๐‘ก)(cos ๐‘ก + sin ๐‘ก)
cos2 ๐‘ก โˆ’ sin2 ๐‘ก
cos 2๐‘ก
=
=
= cos ๐‘ก โˆ’ sin ๐‘ก.
cos ๐‘ก + sin ๐‘ก
cos ๐‘ก + sin ๐‘ก
cos ๐‘ก + sin ๐‘ก
16. Adding fractions gives
1
2
1
1 + sin ๐œƒ + 1 โˆ’ sin ๐œƒ
2
=
.
+
=
=
1 โˆ’ sin ๐œƒ 1 + sin ๐œƒ
(1 โˆ’ sin ๐œƒ)(1 + sin ๐œƒ)
cos2 ๐œƒ
1 โˆ’ sin2 ๐œƒ
17. Combining terms and using cos2 ๐œ™ + sin2 ๐œ™ = 1, we have
cos ๐œ™ โˆ’ 1
sin ๐œ™
(cos ๐œ™ โˆ’ 1)(cos ๐œ™ + 1) + sin2 ๐œ™
cos2 ๐œ™ โˆ’ 1 + sin2 ๐œ™
0
+
=
=
=
=0
sin ๐œ™
cos ๐œ™ + 1
sin ๐œ™(cos ๐œ™ + 1)
sin ๐œ™(cos ๐œ™ + 1)
sin ๐œ™(cos ๐œ™ + 1)
18. Using tan ๐‘ก = sin ๐‘กโˆ• cos ๐‘ก, we have
1
1
1
1
โˆ’
=
โˆ’
sin ๐‘ก cos ๐‘ก tan ๐‘ก
sin ๐‘ก cos ๐‘ก sin ๐‘กโˆ• cos ๐‘ก
1
cos ๐‘ก
=
โˆ’
sin ๐‘ก cos ๐‘ก sin ๐‘ก
1 โˆ’ cos2 ๐‘ก
=
sin ๐‘ก cos ๐‘ก
sin2 ๐‘ก
=
sin ๐‘ก cos ๐‘ก
sin ๐‘ก
=
cos ๐‘ก
= tan ๐‘ก.
19. We have:
sin
โˆš
โˆš
๐œƒ
โˆš = tan ๐œƒ.
cos ๐œƒ
20. We have:
๐›ผ
๐›ผ
sin
2 = 2โ‹…
2
๐›ผ
๐›ผ
cos
cos
2
2
๐›ผ
= 2 tan .
2
2 sin
539
540
Chapter Nine /SOLUTIONS
21. We have:
3 sin(๐œ™ + 1)
3 sin(๐œ™ + 1)
= โ‹…
4 cos(๐œ™ + 1)
4 cos(๐œ™ + 1)
3
= tan(๐œ™ + 1).
4
22. We have:
(
)
(
sin ๐‘Ÿ2 โˆ’ ๐‘ 2
)
(
1
=
)
(
) = tan ๐‘Ÿ2 โˆ’ ๐‘ 2 .
( 2
)
cos ๐‘Ÿ2 โˆ’ ๐‘ 2
cos ๐‘Ÿ โˆ’ ๐‘ 2
( 2
)
2
sin ๐‘Ÿ โˆ’ ๐‘ 
23. We have
)
2
๐‘˜+3
โ‹…
)
(
2
cos
3
( ๐‘˜ +)
2
.
tan
๐‘˜+3
(
(
2 sin
2
โ‹…
๐‘˜+3
)
5
(
2
3 cos
๐‘˜+3
) =
10
3
=
10
3
sin
24. We have:
(
(
)
)
1
1
sin 1 โˆ’
sin 1 โˆ’
2
๐‘ง = 2
๐‘ง
(
(
)โ‹…
)
1
1
3
3
cos 1 โˆ’
cos 1 โˆ’
๐‘ง
๐‘ง)
(
2
1
= tan 1 โˆ’
.
3
๐‘ง
25. We solve the Pythagorean identity for sin ๐œƒ.
sin2 ๐œƒ + cos2 ๐œƒ = 1
sin2 ๐œƒ = 1 โˆ’ cos2 ๐œƒ
(sin ๐œƒ)2 = 1 โˆ’ cos2 ๐œƒ.
If sin ๐œƒ โ‰ฅ 0,
sin ๐œƒ =
โˆš
1 โˆ’ cos2 ๐œƒ.
If sin ๐œƒ < 0,
โˆš
sin ๐œƒ = โˆ’ 1 โˆ’ cos2 ๐œƒ.
26. The relevant identities are cos2 ๐œƒ + sin2 ๐œƒ = 1 and cos 2๐œƒ = cos2 ๐œƒ โˆ’ sin2 ๐œƒ = 2 cos2 ๐œƒ โˆ’ 1 = 1 โˆ’ 2 sin2 ๐œƒ. See Table 9.1.
Table 9.1
๐œƒ in rad.
sin2 ๐œƒ
cos2 ๐œƒ
sin 2๐œƒ
cos 2๐œƒ
1
0.708
0.292
0.909
โˆ’0.416
๐œ‹โˆ•2
1
0
0
โˆ’1
2
0.827
0.173
โˆ’0.654
5๐œ‹โˆ•6
1โˆ•4
3โˆ•4
โˆ’0.757
โˆš
โˆ’ 3โˆ•2
1โˆ•2
9.2 SOLUTIONS
541
Problems
27. Since cos 2๐‘ก has period ๐œ‹ and sin ๐‘ก has period 2๐œ‹, if the result we want holds for 0 โ‰ค ๐‘ก โ‰ค 2๐œ‹, it holds for all ๐‘ก. So letโ€™s
concentrate on the interval 0 โ‰ค ๐‘ก โ‰ค 2๐œ‹.
Solving cos 2๐‘ก = 0 gives ๐‘ก = ๐œ‹โˆ•4, 3๐œ‹โˆ•4, 5๐œ‹โˆ•4, 7๐œ‹โˆ•4.
From the graph in Figure 9.29, we see cos 2๐‘ก > 0 for 0 โ‰ค ๐‘ก < ๐œ‹โˆ•4, 3๐œ‹โˆ•4 < ๐‘ก < 5๐œ‹โˆ•4, 7๐œ‹โˆ•4 < ๐‘ก โ‰ค 2๐œ‹.
Solving 1 โˆ’ 2 sin2 ๐‘ก = 0 gives
sin2 ๐‘ก =
1
2
1
sin ๐‘ก = ± โˆš ,
2
so ๐‘ก = ๐œ‹โˆ•4, 3๐œ‹โˆ•4, 5๐œ‹โˆ•4, 7๐œ‹โˆ•4.
โˆš
โˆš
โˆš
From
the
graph
of
๐‘ฆ
=
sin
๐‘ก
and
the
lines
๐‘ฆ
=
1โˆ•
2
and
๐‘ฆ
=
โˆ’1โˆ•
2
in
Figure
9.30,
we
see
that
โˆ’1โˆ•
2 < sin ๐‘ก <
โˆš
intervals
that
cos
2๐‘ก
>
0.
1โˆ• 2 on the same
โˆš
โˆš
Now if โˆ’1โˆ• 2 < sin ๐‘ก < 1โˆ• 2, then
1
2
1 โˆ’ 2 sin2 ๐‘ก > 0.
sin2 ๐‘ก <
Thus, cos 2๐‘ก and 1 โˆ’ 2 sin2 ๐‘ก have the same sign for all ๐‘ก.
๐‘ฆ
๐‘ฆ
๐‘ฆ = cos 2๐‘ก
1
5๐œ‹
4
3๐œ‹
4
๐œ‹
4
๐œ‹
2
๐œ‹
7๐œ‹
4
3๐œ‹
2
1
โˆš
2
๐œ‹
๐‘ก
2๐œ‹
โˆ’ โˆš1
๐œ‹
4
๐œ‹
2
3๐œ‹
4
5๐œ‹
4
3๐œ‹
2
๐‘ฆ = sin ๐‘ก
๐‘ก
2๐œ‹
7๐œ‹
4
2
โˆ’1
Figure 9.29
Figure 9.30
28. (a) cos 2๐œƒ = 1 โˆ’ 2 sin2 ๐œƒ = 1 โˆ’ 2(1 โˆ’ cos2 ๐œƒ) = 1 โˆ’ 2 + 2 cos2 ๐œƒ = 2 cos2 ๐œƒ โˆ’ 1 = 2(cos ๐œƒ)2 โˆ’ 1.
(b) cos 2๐œƒ = 1 โˆ’ 2 sin2 ๐œƒ = (1 โˆ’ sin2 ๐œƒ) โˆ’ sin2 ๐œƒ = cos2 ๐œƒ โˆ’ sin2 ๐œƒ = (cos ๐œƒ)2 โˆ’ (sin ๐œƒ)2 .
29. We have
tan 2๐œƒ =
sin 2๐œƒ
2 sin ๐œƒ cos ๐œƒ
.
=
cos 2๐œƒ
cos2 ๐œƒ โˆ’ sin2 ๐œƒ
Dividing both top and bottom by cos2 ๐œƒ gives
2 sin ๐œƒ cos ๐œƒ
2 tan ๐œƒ
cos2 ๐œƒ
tan 2๐œƒ =
.
=
1 โˆ’ tan2 ๐œƒ
cos2 ๐œƒ โˆ’ sin2 ๐œƒ
cos2 ๐œƒ
โˆš
30. We know that cos2 ๐œƒ = 1 โˆ’ sin2 ๐œƒ = 1 โˆ’ (3โˆ•5)2 = 16โˆ•25, and since ๐œƒ is in the second quadrant, cos ๐œƒ = โˆ’ 16โˆ•25 = โˆ’4โˆ•5.
Thus sin 2๐œƒ = 2 sin ๐œƒ cos ๐œƒ = 2(3โˆ•5)(โˆ’4โˆ•5) = โˆ’24โˆ•25. Furthermore, cos 2๐œƒ = 1 โˆ’ 2 sin2 ๐œƒ = 1 โˆ’ 2(3โˆ•5)2 = 7โˆ•25, and
sin 2๐œƒ
= โˆ’24
โ‹… 257 = โˆ’24
.
tan 2๐œƒ = cos
2๐œƒ
25
7
31. Multiply the denominator by 1 + cos ๐‘ก to get sin2 ๐‘ก:
sin ๐‘ก
sin ๐‘ก (1 + cos ๐‘ก)
=
1 โˆ’ cos ๐‘ก
(1 โˆ’ cos ๐‘ก) (1 + cos ๐‘ก)
sin ๐‘ก(1 + cos ๐‘ก)
=
1 โˆ’ cos2 ๐‘ก
sin ๐‘ก(1 + cos ๐‘ก)
=
sin2 ๐‘ก
1 + cos ๐‘ก
.
=
sin ๐‘ก
542
Chapter Nine /SOLUTIONS
32. Get a common denominator:
cos ๐‘ฅ
cos ๐‘ฅ
sin ๐‘ฅ
โˆ’ tan ๐‘ฅ =
โˆ’
1 โˆ’ sin ๐‘ฅ
1 โˆ’ sin ๐‘ฅ cos ๐‘ฅ
cos2 ๐‘ฅ โˆ’ sin ๐‘ฅ(1 โˆ’ sin ๐‘ฅ)
=
(1 โˆ’ sin ๐‘ฅ)(cos ๐‘ฅ)
cos2 ๐‘ฅ โˆ’ sin ๐‘ฅ + sin2 ๐‘ฅ
(1 โˆ’ sin ๐‘ฅ)(cos ๐‘ฅ)
1 โˆ’ sin ๐‘ฅ
1
=
=
.
(1 โˆ’ sin ๐‘ฅ) cos ๐‘ฅ
cos ๐‘ฅ
=
33. In order to get tan to appear, divide by cos ๐‘ฅ cos ๐‘ฆ:
sin ๐‘ฅ cos ๐‘ฆ
cos ๐‘ฅ sin ๐‘ฆ
+
cos ๐‘ฅ cos ๐‘ฆ cos ๐‘ฅ cos ๐‘ฆ
sin ๐‘ฅ cos ๐‘ฆ + cos ๐‘ฅ sin ๐‘ฆ
tan ๐‘ฅ + tan ๐‘ฆ
=
=
sin ๐‘ฅ sin ๐‘ฆ
cos ๐‘ฅ cos ๐‘ฆ
cos ๐‘ฅ cos ๐‘ฆ โˆ’ sin ๐‘ฅ sin ๐‘ฆ
1 โˆ’ tan ๐‘ฅ tan ๐‘ฆ
โˆ’
cos ๐‘ฅ cos ๐‘ฆ cos ๐‘ฅ cos ๐‘ฆ
34. Using the trigonometric identity cos2 ๐œƒ = 1 โˆ’ sin2 ๐œƒ, we have
sin2 ๐œƒ โˆ’ cos2 ๐œƒ = sin ๐œƒ
sin2 ๐œƒ โˆ’ (1 โˆ’ sin2 ๐œƒ) = sin ๐œƒ
2 sin2 ๐œƒ โˆ’ sin ๐œƒ โˆ’ 1 = 0
(2 sin ๐œƒ + 1)(sin ๐œƒ โˆ’ 1) = 0
1
sin ๐œƒ = โˆ’
or sin ๐œƒ = 1.
2
If sin ๐œƒ = 1, then ๐œƒ = ๐œ‹โˆ•2. On the other hand, if sin ๐œƒ = โˆ’1โˆ•2, we first calculate the associated reference angle, which
is sinโˆ’1 (1โˆ•2) = ๐œ‹โˆ•6. Using a graph of the sine function on the interval 0 โ‰ค ๐œƒ โ‰ค 2๐œ‹, we see that the two solutions to
sin ๐œƒ = โˆ’1โˆ•2 are given by ๐œƒ = ๐œ‹ + ๐œ‹โˆ•6 = 7๐œ‹โˆ•6 and ๐œƒ = 2๐œ‹ โˆ’ ๐œ‹โˆ•6 = 11๐œ‹โˆ•6. Combining the above observations, we see
that there are three solutions to the original equation: ๐œ‹โˆ•2, 7๐œ‹โˆ•6, and 11๐œ‹โˆ•6.
35. Using the trigonometric identity sin(2๐œƒ) = 2 sin ๐œƒ cos ๐œƒ, we have
sin(2๐œƒ) โˆ’ cos ๐œƒ
=
0
2 sin ๐œƒ cos ๐œƒ โˆ’ cos ๐œƒ
=
0
cos ๐œƒ(2 sin ๐œƒ โˆ’ 1)
=
0
1
.
2
If cos ๐œƒ = 0, then we have two solutions: ๐œƒ = ๐œ‹โˆ•2 and ๐œƒ = 3๐œ‹โˆ•2. On the other hand, if sin ๐œƒ = 1โˆ•2, we first calculate
the associated reference angle, which is sinโˆ’1 (1โˆ•2) = ๐œ‹โˆ•6. Using a graph of the sine function on the interval 0 โ‰ค ๐œƒ โ‰ค 2๐œ‹,
we see that the two solutions to sin ๐œƒ = 1โˆ•2 are given by ๐œƒ = ๐œ‹โˆ•6 and ๐œƒ = ๐œ‹ โˆ’ ๐œ‹โˆ•6 = 5๐œ‹โˆ•6. Combining the above
observations, we see that there are four solutions to the original equation: ๐œ‹โˆ•2, 3๐œ‹โˆ•2, ๐œ‹โˆ•6 and 5๐œ‹โˆ•6.
cos ๐œƒ = 0
sin ๐œƒ =
or
36. Using the trigonometric identity sec2 ๐œƒ = tan2 ๐œƒ + 1, we have
sec2 ๐œƒ
2
=
1 โˆ’ tan ๐œƒ
tan ๐œƒ + 1
=
1 โˆ’ tan ๐œƒ
tan2 ๐œƒ + tan ๐œƒ
=
0
tan ๐œƒ(tan ๐œƒ + 1)
=
0
tan ๐œƒ = 0
or
tan ๐œƒ = โˆ’1.
If tan ๐œƒ = 0, then we have three solutions: ๐œƒ = 0 and ๐œƒ = ๐œ‹ and ๐œƒ = 2๐œ‹. On the other hand, if tan ๐œƒ = โˆ’1, we first calculate
the associated reference angle, which is tanโˆ’1 (1) = ๐œ‹โˆ•4. Using a graph of the tangent function on the interval 0 โ‰ค ๐œƒ โ‰ค 2๐œ‹,
we see that the two solutions to tan ๐œƒ = โˆ’1 are given by ๐œƒ = ๐œ‹ โˆ’ ๐œ‹โˆ•4 = 3๐œ‹โˆ•4 and ๐œƒ = 2๐œ‹ โˆ’ ๐œ‹โˆ•4 = 7๐œ‹โˆ•4. Combining the
above observations, we see that there are five solutions to the original equation: 0, ๐œ‹, 2๐œ‹, 3๐œ‹โˆ•4, and 7๐œ‹โˆ•4.
9.2 SOLUTIONS
543
37. Using the trigonometric identity tan(2๐œƒ) = 2 tan ๐œƒโˆ•(1 โˆ’ tan2 ๐œƒ), we have
tan(2๐œƒ) + tan ๐œƒ
2 tan ๐œƒ
1 โˆ’ tan2 ๐œƒ
2 tan ๐œƒ
=
0
=
โˆ’ tan ๐œƒ
=
โˆ’ tan ๐œƒ + tan3 ๐œƒ
=
0
tan ๐œƒ(tan ๐œƒ โˆ’ 3)
=
0
tan ๐œƒ = 0
or
โˆš
tan ๐œƒ = ± 3.
3
tan ๐œƒ โˆ’ 3 tan ๐œƒ
2
โˆš
If tan ๐œƒ = 0, then we have three solutions: ๐œƒ = 0 and ๐œƒ =โˆš๐œ‹ and ๐œƒ = 2๐œ‹. On the other hand, if tan ๐œƒ = 3, we
first calculate the associated reference angle, which is tanโˆ’1 ( 3)โˆš= ๐œ‹โˆ•3. Using a graph of the tangent function on the
+ ๐œ‹โˆ•3 = 4๐œ‹โˆ•3.
interval 0 โ‰ค ๐œƒ โ‰ค 2๐œ‹,โˆšwe see that the two solutions to tan ๐œƒ = 3 are given by ๐œƒ = ๐œ‹โˆ•3 and ๐œƒ = ๐œ‹ โˆš
Finally, if tan ๐œƒ = โˆ’ 3, we again have a reference angle of ๐œ‹โˆ•3, and the two solutions to tan ๐œƒ = โˆ’ 3 are given by
๐œƒ = ๐œ‹ โˆ’ ๐œ‹โˆ•3 = 2๐œ‹โˆ•3 and ๐œƒ = 2๐œ‹ โˆ’ ๐œ‹โˆ•3 = 5๐œ‹โˆ•3. Combining the above observations, we see that there are seven solutions
to the original equation: 0, ๐œ‹, ๐œ‹โˆ•3, 4๐œ‹โˆ•3, 2๐œ‹โˆ•3, 5๐œ‹โˆ•3, and 2๐œ‹.
38. Not an identity. False for ๐‘ฅ = 2.
39. Not an identity. False for ๐‘ฅ = 2.
40. Not an identity. False for ๐‘ฅ = 2.
41. Not an identity. False for ๐‘ฅ = ๐œ‹โˆ•2.
42. Not an identity. False for ๐‘ฅ = 2.
43. If we let ๐‘ฅ = 1, then we have
sin(๐‘ฅ2 ) = sin(12 ) = 0.841 โ‰  1.683 = 2 sin 1 = 2 sin ๐‘ฅ.
Therefore, since the equation is not true for ๐‘ฅ = 1, it is not an identity.
sin 2๐‘ฅ
2 sin ๐‘ฅ cos ๐‘ฅ
sin ๐‘ฅ
2 sin ๐‘ฅ cos ๐‘ฅ
44. Identity.
=
=
=
= tan ๐‘ฅ.
1 + cos 2๐‘ฅ
cos ๐‘ฅ
1 + 2 cos2 ๐‘ฅ โˆ’ 1
2 cos2 ๐‘ฅ
45. If we let ๐ด = 1, then we have
sin(2๐ด)
sin 2
=
= โˆ’2.185 โ‰  3.115 = 2 tan 1 = 2 tan ๐ด.
cos(2๐ด)
cos 2
Therefore, since the equation is not true for ๐ด = 1, it is not an identity.
46. We have
โˆ’(1 โˆ’ sin2 ๐œƒ)
sin2 ๐œƒ โˆ’ 1
=
cos ๐œƒ
cos ๐œƒ
โˆ’ cos2 ๐œƒ
=
cos ๐œƒ
= โˆ’ cos ๐œƒ.
Therefore, the equation is an identity.
47. Not an identity. False for ๐‘ฅ = 0.
sin ๐‘ฅ
sin2 ๐‘ฅ 1 โˆ’ cos2 ๐‘ฅ
=
=
.
cos ๐‘ฅ
cos ๐‘ฅ
cos ๐‘ฅ
49. Working on the left side, we have
48. Identity. sin ๐‘ฅ tan ๐‘ฅ = sin ๐‘ฅ โ‹…
sin ๐‘ก
1
1
=
+
tan ๐‘ก
cos ๐‘ก sin ๐‘กโˆ• cos ๐‘ก
sin ๐‘ก cos ๐‘ก
+
=
cos ๐‘ก sin ๐‘ก
sin2 ๐‘ก + cos2 ๐‘ก
=
cos ๐‘ก sin ๐‘ก
1
=
.
sin ๐‘ก cos ๐‘ก
Therefore, the left side equals the right side and the equation is an identity.
tan ๐‘ก +
544
Chapter Nine /SOLUTIONS
50. If we let ๐‘ฅ = 1, then we have
sin
( )
1
= sin 1 = 0.841 โ‰  0 = sin 1 โˆ’ sin 1 = sin 1 โˆ’ sin ๐‘ฅ.
๐‘ฅ
Therefore, since the equation is not true for ๐‘ฅ = 1, it is not an identity.
sin 2๐‘ฅ
2 sin ๐‘ฅ cos ๐‘ฅ
2 tan ๐‘ฅ
cos2 ๐‘ฅ
= sin 2๐‘ฅ.
=
=
51. Identity.
โ‹…
2
1
1 + tan ๐‘ฅ cos2 ๐‘ฅ
cos2 ๐‘ฅ + sin2 ๐‘ฅ
52. If we let ๐œƒ = 1, then we have
cos(2๐œƒ)
sin ๐œƒ
cos ๐œƒ
sin 1 cos 1
cos 2
โˆ’
=
โˆ’
= 0.915 โ‰  โˆ’0.458 =
=
.
cos ๐œƒ
sin ๐œƒ
cos 1 sin 1
sin 2
sin(2๐œƒ)
Therefore, since the equation is not true for ๐œƒ = 1, it is not an identity.
cos 2๐‘ฅ
1 โˆ’ tan2 ๐‘ฅ cos2 ๐‘ฅ
cos2 ๐‘ฅ โˆ’ sin2 ๐‘ฅ
= cos 2๐‘ฅ.
=
=
โ‹…
2
2
1
1 + tan ๐‘ฅ cos ๐‘ฅ
cos2 ๐‘ฅ + sin2 ๐‘ฅ
54. (a) We can rewrite the equation as follows:
53. Identity.
0 = cos 2๐œƒ + cos ๐œƒ = 2 cos2 ๐œƒ โˆ’ 1 + cos ๐œƒ.
Factoring, we get
(2 cos ๐œƒ โˆ’ 1)(cos ๐œƒ + 1) = 0.
Thus the solutions occur when cos ๐œƒ = โˆ’1 or cos ๐œƒ = 12 . These are special values of cosine. If cos ๐œƒ = โˆ’1 then we
have ๐œƒ = 180โ—ฆ . If cos ๐œƒ =
1
2
we have ๐œƒ = 60โ—ฆ or 300โ—ฆ . Thus the solutions are
๐œƒ = 60โ—ฆ , 180โ—ฆ , and 300โ—ฆ .
(b) Using the Pythagorean identity, we can substitute cos2 ๐œƒ = 1 โˆ’ sin2 ๐œƒ and get
2(1 โˆ’ sin2 ๐œƒ) = 3 sin ๐œƒ + 3.
This gives
โˆ’2 sin2 ๐œƒ โˆ’ 3 sin ๐œƒ โˆ’ 1 = 0.
Factoring, we get
โˆ’2 sin2 ๐œƒ โˆ’ 3 sin ๐œƒ โˆ’ 1 = โˆ’(2 sin ๐œƒ + 1)(sin ๐œƒ + 1) = 0.
Thus the solutions occur when sin ๐œƒ = โˆ’ 12 or when sin ๐œƒ = โˆ’1. If sin ๐œƒ = โˆ’ 12 , we have
๐œƒ=
7๐œ‹
6
and
If sin ๐œƒ = โˆ’1, we have
๐œƒ=
11๐œ‹
.
6
3๐œ‹
.
2
โˆš
55. Note the hypotenuse of the triangle is 1 + ๐‘ฆ2 .
๐‘ฆ
(a) ๐‘ฆ = = tan ๐œƒ.
1
(b) cos ๐œ™ = sin(๐œ‹โˆ•2 โˆ’ ๐œ™) = sin ๐œƒ.
)2
(
โˆš
1
1
1
, we have 1 + ๐‘ฆ2 =
(c) Since cos ๐œƒ = โˆš
. (Alternatively, 1 + ๐‘ฆ2 = 1 + tan2 ๐œƒ.)
, or 1 + ๐‘ฆ2 =
cos ๐œƒ
cos ๐œƒ
1 + ๐‘ฆ2
1
1
(d) Triangle area = (base)(height) = (1)(๐‘ฆ). But ๐‘ฆ = tan ๐œƒ, so the area is 12 tan ๐œƒ.
2
2
โˆš
56. (a) By the Pythagorean theorem, the side adjacent to ๐œƒ has length 1 โˆ’ ๐‘ฆ2 . So
โˆš
โˆš
cos ๐œƒ = 1 โˆ’ ๐‘ฆ2 โˆ•1 = 1 โˆ’ ๐‘ฆ2 .
(b) Since sin ๐œƒ = ๐‘ฆโˆ•1, we have
๐‘ฆ
.
tan ๐œƒ = โˆš
1 โˆ’ ๐‘ฆ2
9.2 SOLUTIONS
545
(c) Using the double-angle formula,
cos(2๐œƒ) = 1 โˆ’ 2 sin2 ๐œƒ = 1 โˆ’ 2๐‘ฆ2 .
(d) Supplementary angles have equal sines:
sin(๐œ‹ โˆ’ ๐œƒ) = sin ๐œƒ = ๐‘ฆ.
โˆš
(e) Since cos(๐œ‹โˆ•2 โˆ’ ๐œƒ) = ๐‘ฆ, we have sin(cos (๐‘ฆ)) = sin(๐œ‹โˆ•2 โˆ’ ๐œƒ) = 1 โˆ’ ๐‘ฆ2 . So
โˆ’1
sin2 (cosโˆ’1 (๐‘ฆ)) = 1 โˆ’ ๐‘ฆ2 .
57. We have cos ๐œƒ = ๐‘ฅโˆ•3, so sin ๐œƒ =
โˆš
โˆš
1 โˆ’ (๐‘ฅโˆ•3)2 =
9โˆ’๐‘ฅ2
.
3
Therefore,
)
9 โˆ’ ๐‘ฅ2 ( ๐‘ฅ ) 2๐‘ฅ โˆš
=
9 โˆ’ ๐‘ฅ2 .
sin 2๐œƒ = 2 sin ๐œƒ cos ๐œƒ = 2
3
3
9
( )2
2
๐‘ฅ+1
2
58. We have sin ๐œƒ = ๐‘ฅ+1
,
so
cos
2๐œƒ
=
1
โˆ’
2
sin
๐œƒ
=
1
โˆ’
2
.
= 1 โˆ’ 2(๐‘ฅ+1)
5
5
25
โˆš
59. (a) Let ๐œƒ = cosโˆ’1 ๐‘ฅ, so cos ๐œƒ = ๐‘ฅ. Then, since 0 โ‰ค ๐œƒ โ‰ค ๐œ‹, sin ๐œƒ = 1 โˆ’ ๐‘ฅ2 and tan ๐œƒ =
(โˆš
tan 2๐œƒ =
2 tan ๐œƒ
.
1โˆ’tan2 ๐œƒ
โˆ’1
Now 1 โˆ’ tan2 ๐œƒ = 1 โˆ’
1โˆ’๐‘ฅ2
๐‘ฅ2
(b) Let ๐œƒ = tan ๐‘ฅ, so tan ๐œƒ = ๐‘ฅ. Then sin ๐œƒ =
)(
)
(
2๐‘ฅ
1
โˆš
= 1+๐‘ฅ
2 โˆš๐‘ฅ 2
.
2
2
1+๐‘ฅ
=
2๐‘ฅ2 โˆ’1
,
๐‘ฅ2
๐‘ฅ
โˆš
1+๐‘ฅ2
so tan 2๐œƒ
โˆš
2
= 2 1โˆ’๐‘ฅ
๐‘ฅ
1
โˆš
and cos ๐œƒ =
1+๐‘ฅ2
โ‹…
๐‘ฅ2
2๐‘ฅ2 โˆ’1
=
โˆš
1โˆ’๐‘ฅ2
,
๐‘ฅ
โˆš
2๐‘ฅ 1โˆ’๐‘ฅ2
.
2๐‘ฅ2 โˆ’1
โˆ’1
, so sin(2 tan
and tan(2 cosโˆ’1 ๐‘ฅ) =
๐‘ฅ) = sin 2๐œƒ = 2 sin ๐œƒ cos ๐œƒ =
1+๐‘ฅ
60. We will use the identity cos(2๐‘ฅ) = 2 cos2 ๐‘ฅ โˆ’ 1, where ๐‘ฅ will be 2๐œƒ.
cos 4๐œƒ = cos(2๐‘ฅ)
= 2 cos2 ๐‘ฅ โˆ’ 1 (using the identity for cos(2๐‘ฅ))
= 2(2 cos2 ๐œƒ โˆ’ 1)2 โˆ’ 1 (using the identity for cos(2๐œƒ))
61. First use sin(2๐‘ฅ) = 2 sin ๐‘ฅ cos ๐‘ฅ, where ๐‘ฅ = 2๐œƒ. Then
sin(4๐œƒ) = sin(2๐‘ฅ) = 2 sin(2๐œƒ) cos(2๐œƒ).
Since sin(2๐œƒ) = 2 sin ๐œƒ cos ๐œƒ and cos(2๐œƒ) = 2 cos2 ๐œƒ โˆ’ 1, we have
sin 4๐œƒ = 2(2 sin ๐œƒ cos ๐œƒ)(2 cos2 ๐œƒ โˆ’ 1).
62. (a) Since ๐œ‹โˆ•2 < ๐‘ก โ‰ค ๐œ‹ we have 0 โ‰ค ๐œ‹ โˆ’ ๐‘ก < ๐œ‹โˆ•2 so the double-angle formula for sine can be used for the angle ๐œƒ = ๐œ‹ โˆ’ ๐‘ก.
Therefore sin 2๐œƒ = 2 sin ๐œƒ cos ๐œƒ tells us that
sin 2(๐œ‹ โˆ’ ๐‘ก) = 2 sin(๐œ‹ โˆ’ ๐‘ก) cos(๐œ‹ โˆ’ ๐‘ก).
(b) By periodicity, sin 2(๐œ‹ โˆ’ ๐‘ก) = sin(2๐œ‹ โˆ’ 2๐‘ก) = sin(โˆ’2๐‘ก). By oddness, sin(โˆ’2๐‘ก) = โˆ’ sin 2๐‘ก. Thus
sin 2(๐œ‹ โˆ’ ๐‘ก) = โˆ’ sin 2๐‘ก.
(c) We have cos(๐œ‹ โˆ’๐‘ก) = โˆ’ cos(โˆ’๐‘ก) = โˆ’ cos ๐‘ก, where the first equality is by what was given and the second by the evenness
of cosine.
Similarly, we have sin(๐œ‹ โˆ’ ๐‘ก) = โˆ’ sin(โˆ’๐‘ก) = โˆ’(โˆ’ sin ๐‘ก) = sin ๐‘ก where the first equality is by what was given and
the second by the oddness of sine.
(d) Substitution of the results of parts (b) and (c) into part (a) shows that
โˆ’ sin 2๐‘ก = 2 sin ๐‘ก(โˆ’ cos ๐‘ก).
Multiplication by โˆ’1 gives
sin 2๐‘ก = 2 sin ๐‘ก cos ๐‘ก.
546
Chapter Nine /SOLUTIONS
63. (a) Since โˆ’๐œ‹ โ‰ค ๐‘ก < 0 we have 0 < โˆ’๐‘ก โ‰ค ๐œ‹ so the double-angle formula for sine can be used for the angle ๐œƒ = โˆ’๐‘ก.
Therefore sin 2๐œƒ = 2 sin ๐œƒ cos ๐œƒ tells us that
sin(โˆ’2๐‘ก) = 2 sin(โˆ’๐‘ก) cos(โˆ’๐‘ก).
(b) Since sine is odd, we have sin(โˆ’2๐‘ก) = โˆ’ sin 2๐‘ก. Since sine is odd and cosine is even, we have
2 sin(โˆ’๐‘ก) cos(โˆ’๐‘ก) = 2(โˆ’ sin ๐‘ก) cos ๐‘ก = โˆ’2 sin ๐‘ก cos ๐‘ก.
Substitution of these results into the results of part (a) shows that
โˆ’ sin(2๐‘ก) = โˆ’2 sin ๐‘ก cos ๐‘ก.
Multiplication by โˆ’1 gives
sin 2๐‘ก = 2 sin ๐‘ก cos ๐‘ก.
64. (a) Since ๐œ‹โˆ•2 < ๐‘ก โ‰ค ๐œ‹ we have 0 โ‰ค ๐œ‹ โˆ’ ๐‘ก < ๐œ‹โˆ•2 so the double-angle formula for cosine can be used for the angle
๐œƒ = ๐œ‹ โˆ’ ๐‘ก. Therefore cos 2๐œƒ = 1 โˆ’ 2 sin2 ๐œƒ tells us that
cos 2(๐œ‹ โˆ’ ๐‘ก) = 1 โˆ’ 2 sin2 (๐œ‹ โˆ’ ๐‘ก).
(b) By periodicity, cos 2(๐œ‹ โˆ’ ๐‘ก) = cos(2๐œ‹ โˆ’ 2๐‘ก) = cos(โˆ’2๐‘ก). By evenness, cos(โˆ’2๐‘ก) = cos 2๐‘ก. Thus
cos 2(๐œ‹ โˆ’ ๐‘ก) = cos 2๐‘ก.
(c) We have 1 โˆ’ 2 sin2 (๐œ‹ โˆ’ ๐‘ก) = 1 โˆ’ 2(โˆ’ sin(โˆ’๐‘ก))2 = 1 โˆ’ 2(sin ๐‘ก)2 where the first equality is by what is given and the second
by the oddness of sine.
(d) Substitution of the results of parts (b) and (c) into part (a) gives
cos 2๐‘ก = 1 โˆ’ 2 sin2 ๐‘ก.
65. (a) Since โˆ’๐œ‹ โ‰ค ๐‘ก < 0 we have 0 < โˆ’๐‘ก โ‰ค ๐œ‹ so the double-angle formula for cosine can be used for the angle ๐œƒ = โˆ’๐‘ก.
Therefore cos 2๐œƒ = 1 โˆ’ 2 sin2 ๐œƒ tells us that
cos(โˆ’2๐‘ก) = 1 โˆ’ 2 sin2 (โˆ’๐‘ก).
(b) Since cosine is even we have cos(โˆ’2๐‘ก) = cos 2๐‘ก. Since sine is odd we have
โˆ’2 sin2 (โˆ’๐‘ก) = 1 โˆ’ 2(โˆ’ sin ๐‘ก)2 = 1 โˆ’ 2 sin2 ๐‘ก.
Substitution of these results into the results of part (a) gives
cos 2๐‘ก = 1 โˆ’ 2 sin2 ๐‘ก.
66. By graphing we can see which expressions appear to be identically equal. The graphs all show the same window, โˆ’2๐œ‹ โ‰ค
๐‘ฅ โ‰ค 2๐œ‹, โˆ’4 โ‰ค ๐‘ฆ โ‰ค 4. The following pairs of expressions look identical:
๐‘Ž and ๐‘–;
๐‘ and ๐‘™;
๐‘ and ๐‘‘ and ๐‘“ ;
๐‘’ and ๐‘”;
โ„Ž and ๐‘—.
We can check the identities algebraically. For example, for ๐‘Ž and ๐‘–:
2 cos2 ๐‘ก + sin ๐‘ก + 1 = 2(1 โˆ’ sin2 ๐‘ก) + sin ๐‘ก + 1 = โˆ’2 sin2 ๐‘ก + sin ๐‘ก + 3.
(a)
(b)
4
3
2
1
โˆ’2๐œ‹
โˆ’๐œ‹ โˆ’1
โˆ’2
โˆ’3
โˆ’4
๐œ‹
2๐œ‹
(c)
4
3
2
1
โˆ’2๐œ‹
โˆ’๐œ‹ โˆ’1
โˆ’2
โˆ’3
โˆ’4
๐œ‹
2๐œ‹
4
3
2
1
โˆ’2๐œ‹
โˆ’๐œ‹ โˆ’1
โˆ’2
โˆ’3
โˆ’4
๐œ‹
2๐œ‹
9.3 SOLUTIONS
(d)
(e)
4
3
2
1
โˆ’2๐œ‹
(g)
โˆ’๐œ‹ โˆ’1
โˆ’2
โˆ’3
โˆ’4
๐œ‹
2๐œ‹
โˆ’2๐œ‹
(j)
โˆ’๐œ‹ โˆ’1
โˆ’2
โˆ’3
โˆ’4
๐œ‹
2๐œ‹
โˆ’๐œ‹ โˆ’1
โˆ’2
โˆ’3
โˆ’4
๐œ‹
2๐œ‹
โˆ’๐œ‹ โˆ’1
โˆ’2
โˆ’3
โˆ’4
๐œ‹
โˆ’2๐œ‹
โˆ’2๐œ‹
โˆ’๐œ‹ โˆ’1
โˆ’2
โˆ’3
โˆ’4
(i)
โˆ’๐œ‹ โˆ’1
โˆ’2
โˆ’3
โˆ’4
๐œ‹
โˆ’2๐œ‹
โˆ’๐œ‹ โˆ’1
โˆ’2
โˆ’3
โˆ’4
(l)
โˆ’๐œ‹ โˆ’1
โˆ’2
โˆ’3
โˆ’4
๐œ‹
(m)
2๐œ‹
โˆ’๐œ‹ โˆ’1
โˆ’2
โˆ’3
โˆ’4
โˆ’2๐œ‹
๐œ‹
2๐œ‹
๐œ‹
2๐œ‹
๐œ‹
2๐œ‹
4
3
2
1
โˆ’๐œ‹ โˆ’1
โˆ’2
โˆ’3
โˆ’4
4
3
2
1
โˆ’2๐œ‹
๐œ‹
4
3
2
1
2๐œ‹
4
3
2
1
โˆ’2๐œ‹
4
3
2
1
2๐œ‹
4
3
2
1
(k)
4
3
2
1
โˆ’2๐œ‹
โˆ’2๐œ‹
(h)
4
3
2
1
(f)
4
3
2
1
2๐œ‹
Solutions for Section 9.3
Exercises
1. Applying the sum-of-angles formula for sine, we have
sin(๐ด + ๐ต) = sin ๐ด cos ๐ต + cos ๐ด sin ๐ต
= (0.84)(0.39) + (0.54)(0.92) = 0.8244.
2. Applying the difference-of-angles formula for sine, we have
sin(๐ด โˆ’ ๐ต) = sin ๐ด cos ๐ต โˆ’ cos ๐ด sin ๐ต
= (0.84)(0.39) โˆ’ (0.54)(0.92) = โˆ’0.1692.
3. Applying the sum-of-angles formula for cosine, we have
cos(๐ด + ๐ต) = cos ๐ด cos ๐ต โˆ’ sin ๐ด sin ๐ต
= (0.54)(0.39) โˆ’ (0.84)(0.92) = โˆ’0.5622.
547
548
Chapter Nine /SOLUTIONS
4. Applying the difference-of-angles formula for cosine, we have
cos(๐ด โˆ’ ๐ต) = cos ๐ด cos ๐ต + sin ๐ด sin ๐ต
= (0.54)(0.39) + (0.84)(0.92) = 0.9834.
5. Applying the sum-of-angles formula for sine, we have
sin(๐‘† + ๐‘‡ ) = sin ๐‘† cos ๐‘‡ + cos ๐‘† sin ๐‘‡
( )( ) ( )( )
7
416
8
24
15
=
+
=
.
25
17
25
17
425
6. Applying the difference-of-angles formula for sine, we have
sin(๐‘† โˆ’ ๐‘‡ ) = sin ๐‘† cos ๐‘‡ โˆ’ cos ๐‘† sin ๐‘‡
( )( ) ( )( )
304
8
24
15
7
โˆ’
=โˆ’
.
=
25
17
25
17
425
7. Applying the sum-of-angles formula for cosine, we have
cos(๐‘† + ๐‘‡ ) = cos ๐‘† cos ๐‘‡ โˆ’ sin ๐‘† sin ๐‘‡
( )( ) ( )( )
24
8
7
15
87
=
โˆ’
=
.
25
17
25
17
425
8. Applying the difference-of-angles formula for cosine, we have
cos(๐‘† โˆ’ ๐‘‡ ) = cos ๐‘† cos ๐‘‡ + sin ๐‘† sin ๐‘‡
( )( ) ( )( )
297
8
7
15
24
+
=
.
=
25
17
25
17
425
9. Write sin 15โ—ฆ = sin(45โ—ฆ โˆ’ 30โ—ฆ ), and then apply the appropriate trigonometric identity.
sin 15โ—ฆ = sin(45โ—ฆ โˆ’ 30โ—ฆ )
= sin 45โ—ฆ cos 30โ—ฆ โˆ’ sin 30โ—ฆ cos 45โ—ฆ
โˆš
โˆš
6
2
โˆ’
=
4
4
Similarly, sin 75โ—ฆ = sin(45โ—ฆ + 30โ—ฆ ).
sin 75โ—ฆ = sin(45โ—ฆ + 30โ—ฆ )
= sin 45โ—ฆ cos 30โ—ฆ + sin 30โ—ฆ cos 45โ—ฆ
โˆš
โˆš
6
2
+
=
4
4
Also, note that cos 75โ—ฆ = sin(90โ—ฆ โˆ’ 75โ—ฆ ) = sin 15โ—ฆ , and cos 15โ—ฆ = sin(90โ—ฆ โˆ’ 15โ—ฆ ) = sin 75โ—ฆ .
10. Since 345โ—ฆ is 300โ—ฆ + 45โ—ฆ , we can use the sum-of-angle formula for sine and say that
โˆš
โˆš
โˆš
โˆš
โˆš
sin 345 = sin 300 cos 45 + sin 45 cos 300 = (โˆ’ 3โˆ•2)( 2โˆ•2) + ( 2โˆ•2)(1โˆ•2) = (โˆ’ 6 + 2)โˆ•4.
11. Since 105โ—ฆ is 60โ—ฆ + 45โ—ฆ , we can use the sum-of-angle formula for sine and say that
โˆš
โˆš
โˆš
โˆš
โˆš
sin 105 = sin 60 cos 45 + sin 45 cos 60 = ( 3โˆ•2)( 2โˆ•2) + ( 2โˆ•2)(1โˆ•2) = ( 6 + 2)โˆ•4.
9.3 SOLUTIONS
12. Since 285โ—ฆ is 240โ—ฆ + 45โ—ฆ , we can use the sum-of-angle formula for cosine and say that
โˆš
โˆš
โˆš
โˆš
โˆš
cos 285 = cos 240 cos 45 โˆ’ sin 240 sin 45 = (โˆ’1โˆ•2)( 2โˆ•2) โˆ’ (โˆ’ 3โˆ•2)( 2โˆ•2) = (โˆ’ 2 + 6)โˆ•4.
13. (a) We have sin(15โ—ฆ + 42โ—ฆ ) = sin 15โ—ฆ cos 42โ—ฆ + sin 42โ—ฆ cos 15โ—ฆ = 0.839.
(b) See Figure 9.31.
1
โˆ’360โ—ฆ โˆ’180โ—ฆ
180โ—ฆ
360โ—ฆ
๐‘ฅ (degrees)
โˆ’1
Figure 9.31
14. (a) We have sin(15โ—ฆ โˆ’ 42โ—ฆ ) = sin 15โ—ฆ cos 42โ—ฆ โˆ’ sin 42โ—ฆ cos 15โ—ฆ = โˆ’0.454.
(b) See Figure 9.32.
1
โˆ’360โ—ฆ โˆ’180โ—ฆ
180โ—ฆ
360โ—ฆ
๐‘ฅ (degrees)
โˆ’1
Figure 9.32
15. (a) We have cos(15โ—ฆ + 42โ—ฆ ) = cos 15โ—ฆ cos 42โ—ฆ โˆ’ sin 15โ—ฆ sin 42โ—ฆ = 0.545.
(b) See Figure 9.33.
1
โˆ’360โ—ฆ โˆ’180โ—ฆ
180โ—ฆ
360โ—ฆ
๐‘ฅ (degrees)
โˆ’1
Figure 9.33
16. (a) We have cos(15โ—ฆ โˆ’ 42โ—ฆ ) = cos 15โ—ฆ cos 42โ—ฆ + sin 15โ—ฆ sin 42โ—ฆ = 0.891.
(b) See Figure 9.34.
1
โˆ’360โ—ฆ โˆ’180โ—ฆ
180โ—ฆ
โˆ’1
Figure 9.34
360โ—ฆ
๐‘ฅ (degrees)
549
550
Chapter Nine /SOLUTIONS
Problems
17. First, we note that the unlabeled side of the triangle has length
โˆš
4 โˆ’ ๐‘ฆ2 .
(a) Using an angle difference formula, we have
cos(๐œƒ โˆ’ ๐œ™) = cos ๐œƒ cos ๐œ™ + sin ๐œƒ sin ๐œ™
โˆš
โˆš
4 โˆ’ ๐‘ฆ2 ๐‘ฆ ๐‘ฆ
4 โˆ’ ๐‘ฆ2
=
โ‹… + โ‹…
2
2 2
2
โˆš
๐‘ฆ 4 โˆ’ ๐‘ฆ2
.
=
2
(b) Using an angle difference formula, we have
sin(๐œƒ โˆ’ ๐œ™) = sin ๐œƒ cos ๐œ™ โˆ’ cos ๐œƒ sin ๐œ™
โˆš
โˆš
4 โˆ’ ๐‘ฆ2
4 โˆ’ ๐‘ฆ2
๐‘ฆ ๐‘ฆ
โ‹…
= โ‹… โˆ’
2 2
2
2
๐‘ฆ2 โˆ’ (4 โˆ’ ๐‘ฆ2 )
=
4
๐‘ฆ2 โˆ’ 2
=
.
2
(c) We have
โˆš
4 โˆ’ ๐‘ฆ2 ๐‘ฆ
โˆ’
2
2
โˆš
4 โˆ’ ๐‘ฆ2 โˆ’ ๐‘ฆ
=
.
2
cos ๐œƒ โˆ’ cos ๐œ™ =
(d) Since ๐œƒ + ๐œ™ = ๐œ‹โˆ•2, we have
sin(๐œƒ + ๐œ™) = sin
( )
๐œ‹
= 1.
2
18. (a) cos(๐‘ก โˆ’ ๐œ‹โˆ•2) = cos ๐‘ก cos ๐œ‹โˆ•2 + sin ๐‘ก sin ๐œ‹โˆ•2 = cos ๐‘ก โ‹… 0 + sin ๐‘ก โ‹… 1 = sin ๐‘ก.
(b) sin(๐‘ก + ๐œ‹โˆ•2) = sin ๐‘ก cos ๐œ‹โˆ•2 + sin ๐œ‹โˆ•2 cos ๐‘ก = sin ๐‘ก โ‹… 0 + 1 โ‹… cos ๐‘ก = cos ๐‘ก.
19. For the sine, we have sin 2๐‘ก = sin(๐‘ก + ๐‘ก) = sin ๐‘ก cos ๐‘ก + sin ๐‘ก cos ๐‘ก = 2 sin ๐‘ก cos ๐‘ก. This is the double-angle formula for sine.
For cosine, we have cos 2๐‘ก = cos(๐‘ก + ๐‘ก) = cos ๐‘ก cos ๐‘ก โˆ’ sin ๐‘ก sin ๐‘ก = cos2 ๐‘ก โˆ’ sin2 ๐‘ก. This is the double-angle formula for
cosine.
20. (a) Applying the sum-of-angles formula for sine, we have
sin(๐ด + ๐ต) = sin ๐ด cos ๐ต + cos ๐ด sin ๐ต
= (0.67)(0.48) + (0.74)(0.87) = 0.9654.
(b) Applying the sum-of-angles formula for cosine, we have
cos(๐ด + ๐ต) = cos ๐ด cos ๐ต โˆ’ sin ๐ด sin ๐ต
= (0.74)(0.48) โˆ’ (0.67)(0.87) = โˆ’0.2277.
(c) Since tan ๐œƒ = sin ๐œƒโˆ• cos ๐œƒ, we have
tan(๐ด + ๐ต) =
sin(๐ด + ๐ต)
0.9654
=
= โˆ’4.2398.
cos(๐ด + ๐ต)
โˆ’0.2277
9.3 SOLUTIONS
21. We have
cos 3๐‘ก = cos(2๐‘ก + ๐‘ก)
= cos 2๐‘ก cos ๐‘ก โˆ’ sin 2๐‘ก sin ๐‘ก
= (2 cos2 ๐‘ก โˆ’ 1) cos ๐‘ก โˆ’ (2 sin ๐‘ก cos ๐‘ก) sin ๐‘ก
= cos ๐‘ก((2 cos2 ๐‘ก โˆ’ 1) โˆ’ 2 sin2 ๐‘ก)
= cos ๐‘ก(2 cos2 ๐‘ก โˆ’ 1 โˆ’ 2(1 โˆ’ cos2 ๐‘ก))
= cos ๐‘ก(2 cos2 ๐‘ก โˆ’ 1 โˆ’ 2 + 2 cos2 ๐‘ก)
= cos ๐‘ก(4 cos2 ๐‘ก โˆ’ 3)
= 4 cos3 ๐‘ก โˆ’ 3 cos ๐‘ก,
as required.
22. We are to prove that
cos((๐‘› + 1)๐œƒ) = (2 cos ๐œƒ)(cos(๐‘›๐œƒ)) โˆ’ cos((๐‘› โˆ’ 1)๐œƒ).
This holds if, and only if,
cos((๐‘› + 1)๐œƒ) + cos((๐‘› โˆ’ 1)๐œƒ) = (2 cos ๐œƒ)(cos(๐‘›๐œƒ)).
Using the sum-of-cosines formula,
cos ๐‘ข + cos ๐‘ฃ = 2 cos
๐‘ข+๐‘ฃ
๐‘ขโˆ’๐‘ฃ
cos
,
2
2
with ๐‘ข = (๐‘› + 1)๐œƒ and ๐‘ฃ = (๐‘› โˆ’ 1)๐œƒ gives the result:
(๐‘› + 1)๐œƒ โˆ’ (๐‘› โˆ’ 1)๐œƒ
(๐‘› + 1)๐œƒ + (๐‘› โˆ’ 1)๐œƒ
cos
2
2
= 2 cos(๐‘›๐œƒ) cos ๐œƒ.
cos((๐‘› + 1)๐œƒ) + 2 cos((๐‘› โˆ’ 1)๐œƒ) = 2 cos
23. We manipulate the equation for the average rate of change as follows:
cos(๐‘ฅ + โ„Ž) โˆ’ cos ๐‘ฅ
cos ๐‘ฅ cos โ„Ž โˆ’ sin ๐‘ฅ sin โ„Ž โˆ’ cos ๐‘ฅ
=
โ„Ž
โ„Ž
cos ๐‘ฅ cos โ„Ž โˆ’ cos ๐‘ฅ sin ๐‘ฅ sin โ„Ž
=
โˆ’
โ„Ž
โ„Ž
(
)
(
)
cos โ„Ž โˆ’ 1
sin โ„Ž
= cos ๐‘ฅ
โˆ’ sin ๐‘ฅ
.
โ„Ž
โ„Ž
24. We manipulate the equation for the average rate of change as follows:
sin(๐‘ฅ + โ„Ž) โˆ’ sin ๐‘ฅ
sin ๐‘ฅ cos โ„Ž + sin โ„Ž cos ๐‘ฅ โˆ’ sin ๐‘ฅ
=
โ„Ž
โ„Ž
sin ๐‘ฅ cos โ„Ž โˆ’ sin ๐‘ฅ sin โ„Ž cos ๐‘ฅ
=
+
โ„Ž
โ„Ž
(
)
(
)
cos โ„Ž โˆ’ 1
sin โ„Ž
= sin ๐‘ฅ
+ cos ๐‘ฅ
.
โ„Ž
โ„Ž
25. We manipulate the equation for the average rate of change as follows:
tan ๐‘ฅ + tan โ„Ž
โˆ’ tan ๐‘ฅ
tan(๐‘ฅ + โ„Ž) โˆ’ tan ๐‘ฅ
1
= โˆ’ tan ๐‘ฅ tan โ„Ž
โ„Ž
โ„Ž
(tan ๐‘ฅ + tan โ„Ž โˆ’ tan ๐‘ฅ + tan2 ๐‘ฅ tan โ„Ž)โˆ•(1 โˆ’ tan ๐‘ฅ tan โ„Ž)
=
โ„Ž
tan โ„Ž + tan2 ๐‘ฅ tan โ„Ž
=
(1 โˆ’ tan ๐‘ฅ tan โ„Ž) โ‹… โ„Ž
551
552
Chapter Nine /SOLUTIONS
26. (a)
(b)
(c)
(d)
(e)
27. (a)
sin โ„Ž
sin โ„Ž
+ tan2 ๐‘ฅ โ‹…
cos
โ„Ž
cos
โ„Ž
= (
)
sin โ„Ž
โ‹…โ„Ž
1 โˆ’ tan ๐‘ฅ โ‹…
cos โ„Ž
sin โ„Ž
(1 + tan2 ๐‘ฅ)
cos
โ„Ž
= (
)
sin โ„Ž
โ‹…โ„Ž
1 โˆ’ tan ๐‘ฅ
cos โ„Ž
(
)
1
sin โ„Ž
โ‹…
2๐‘ฅ
cos โ„Ž
cos
= (
)
sin โ„Ž
1 โˆ’ tan ๐‘ฅ โ‹…
โ‹…โ„Ž
cos โ„Ž
1
โ‹… sin โ„Ž
2๐‘ฅ
cos
=
(cos โ„Ž โˆ’ tan ๐‘ฅ sin โ„Ž) โ‹… โ„Ž
1
โ‹… sin โ„Ž
( )
2๐‘ฅ
1
cos
=
โ‹…
cos โ„Ž โˆ’ sin โ„Ž tan ๐‘ฅ
โ„Ž
1
1 sin โ„Ž
โ‹…
.
=
cos โ„Ž โˆ’ sin โ„Ž tan ๐‘ฅ
cos2 ๐‘ฅ โ„Ž
โˆš
โˆš
๐‘ฃ
1 + cos 2๐‘ข
1 + cos ๐‘ฃ
From cos 2๐‘ข = 2 cos2 ๐‘ข โˆ’ 1, we obtain cos ๐‘ข = ±
and letting ๐‘ข = 2๐‘ฃ , cos = ±
.
2
2
2
โˆš
1 โˆ’ cos ๐‘ฃ
1
โˆš
±
sin ๐‘ฃ
2
1
1
1 โˆ’ cos ๐‘ฃ
2
we simplify to get tan ๐‘ฃ = ±
From tan ๐‘ฃ =
.
= โˆš
1
2
2
1 + cos ๐‘ฃ
1 + cos ๐‘ฃ
cos ๐‘ฃ
±
2
2
1
1
1
The sign of sin ๐‘ฃ is +, the sign of cos ๐‘ฃ is โˆ’, and the sign of tan ๐‘ฃ is โˆ’.
2
2
2
1
1
1
The sign of sin ๐‘ฃ is โˆ’, the sign of cos ๐‘ฃ is โˆ’, and the sign of tan ๐‘ฃ is +.
2
2
2
1
1
1
The sign of sin ๐‘ฃ is โˆ’, the sign of cos ๐‘ฃ is +, and the sign of tan ๐‘ฃ is โˆ’.
2
2
2
Since ฮ”๐ถ๐ด๐ท and ฮ”๐ถ๐ท๐ต are both right triangles, it is easy to calculate the sine and cosine of their angles:
๐‘1
๐‘
โ„Ž
cos ๐œƒ =
๐‘
๐‘2
sin ๐œ™ =
๐‘Ž
โ„Ž
cos ๐œ™ = .
๐‘Ž
sin ๐œƒ =
(b) We can calculate the areas of the triangles using the formula Area = 21 Base โ‹… Height:
1
๐‘ โ‹…โ„Ž
2 1
1
= (๐‘ sin ๐œƒ)(๐‘Ž cos ๐œ™),
2
1
Area ฮ”๐ถ๐ท๐ต = ๐‘2 โ‹… โ„Ž
2
1
= (๐‘Ž sin ๐œ™)(๐‘ cos ๐œƒ).
2
Area ฮ”๐ถ๐ด๐ท =
(c) We find the area of the whole triangle by summing the area of the two constituent triangles:
Area ฮ”๐ด๐ต๐ถ = Area ฮ”๐ถ๐ด๐ท + Area ๐ถ๐ท๐ต
9.3 SOLUTIONS
553
1
1
(๐‘ sin ๐œƒ)(๐‘Ž cos ๐œ™) + (๐‘Ž sin ๐œ™)(๐‘ cos ๐œƒ)
2
2
1
= ๐‘Ž๐‘(sin ๐œƒ cos ๐œ™ + sin ๐œ™ cos ๐œƒ)
2
1
= ๐‘Ž๐‘ sin(๐œƒ + ๐œ™)
2
1
= ๐‘Ž๐‘ sin ๐ถ.
2
=
28. (a) If ๐ต and ๐ถ are acute angles, draw the altitude from ๐ด, dividing side ๐‘Ž into two pieces, ๐‘Ž1 and ๐‘Ž2 , as shown in Figure 9.35.
Then ๐‘Ž1 = ๐‘ cos ๐ถ and ๐‘Ž2 = ๐‘ cos ๐ต, so ๐‘Ž = ๐‘Ž1 + ๐‘Ž2 = ๐‘ cos ๐ถ + ๐‘ cos ๐ต.
๐ด
๐‘
๐ด
๐‘
๐‘
๐‘
๐ถ
๐ต
๐‘Ž1
๐‘Ž2
๐ถ
๐ต
โœ›
Figure 9.35
๐‘Ž
๐‘Ž2
๐œ™
๐‘Ž1
โœฒ
Figure 9.36
If one of the angles ๐ต or ๐ถ (say ๐ต) is obtuse, draw the altitude from ๐ด as shown in Figure 9.36. Let ๐‘Ž1 be the
extension of side ๐‘Ž, so ๐‘Ž2 = ๐‘Ž1 +๐‘Ž, and let ๐œ™ be the exterior angle at ๐ต, so that ๐œ™ = 180โ—ฆ โˆ’๐ต. Therefore cos ๐œ™ = โˆ’ cos ๐ต.
Then ๐‘Ž2 = ๐‘ cos ๐ถ and ๐‘Ž1 = ๐‘ cos ๐œ™ = โˆ’๐‘ cos ๐ต. Thus ๐‘Ž = ๐‘Ž2 โˆ’ ๐‘Ž1 = ๐‘ cos ๐ถ โˆ’ (โˆ’๐‘ cos ๐ต) = ๐‘ cos ๐ถ + ๐‘ cos ๐ต.
(b) From the Law of Sines, sin๐‘Ž ๐ด = sin๐‘ ๐ต , so ๐‘ = sin๐‘Ž ๐ด โ‹… sin ๐ต, and similarly ๐‘ = sin๐‘Ž ๐ด โ‹… sin ๐ถ. Substituting these expressions
into the result of part (a), we have
๐‘Ž
๐‘Ž
๐‘Ž = ๐‘ cos ๐ถ + ๐‘ cos ๐ต =
sin ๐ต cos ๐ถ +
sin ๐ถ cos ๐ต,
sin ๐ด
sin ๐ด
or
๐‘Ž
๐‘Ž=
(sin ๐ต cos ๐ถ + sin ๐ถ cos ๐ต) .
sin ๐ด
Thus sin ๐ด = sin ๐ต cos ๐ถ + sin ๐ถ cos ๐ต. But ๐ด + ๐ต + ๐ถ = 180โ—ฆ , so ๐ด = 180โ—ฆ โˆ’ (๐ต + ๐ถ), and hence sin ๐ด = sin(๐ต + ๐ถ).
Therefore,
sin(๐ต + ๐ถ) = sin ๐ต cos ๐ถ + sin ๐ถ cos ๐ต.
29. (a) The coordinates of ๐‘ƒ1 are (cos ๐œƒ, sin ๐œƒ); for ๐‘ƒ2 they are (cos(โˆ’๐œ™), sin(โˆ’๐œ™)) = (cos ๐œ™, โˆ’ sin ๐œ™); for ๐‘ƒ3 they are (cos(๐œƒ +
๐œ™), sin(๐œƒ + ๐œ™)); and for ๐‘ƒ4 they are (1, 0).
(b) The triangles ๐‘ƒ1 ๐‘‚๐‘ƒ2 and ๐‘ƒ3 ๐‘‚๐‘ƒ4 are congruent by the side-angle-side property because โˆ ๐‘ƒ1 ๐‘‚๐‘ƒ2 = ๐œƒ + ๐œ™ = โˆ ๐‘ƒ3 ๐‘‚๐‘ƒ4 .
Therefore their corresponding sides ๐‘ƒ1 ๐‘ƒ2 and ๐‘ƒ3 ๐‘ƒ4 are equal.
(c) We have
(๐‘ƒ1 ๐‘ƒ2 )2 = (cos ๐œƒ โˆ’ cos ๐œ™)2 + (sin ๐œƒ + sin ๐œ™)2
= cos2 ๐œƒ โˆ’ 2 cos ๐œƒ cos ๐œ™ + cos2 ๐œ™ + sin2 ๐œƒ + 2 sin ๐œƒ sin ๐œ™ + sin2 ๐œ™
= cos2 ๐œƒ + sin2 ๐œƒ + cos2 ๐œ™ + sin2 ๐œ™ โˆ’ 2 cos ๐œƒ cos ๐œ™ + 2 sin ๐œƒ sin ๐œ™
= 2 โˆ’ 2(cos ๐œƒ cos ๐œ™ โˆ’ sin ๐œƒ sin ๐œ™)
We also have
(๐‘ƒ3 ๐‘ƒ4 )2 = (cos(๐œƒ + ๐œ™) โˆ’ 1)2 + (sin(๐œƒ + ๐œ™) โˆ’ 0)2
= cos2 (๐œƒ + ๐œ™) โˆ’ 2 cos(๐œƒ + ๐œ™) + 1 + sin2 (๐œƒ + ๐œ™)
= 2 โˆ’ 2 cos(๐œƒ + ๐œ™)
The distances ๐‘ƒ1 ๐‘ƒ2 and ๐‘ƒ3 ๐‘ƒ4 are the square roots of these expressions (but we will use the squares of the distances).
(d) (๐‘ƒ3 ๐‘ƒ4 )2 = (๐‘ƒ1 ๐‘ƒ2 )2 by part (b), so
2 โˆ’ 2 cos(๐œƒ + ๐œ™) = 2 โˆ’ 2(cos ๐œƒ cos ๐œ™ โˆ’ sin ๐œƒ sin ๐œ™)
cos(๐œƒ + ๐œ™) = cos ๐œƒ cos ๐œ™ โˆ’ sin ๐œƒ sin ๐œ™.
554
Chapter Nine /SOLUTIONS
Solutions for Section 9.4
Exercises
โˆš
โˆš
1. We have ๐ด = 82 + (โˆ’6)2 = 100 = 10. Since cos ๐œ™ = 8โˆ•10 = 0.8 and sin ๐œ™ = โˆ’6โˆ•10 = โˆ’0.6, we know that ๐œ™ is in
the fourth quadrant. Thus,
tan ๐œ™ = โˆ’
6
= โˆ’0.75
8
๐œ™ = tanโˆ’1 (โˆ’0.75) = โˆ’0.644,
and
so 8 sin ๐‘ก โˆ’ 6 cos ๐‘ก = 10 sin(๐‘ก โˆ’ 0.644).
โˆš
โˆš
2. We have ๐ด = 82 + 62 = 100 = 10. Since cos ๐œ™ = 8โˆ•10 = 0.8 and sin ๐œ™ = 6โˆ•10 = 0.6 are both positive, ๐œ™ is in the
first quadrant. Thus,
6
tan ๐œ™ = = 0.75
and
๐œ™ = tanโˆ’1 (0.75) = 0.644,
8
so 8 sin ๐‘ก + 6 cos ๐‘ก = 10 sin(๐‘ก + 0.644).
3. Since ๐‘Ž1 = โˆ’1 and ๐‘Ž2 = 1, we have
๐ด=
โˆš
โˆš
(โˆ’1)2 + 12 = 2
and
1
1
and sin ๐œ™ = โˆš
cos ๐œ™ = โˆ’ โˆš
and tan ๐œ™ = โˆ’1.
2
2
From the signs of cos ๐œ™ and sin ๐œ™, we see that ๐œ™ is in the second quadrant. Since
๐œ‹
tanโˆ’1 (โˆ’1) = โˆ’ ,
4
and the tangent function has period ๐œ‹, we take
๐œ™=๐œ‹โˆ’
Thus
โˆ’ sin ๐‘ก + cos ๐‘ก =
๐œ‹
3๐œ‹
=
.
4
4
)
(
โˆš
3๐œ‹
2 sin ๐‘ก +
.
4
4. Since ๐‘Ž1 = โˆ’2 and ๐‘Ž2 = 5, we have
๐ด=
โˆš
โˆš
(โˆ’2)2 + 52 = 29
and
5
5
โˆ’2
and sin ๐œ™ = โˆš
and tan ๐œ™ = โˆ’ .
cos ๐œ™ = โˆš
2
29
29
The signs of cos ๐œ™ and sin ๐œ™ show that ๐œ™ must be in the second quadrant. Since
( )
5
tanโˆ’1 โˆ’
= โˆ’1.190
2
and the tangent function has period ๐œ‹, we take
๐œ™ = ๐œ‹ โˆ’ 1.190 = 1.951.
Thus,
โˆ’2 sin 3๐‘ก + 5 cos 3๐‘ก =
โˆš
29 sin(3๐‘ก + 1.951).
9.4 SOLUTIONS
555
๐‘ฆ
5.
6
3
๐œ‹
๐‘ก
2๐œ‹
For the graphs to intersect, ๐‘ก + 5 sin ๐‘ก = ๐‘ก. So sin ๐‘ก = 0, or ๐‘ก = any integer multiple of ๐œ‹.
๐‘ฆ
6.
2
๐‘“ (๐‘ฅ) = ๐‘’โˆ’๐‘ฅ (2 cos ๐‘ฅ + sin ๐‘ฅ)
1
3
๐‘ฅ
1
The maximum value of ๐‘“ (๐‘ฅ) is 2, which occurs when ๐‘ฅ = 0. The minimum appears to be ๐‘ฆ โ‰ˆ โˆ’0.094, at ๐‘ฅ โ‰ˆ 2.820.
7. The function ๐‘ฆ = 10๐‘’โˆ’๐‘กโˆ•2 cos 2๐œ‹๐‘ก matches graph (I). We see that the oscillation is damped less and less each period, so the
amplitude (the function multiplying the cosine) must be decreasing and concave up. Only ๐‘’โˆ’๐‘กโˆ•2 has that characteristic.
8. The function ๐‘ฆ = 10(1 โˆ’ 0.01๐‘ก2 ) cos 2๐œ‹๐‘ก matches graph (IV). We see that the oscillation is damped more and more each
period, so the amplitude (the function multiplying the cosine) must be decreasing and concave down. Only 10(1 โˆ’ 0.01๐‘ก2 )
has that characteristic.
9. The function ๐‘ฆ = (10 โˆ’ ๐‘ก) cos 2๐œ‹๐‘ก matches graph (II). We see that the oscillation is damped equally each period, so the
amplitude (the function multiplying the cosine) must be decreasing and linear. Only 10 โˆ’ ๐‘ก has that characteristic.
10. The function ๐‘ฆ = (10 โˆ’ ๐‘ก) cos ๐‘ก matches graph (III). It is hard to see how the oscillation is damped, but the period is very
clearly not 1 as in the other graphs. If we draw ๐‘ฆ = ±(10 โˆ’ ๐‘ก) on the graph very accurately, we can see that it just touches
the peaks and troughs of the oscillating function.
11. (a) Substituting into ๐‘“ , we have
(
(
)) (
(
))
๐œ‹
๐œ‹
๐‘“ (3) โˆ’ ๐‘“ (2) = 10,000 โˆ’ 5000 cos
โ‹… 3 โˆ’ 10,000 โˆ’ 5000 cos
โ‹…2
6
6
๐œ‹
๐œ‹
= โˆ’5000 cos + 5000 cos
2
3
( )
1
= 0 + 5000
= 2500.
2
This means that the rabbit population increases by 2500 rabbits between March 1 (at ๐‘ก = 2) and April 1 (at ๐‘ก = 3).
(b) Using a graphing calculator to zoom in, or using the inverse cosine function, we see that ๐‘“ (๐‘ก) = 12,000 for ๐‘ก = 3.786
and ๐‘ก = 8.214. This means that the rabbit population reaches 12,000 sometime during late April (at ๐‘ก = 3.786) and
falls back to 12,000 sometime during early September (at ๐‘ก = 8.214).
Problems
12. Looking at the graph, which appears to be a damped oscillation, we first see that it starts at zero and goes up, so we begin
with sin ๐‘ก. Since there are 3 complete periods of oscillation from 0 to 6๐œ‹, the period is 2๐œ‹, and so we need only account
for the changed amplitude of sin ๐‘ก. The function ๐‘ฆ = 3๐‘’โˆ’๐‘กโˆ•10 on the graph is the amplitude function, so we multiply it by
sin ๐‘ก to get
๐‘ฆ = 3๐‘’โˆ’๐‘กโˆ•10 sin ๐‘ก.
556
Chapter Nine /SOLUTIONS
13. (a) This is linear growth: ๐‘ƒ = 5000 + 300๐‘ก.
(b) This is exponential growth: ๐‘ƒ = 3200(1.04)๐‘ก .
(c) The population is oscillating, so we can use a trigonometric model. Since the population starts at its lowest value, we
use a reflected cosine function of the form
๐‘ƒ (๐‘ก) = โˆ’๐ด cos(๐ต๐‘ก) + ๐‘˜.
Low = 1200; High = 3000.
Midline ๐‘˜ = 12 (3000 + 1200) = 2100.
Amplitude ๐ด = 3000 โˆ’ 2100 = 900.
The period is 5, so 5 = 2๐œ‹โˆ•๐ต, and we have ๐ต = 2๐œ‹โˆ•5. Thus,
)
(
2๐œ‹
๐‘ก + 2100.
๐‘ƒ (๐‘ก) = โˆ’900 cos
5
๐œ‹๐‘ก
are
6
equal to zero when ๐‘ก = 0. Thus, ๐‘ = ๐‘“ (0) = 20. We see that in the 12-month period between Jan 1 and Jan 1 (a whole
period of the periodic component), the value of the stock rose by $30.00. Therefore, the linear component grows at
the rate of $30.00/year, or in terms of months, 30โˆ•12 = $2.50/month. So ๐‘š = 2.5. Thus we have
14. (a) We start the time count on Jan 1, so substituting ๐‘ก = 0 into ๐‘“ (๐‘ก) gives us the value of ๐‘, since both ๐‘š๐‘ก and ๐ด sin
๐‘ƒ = ๐‘“ (๐‘ก) = 2.5๐‘ก + 20 + ๐ด sin
๐œ‹๐‘ก
.
6
At an arbitrary data point, say (Apr 1, 37.50), we can solve for ๐ด. Since January 1 corresponds to ๐‘ก = 0, April 1 is
๐‘ก = 3. We have
3๐œ‹
๐œ‹
37.50 = ๐‘“ (3) = 2.5(3) + 20 + ๐ด sin
= 7.5 + 20 + ๐ด sin = 27.5 + ๐ด.
6
2
Simplifying gives ๐ด = 10, and the function is
๐‘“ (๐‘ก) = 2.5๐‘ก + 20 + 10 sin
๐œ‹๐‘ก
.
6
(b) The stock appreciates the most during the months when the sine function climbs the fastest. By looking at Figure 9.37
we see that this occurs roughly when ๐‘ก = 0 and ๐‘ก = 11, January and December.
50
25
๐‘ก
3
6
9 12
Figure 9.37
(c) Again, we look to Figure 9.37 to see when the graph actually decreases. It seems that the graph is decreasing roughly
between the fourth and eighth months, that is, between May and September.
15. (a) We know that the minimum of ๐‘“ (๐‘ก) is 40 and that the maximum is 90. Thus the midline height is
90 + 40
= 65
2
and the amplitude is
90 โˆ’ 65 = 25.
We also know that ๐‘“ (๐‘ก) has a period of 24 hours and is at a minimum when ๐‘ก = 0. Thus a formula for ๐‘“ (๐‘ก) is
)
(
๐œ‹
๐‘ก .
๐‘“ (๐‘ก) = 65 โˆ’ 25 cos
12
9.4 SOLUTIONS
557
(b) The amplitude is 30. The period is 24 hours, so the pattern repeats itself each day. The midline value is 80. So ๐‘”(๐‘ก)
goes up to a maximum of 80 + 30 = 110 and down to a low of 80 โˆ’ 30 = 50 megawatts.
(c) From the graph in Figure 9.38, we can find that ๐‘ก1 โ‰ˆ 4.160 and ๐‘ก2 โ‰ˆ 13.148. Thus, the power required in both cities is
the same at approximately 4 am and 1 pm.
๐‘ฆ (megawatts)
๐‘ฆ (megawatts)
110
90
200
๐‘”(๐‘ก)
โ„Ž(๐‘ก)
50
40
100
๐‘“ (๐‘ก)
๐‘ก1 6
12 ๐‘ก2
18
24
๐‘ก (hours)
๐‘ก
6
Figure 9.38
12 15.346 18
24
Figure 9.39: โ„Ž(๐‘ก) = ๐‘“ (๐‘ก) + ๐‘”(๐‘ก)
(d) The function โ„Ž(๐‘ก) in Figure 9.39 tells us the total amount of electricity required by both cities at a particular time of
day. Using the trace key on a calculator, we find the maximum occurs at ๐‘ก = 15.346. So at 3:21 pm (since 0.346 hours
is about 21 minutes) each day the most total power will be needed. The maximum power is 184.051 mw.
(e) Add the two functions to obtain
(
(
)
(
))
๐œ‹
๐œ‹
โ„Ž(๐‘ก) = 145 โˆ’ 30 sin
๐‘ก + 25 cos
๐‘ก
12
12
which can be written in the form
(
โ„Ž(๐‘ก) = 145 โˆ’ ๐ด sin
๐œ‹
๐‘ก+๐œƒ
12
)
โˆš
โˆš
302 + 252 = 1525 โ‰ˆ 39.051 and ๐œƒ = tanโˆ’1 (25โˆ•30) โ‰ˆ 0.6947. Thus
(
)
๐œ‹
โ„Ž(๐‘ก) โ‰ˆ 145 โˆ’ 39.051 sin
๐‘ก + 0.6947 .
12
โˆš
The function has an exact maximum of 145 + 1525 (about 184).
where ๐ด =
16. (a) As ๐‘ก โ†’ โˆ’โˆž, ๐‘’๐‘ก gets very close to 0, which means that cos(๐‘’๐‘ก ) gets very close to cos 0 = 1. This means that the
horizontal asymptote of ๐‘“ as ๐‘ก โ†’ โˆ’โˆž is ๐‘ฆ = 1.
(b) As ๐‘ก increases, ๐‘’๐‘ก increases at a faster and faster rate. We also know that as ๐œƒ increases, cos ๐œƒ varies steadily between
โˆ’1 and 1. But since ๐‘’๐‘ก is increasing faster and faster as ๐‘ก gets large, cos(๐‘’๐‘ก ) will vary between โˆ’1 and 1 at a faster
and faster pace. So the graph of ๐‘“ (๐‘ก) = cos(๐‘’๐‘ก ) begins to wiggle back and forth between โˆ’1 and 1, faster and faster.
Although ๐‘“ is oscillating between โˆ’1 and 1, ๐‘“ is not periodic, because the interval on which ๐‘“ completes a full cycle
is not constant.
(c) The vertical axis is crossed when ๐‘ก = 0, so ๐‘“ (0) = cos(๐‘’0 ) = cos 1 โ‰ˆ 0.540 is the vertical intercept.
(d) Notice that the least positive zero of cos ๐‘ข is ๐‘ข = ๐œ‹โˆ•2. Thus the least zero ๐‘ก1 of ๐‘“ (๐‘ก) = cos(๐‘’๐‘ก ) occurs where ๐‘’๐‘ก1 = ๐œ‹โˆ•2
since ๐‘’๐‘ก is always positive. So we have
๐œ‹
2
๐œ‹
๐‘ก1 = ln .
2
๐‘’๐‘ก1 =
(
)
(e) We know that if cos ๐‘ข = 0, then cos(๐‘ข + ๐œ‹) = 0. This means that if cos(๐‘’๐‘ก1 ) = 0, then cos ๐‘’๐‘ก1 + ๐œ‹ = 0 will be the
first zero of ๐‘“ coming after ๐‘ก1 . Therefore,
(
)
๐‘“ (๐‘ก2 ) = cos(๐‘’๐‘ก2 ) = cos ๐‘’๐‘ก1 + ๐œ‹ = 0.
This means that ๐‘’๐‘ก2 = ๐‘’๐‘ก1 + ๐œ‹. So
)
( )
(
)
(
3๐œ‹
๐œ‹
.
+ ๐œ‹ = ln
๐‘ก2 = ln ๐‘’๐‘ก1 + ๐œ‹ = ln(๐‘’ln(๐œ‹โˆ•2) + ๐œ‹) = ln
2
2
Similar reasoning shows that the set of all zeros is {ln( ๐œ‹2 ), ln( 3๐œ‹
), ln( 5๐œ‹
)...}.
2
2
558
Chapter Nine /SOLUTIONS
17. (a) As ๐‘ฅ โ†’ โˆž,
1
๐‘ฅ
โ†’ 0 and we know sin 0 = 0. Thus, ๐‘ฆ = 0 is the equation of the asymptote.
(b) As ๐‘ฅ โ†’ 0 and ๐‘ฅ > 0, we have ๐‘ฅ1 โ†’ โˆž. This means that for small changes of ๐‘ฅ the change in ๐‘ฅ1 is large. Since ๐‘ฅ1 is a
large number of radians, the function will oscillate more and more frequently as ๐‘ฅ becomes smaller.
(c) No,(because
the interval on which ๐‘“ (๐‘ฅ) completes a full cycle is not constant as ๐‘ฅ increases.
)
1
1
= 0 means that ๐‘ฅ1 = sinโˆ’1 (0) + ๐‘˜๐œ‹ for ๐‘˜ equal to some integer. Therefore, ๐‘ฅ = ๐‘˜๐œ‹
, and the greatest zero of
(d) sin
๐‘ฅ
๐‘“ (๐‘ฅ) = sin ๐‘ฅ1 corresponds to the smallest ๐‘˜, that is, ๐‘˜ = 1. Thus, ๐‘ง1 = ๐œ‹1 .
(e) There are an infinite number of zeros because ๐‘ง =
(f) If ๐‘Ž =
1
๐‘˜๐œ‹
1
๐‘˜๐œ‹
for all ๐‘˜ > 0 are zeros.
then the largest zero of ๐‘“ (๐‘ฅ) less then ๐‘Ž would be ๐‘ =
1
.
(๐‘˜+1)๐œ‹
18. Use the sum-of-angles identity for cosine on the second term to get
๐ผ cos(๐œ”๐‘ + ๐œ”๐‘‘ )๐‘ก = ๐ผ cos ๐œ”๐‘ ๐‘ก cos ๐œ”๐‘‘ ๐‘ก โˆ’ ๐ผ sin ๐œ”๐‘ ๐‘ก sin ๐œ”๐‘‘ ๐‘ก
and factor the term cos ๐œ”๐‘ ๐‘ก to show the equality.
19. (a) Types of video games are trendy for a length of time, during which they are extremely popular and sales are high,
later followed by a cooling-down period as the users become tired of that particular game type. The game players then
become interested in a different game typeโ€”and so on.
(b) The sales graph does not fit the shape of the sine or cosine curve, and we would have to say that neither of those
functions would give us a reasonable model. However, from 1979โ€“1989 the graph does have a basic negative cosine
shape, but the amplitude varies.
(c) One way to modify the amplitude over time is to multiply the sine (or cosine) function by an exponential function,
such as ๐‘’๐‘˜๐‘ก . So we choose a model of the form
๐‘ (๐‘ก) = ๐‘’๐‘˜๐‘ก (โˆ’๐‘Ž cos(๐ถ๐‘ก) + ๐ท),
where ๐‘ก is the number of years since 1979. Note the โˆ’๐‘Ž, which is due to the graph looking like an inverted cosine
at 1979. The average value starts at about 1.6, and the period appears to be about 6 years. The amplitude is initially
about 1.4, which is the distance between the average value of 1.6 and the first peak value of 3.0. This means
(
(
)
)
2๐œ‹
๐‘ (๐‘ก) = ๐‘’๐‘˜๐‘ก โˆ’1.4 cos
๐‘ก + 1.6 .
6
By trial and error on your graphing calculator, you can arrive at a value for the parameter ๐‘˜. A reasonable choice is
๐‘˜ = 0.05, which gives
)
)
(
(
2๐œ‹
๐‘ก + 1.6 .
๐‘ (๐‘ก) = ๐‘’0.05๐‘ก โˆ’1.4 cos
6
(d)
retail sales
(billions of $)
5
4
3
2
1
Sales
๐‘ (๐‘ก)
0
(e)
20. (a)
(b)
(c)
3
6
9
12
๐‘ก (years
after 1979)
Notice that even though multiplying by the exponential function does increase the amplitude over time, it does
not increase the period. Therefore, our model ๐‘ (๐‘ก) does not fit the actual curve all that well.
The predicted 1993 sales volume is ๐‘“ (14) = 4.632 billion dollars.
2๐œ‹
2๐œ‹
We have ๐œ† =
=
= 1. Thus, the wavelength is 1 meter.
๐‘˜
2๐œ‹
2๐œ‹
2๐œ‹
1
The time for one wavelength to pass by is
=
= of a second. Thus, two wavelengths pass by each second.
๐œ”
4๐œ‹
2
The number of wavelengths which pass a point in a given unit of time is referred to as the frequency. It is sometimes
written as 2 hertz (Hz), which equals 2 cycles per second.
The shape of the rope at the instant when ๐‘ก = 0 is described by the sinusoidal function ๐‘ฆ(๐‘ฅ, 0) = 0.06 sin(2๐œ‹๐‘ฅ)
9.4 SOLUTIONS
559
๐‘ฆ
0.06
0.04
0.02
๐‘ฅ
0.5
1
1.5
โˆ’0.02
โˆ’0.04
โˆ’0.06
Figure 9.40
(d) Having the same graph means that 0.06 sin(2๐œ‹๐‘ฅ) = 0.06 sin(2๐œ‹๐‘ฅ โˆ’ 4๐œ‹๐‘ก) for all ๐‘ฅ. In order for this to happen, 2๐œ‹๐‘ฅ and
2๐œ‹๐‘ฅ โˆ’ 4๐œ‹๐‘ก must describe the same angle. This is the case any time 4๐œ‹๐‘ก is a multiple of 2๐œ‹. Thus, 4๐œ‹๐‘ก = 2๐œ‹๐‘˜ whenever
๐‘ก = ๐‘˜โˆ•2 for any integer ๐‘˜.
21. (a) We have:
Average change in ๐ถ(๐‘ก) ๐ถ(6) โˆ’ ๐ถ(0)
382 โˆ’ 381
1
=
= ppm/month.
over Decโ€™05โ€“Junโ€™06 =
6โˆ’0
6
6
Also,
Average change in ๐ถ(๐‘ก) ๐ถ(66) โˆ’ ๐ถ(60)
392 โˆ’ 391
1
=
= ppm/month.
over Decโ€™10โ€“Junโ€™11 =
66 โˆ’ 60
6
6
And lastly,
Average change in ๐ถ(๐‘ก)
๐ถ(81) โˆ’ ๐ถ(75)
391 โˆ’ 397
=
= โˆ’1 ppm/month.
over Marโ€“Sepโ€™12 =
81 โˆ’ 75
6
So, on average, the concentration of carbon dioxide increased by 0.167 parts per million per month during the first
half of 2006 and 2011. It also decreased, on average, by 1 ppm per month during the middle months of 2012.
(b) ๐‘†(๐‘ก) is a periodic function which measures the variation in the concentration of carbon dioxide due to the seasons. It
does not take into account the long-term changes in the concentration of carbon dioxide.
(c) We have:
Average change in ๐‘†(๐‘ก) ๐‘†(6) โˆ’ ๐‘†(0)
0โˆ’0
=
= 0 ppm/month.
over Decโ€™05โ€“Junโ€™06 =
6โˆ’0
6
Also,
Average change in ๐‘†(๐‘ก) ๐‘†(66) โˆ’ ๐‘†(60)
0โˆ’0
=
= 0 ppm/month.
over Decโ€™10โ€“Junโ€™11 =
66 โˆ’ 60
6
And lastly,
Average change in ๐‘†(๐‘ก)
๐‘†(81) โˆ’ ๐‘†(75)
โˆ’3.5 โˆ’ 3.5
โˆ’7
=
=
ppm/month.
over Marโ€“Sepโ€™12 =
81 โˆ’ 75
6
6
So, on average, there was no change in the concentration of carbon dioxide due to seasonal variations during the first
half of 2006 and 2011. This makes sense, because the carbon dioxide concentration grows and decays by 3.5 ppm
during these periods. (Note that 3.5 ppm is the amplitude of ๐‘†(๐‘ก).)
Also, seasonal changes caused an average decrease in carbon dioxide of about โˆ’1.167 ppm per month during the
middle months of 2012.
(d) We have:
Average change in ๐ถ(๐‘ก)
Average change in ๐‘†(๐‘ก)
1
1
over Decโ€™05โ€“Junโ€™06 โˆ’ over Decโ€™05โ€“Junโ€™06 = 6 โˆ’ 0 = 6 ppm/month.
Also,
Average change in ๐ถ(๐‘ก)
Average change in ๐‘†(๐‘ก)
1
1
over Decโ€™10โ€“Junโ€™11 โˆ’ over Decโ€™10โ€“Junโ€™11 = 6 โˆ’ 0 = 6 ppm/month.
And lastly,
Average change in ๐‘†(๐‘ก)
Average change in ๐ถ(๐‘ก)
7
1
โˆ’
over Marโ€“Sepโ€™12 = โˆ’1 + = ppm/month.
over Marโ€“Sepโ€™12
6
6
560
Chapter Nine /SOLUTIONS
So, the difference between the average concentration and average the seasonal variation is 1โˆ•6 ppm/month over each
of these common periods.
(e) The common difference between the two averages calculated in part (d), 1โˆ•6 ppm/month, gives the average increase
in the concentration of carbon dioxide per month. This value is the slope of the rising midline,
๐‘€(๐‘ก) = 381 + ๐‘กโˆ•6,
the portion of the concentration model ๐‘ฆ = ๐ถ(๐‘ก) = ๐‘†(๐‘ก) + ๐‘€(๐‘ก) that captures the variation in the concentration of
carbon dioxide not due to the seasons.
The slope of the rising midline tells us that, independently of seasonal changes, the concentration of carbon
dioxide has been increasing by about 1โˆ•6 ppm per month, on average, during the last few years.
Solutions for Section 9.5
Exercises
1. Though we could use the sum-of-angle and difference-of-angle formulas for cosine on each of the two parts, we can also
use the formula for the sum of cosines:
โˆš โˆš
โˆš
3 2
6
165 โˆ’ 75
165 + 75
โ—ฆ
โ—ฆ
sin
= โˆ’2 sin 120 sin 45 = โˆ’2
=โˆ’
.
cos 165 โˆ’ cos 75 = โˆ’2 sin
2
2
2 2
2
2. Though we could use the sum-of-angle and difference-of-angle formulas for cosine on each of the two parts, we can also
use the formula for the sum of cosines:
โˆš โˆš
โˆš
6
2 3
75 + 15
75 โˆ’ 15
โ—ฆ
โ—ฆ
cos 75 + cos 15 = 2 cos
cos
= 2 cos 45 cos 30 = 2
=
.
2
2
2 2
2
3. These cosine functions have the same amplitude and we use the relationship
cos ๐‘ข + cos ๐‘ฃ = 2 cos
๐‘ขโˆ’๐‘ฃ
๐‘ข+๐‘ฃ
cos
.
2
2
Letting ๐‘ข = 5๐‘ก and ๐‘ฃ = 3๐‘ก, we have
cos(5๐‘ก) + cos(3๐‘ก) = 2 cos
5๐‘ก โˆ’ 3๐‘ก
5๐‘ก + 3๐‘ก
cos
= 2 cos(4๐‘ก) cos ๐‘ก.
2
2
4. These cosine functions have the same amplitude and we use the relationship
cos ๐‘ข + cos ๐‘ฃ = 2 cos
๐‘ข+๐‘ฃ
๐‘ขโˆ’๐‘ฃ
cos
.
2
2
Letting ๐‘ข = 4๐‘ก and ๐‘ฃ = 6๐‘ก, we have
cos(4๐‘ก) + cos(6๐‘ก) = 2 cos
4๐‘ก + 6๐‘ก
4๐‘ก โˆ’ 6๐‘ก
cos
= 2 cos(5๐‘ก) cos ๐‘ก.
2
2
Notice that cos(โˆ’๐‘ก) = cos ๐‘ก.
5. These sine functions have the same amplitude and we use the relationship
sin ๐‘ข + sin ๐‘ฃ = 2 sin
๐‘ข+๐‘ฃ
๐‘ขโˆ’๐‘ฃ
cos
.
2
2
Letting ๐‘ข = 7๐‘ก and ๐‘ฃ = 3๐‘ก, we have
sin(7๐‘ก) + sin(3๐‘ก) = 2 sin
7๐‘ก + 3๐‘ก
7๐‘ก โˆ’ 3๐‘ก
cos
= 2 sin(5๐‘ก) cos(2๐‘ก).
2
2
9.5 SOLUTIONS
6. These sine functions have the same amplitude and we use the relationship
sin ๐‘ข โˆ’ sin ๐‘ฃ = 2 cos
๐‘ข+๐‘ฃ
๐‘ขโˆ’๐‘ฃ
sin
.
2
2
Letting ๐‘ข = 7๐‘ก and ๐‘ฃ = 3๐‘ก, we have
sin(7๐‘ก) โˆ’ sin(3๐‘ก) = 2 cos
(
7. cos 35โ—ฆ + cos 40โ—ฆ = 2 cos
7๐‘ก + 3๐‘ก
7๐‘ก โˆ’ 3๐‘ก
sin
= 2 cos(5๐‘ก) sin(2๐‘ก).
2
2
)
( โ—ฆ
)
35 โˆ’ 40โ—ฆ
35โ—ฆ + 40โ—ฆ
cos
= 1.585. See Figure 9.41.
2
2
1
โˆ’360โ—ฆ โˆ’180โ—ฆ
180โ—ฆ
360โ—ฆ
๐‘ฅ (degrees)
โˆ’1
Figure 9.41
(
8. cos 35โ—ฆ โˆ’ cos 40โ—ฆ = โˆ’2 sin
)
( โ—ฆ
)
35 โˆ’ 40โ—ฆ
35โ—ฆ + 40โ—ฆ
sin
= 0.053. See Figure 9.42.
2
2
1
โˆ’360โ—ฆ โˆ’180โ—ฆ
180โ—ฆ
360โ—ฆ
๐‘ฅ (degrees)
โˆ’1
Figure 9.42
(
9. sin 35โ—ฆ + sin 40โ—ฆ = 2 sin
)
( โ—ฆ
)
35 โˆ’ 40โ—ฆ
35โ—ฆ + 40โ—ฆ
cos
= 1.216. See Figure 9.43.
2
2
1
๐‘ฅ (degrees)
โˆ’360โ—ฆ โˆ’180โ—ฆ
180โ—ฆ
360โ—ฆ
โˆ’1
Figure 9.43
(
10. sin 35โ—ฆ โˆ’ sin 40โ—ฆ = 2 cos
) ( โ—ฆ
)
35 โˆ’ 40โ—ฆ
35โ—ฆ + 40โ—ฆ
sin
= โˆ’0.069. See Figure 9.44.
2
2
1
โˆ’360โ—ฆ โˆ’180โ—ฆ
180โ—ฆ
โˆ’1
Figure 9.44
360โ—ฆ
๐‘ฅ (degrees)
561
562
Chapter Nine /SOLUTIONS
Problems
11. We can use the sum-of-angle identities
cos(๐œƒ + ๐œ™) = cos ๐œƒ cos ๐œ™ โˆ’ sin ๐œƒ sin ๐œ™
cos(๐œƒ โˆ’ ๐œ™) = cos ๐œƒ cos ๐œ™ + sin ๐œƒ sin ๐œ™
and subtract to obtain
cos(๐œƒ + ๐œ™) โˆ’ cos(๐œƒ โˆ’ ๐œ™) = โˆ’2 sin ๐œƒ sin ๐œ™.
We put ๐‘ข = ๐œƒ +๐œ™ and ๐‘ฃ = ๐œƒ โˆ’๐œ™ on the left side of the equation. Solving these simultaneous equations, we get ๐œƒ = (๐‘ข+๐‘ฃ)โˆ•2
and ๐œ™ = (๐‘ข โˆ’ ๐‘ฃ)โˆ•2. We put ๐œƒ = (๐‘ข + ๐‘ฃ)โˆ•2 and ๐œ™ = (๐‘ข โˆ’ ๐‘ฃ)โˆ•2 on the right side to get
(
) (
)
๐‘ข+๐‘ฃ
๐‘ขโˆ’๐‘ฃ
cos ๐‘ข โˆ’ cos ๐‘ฃ = โˆ’2 sin
sin
.
2
2
12. We can use the sum-of-angle identities
sin(๐œƒ + ๐œ™) = sin ๐œƒ cos ๐œ™ + sin ๐œ™ cos ๐œƒ
sin(๐œƒ โˆ’ ๐œ™) = sin ๐œƒ cos ๐œ™ โˆ’ sin ๐œ™ cos ๐œƒ
and add to get
sin(๐œƒ + ๐œ™) + sin(๐œƒ โˆ’ ๐œ™) = 2 sin ๐œƒ cos ๐œ™.
We put ๐‘ข = ๐œƒ +๐œ™ and ๐‘ฃ = ๐œƒ โˆ’๐œ™ on the left side of the equation. Solving these simultaneous equations, we get ๐œƒ = (๐‘ข+๐‘ฃ)โˆ•2
and ๐œ™ = (๐‘ข โˆ’ ๐‘ฃ)โˆ•2. We put ๐œƒ = (๐‘ข + ๐‘ฃ)โˆ•2 and ๐œ™ = (๐‘ข โˆ’ ๐‘ฃ)โˆ•2 on the right side to get
)
(
)
(
๐‘ขโˆ’๐‘ฃ
๐‘ข+๐‘ฃ
cos
.
sin ๐‘ข + sin ๐‘ฃ = 2 sin
2
2
13. We start with
(
sin ๐‘ข + sin ๐‘ฃ = 2 sin
)
(
)
๐‘ขโˆ’๐‘ฃ
๐‘ข+๐‘ฃ
cos
.
2
2
Since โˆ’ sin ๐‘ฃ = sin(โˆ’๐‘ฃ), we can write
sin ๐‘ข โˆ’ sin ๐‘ฃ = sin ๐‘ข + sin(โˆ’๐‘ฃ)
(
)
(
)
๐‘ข + (โˆ’๐‘ฃ)
๐‘ข โˆ’ (โˆ’๐‘ฃ)
= 2 sin
cos
2
2
)
(
)
(
๐‘ข+๐‘ฃ
๐‘ขโˆ’๐‘ฃ
cos
= 2 sin
2
2
(
)
(
)
๐‘ข+๐‘ฃ
๐‘ขโˆ’๐‘ฃ
= 2 cos
sin
.
2
2
14. We can use the identity sin ๐‘ข + sin ๐‘ฃ = 2 sin((๐‘ข + ๐‘ฃ)โˆ•2) cos((๐‘ข โˆ’ ๐‘ฃ)โˆ•2). If we put ๐‘ข = 4๐‘ฅ and ๐‘ฃ = ๐‘ฅ then our equation
becomes
)
(
)
(
4๐‘ฅ โˆ’ ๐‘ฅ
4๐‘ฅ + ๐‘ฅ
cos
0 = 2 sin
2
2
( )
( )
5
3
= 2 sin
๐‘ฅ cos
๐‘ฅ
2
2
The product on the right-hand side of this equation will be equal to zero precisely when sin(5๐‘ฅโˆ•2) = 0 or when cos(3๐‘ฅโˆ•2) =
0. We will have sin(5๐‘ฅโˆ•2) = 0 when 5๐‘ฅโˆ•2 = ๐‘›๐œ‹, for ๐‘› an integer, or in other words for ๐‘ฅ = (2๐œ‹โˆ•5)๐‘›. This will occur in the
stated interval for ๐‘ฅ = 2๐œ‹โˆ•5, ๐‘ฅ = 4๐œ‹โˆ•5, ๐‘ฅ = 6๐œ‹โˆ•5, and ๐‘ฅ = 8๐œ‹โˆ•5. We will have cos(3๐‘ฅโˆ•2) = 0 when 3๐‘ฅโˆ•2 = ๐‘›๐œ‹ + ๐œ‹โˆ•2,
that is, when ๐‘ฅ = (2๐‘› + 1)๐œ‹โˆ•3. This will occur in the stated interval for ๐‘ฅ = ๐œ‹โˆ•3, ๐‘ฅ = ๐œ‹, and ๐‘ฅ = 5๐œ‹โˆ•3. So the given
expression is solved by
5๐œ‹
2๐œ‹ 4๐œ‹ 6๐œ‹ 8๐œ‹ ๐œ‹
,
,
,
, , ๐œ‹, and .
๐‘ฅ=
5 5 5 5 3
3
9.6 SOLUTIONS
563
15. (a) First consider the height โ„Ž = ๐‘“ (๐‘ก) of the
( hub
) of the wheel that you are on. This is similar to the basic Ferris wheel
๐œ‹
problem. Therefore ๐‘“1 (๐‘ก) = 25 + 15 sin
๐‘ก , because the vertical shift is 25, the amplitude is 15, and the period is 6.
3
Now the smaller wheel will also add or subtract height depending upon
The difference in height between your
)
( time.
๐œ‹
๐‘ก because the radius is 10 and the period is
position and the hub of the smaller wheel is given by ๐‘“2 (๐‘ก) = 10 sin
2
4. Finally, adding the two together, we get:
๐œ‹
๐œ‹
๐‘“1 (๐‘ก) + ๐‘“2 (๐‘ก) = ๐‘“ (๐‘ก) = 25 + 15 sin( ๐‘ก) + 10 sin( ๐‘ก)
3
2
(b)
โ„Ž (meters)
50
๐‘“ (๐‘ก)
1.2
12
24
๐‘ก (minute)
Figure 9.45
Looking at the graph shown in Figure 9.45, we see that โ„Ž = ๐‘“ (๐‘ก) is periodic, with period 12. This can be verified
by noting
(
)
(
)
๐œ‹
๐œ‹
๐‘“ (๐‘ก + 12) = 25 + 15 sin
(๐‘ก + 12) + 10 sin
(๐‘ก + 12)
3
2
)
(
)
(
๐œ‹
๐œ‹
๐‘ก + 4๐œ‹ + 10 sin
๐‘ก + 6๐œ‹
= 25 + 15 sin
3
2
( )
( )
๐œ‹
๐œ‹
= 25 + 15 sin
๐‘ก + 10 sin
๐‘ก
3
2
= ๐‘“ (๐‘ก).
(c) โ„Ž = ๐‘“ (1.2) = 48.776 m.
Solutions for Section 9.6
Exercises
1. 5๐‘’๐‘–๐œ‹
2. ๐‘’
๐‘–3๐œ‹
2
3. 0๐‘’๐‘–๐œƒ , for any ๐œƒ.
๐‘–๐œ‹
4. 2๐‘’ 2
5. We have (โˆ’3)2 + (โˆ’4)2 = 25, and arctan(4โˆ•3) โ‰ˆ 4.069. So the number is 5๐‘’๐‘–4.069 .
โˆš
6. 10๐‘’๐‘–๐œƒ , where ๐œƒ = arctan(โˆ’3) โ‰ˆ โˆ’1.249 + ๐œ‹ = 1.893 is an angle in the second quadrant.
7. โˆ’5 + 12๐‘–
8. โˆ’11 + 29๐‘–
9. โˆ’3 โˆ’ 4๐‘–
10.
1
4
โˆ’
9๐‘–
8
11. We have (๐‘’๐‘–๐œ‹โˆ•3 )2 = ๐‘’๐‘–2๐œ‹โˆ•3 , thus cos
12. 3 โˆ’ 6๐‘–
2๐œ‹
3
+ ๐‘– sin
2๐œ‹
3
= โˆ’ 12 + ๐‘–
โˆš
3
.
2
564
Chapter Nine /SOLUTIONS
13. We have
โˆš
4
10 cos
14.
โˆš
๐‘’๐‘–๐œ‹โˆ•3 = ๐‘’(๐‘–๐œ‹โˆ•3)โˆ•2 = ๐‘’๐‘–๐œ‹โˆ•6 , thus cos
โˆš
4
๐œ‹
+ ๐‘– 10 sin ๐œ‹8 is one solution.
8
๐œ‹
6
+ ๐‘– sin ๐œ‹6 =
โˆš
3
2
+ 2๐‘– .
Problems
โˆš
โˆš
โˆš
4๐‘’๐‘–๐œ‹โˆ•2 = (4๐‘’๐‘–๐œ‹โˆ•2 )1โˆ•2 = 2๐‘’๐‘–๐œ‹โˆ•4 = 2 cos ๐œ‹4 + ๐‘–2 sin ๐œ‹4 = 2 + ๐‘– 2
โˆš
โˆš
โˆš
โˆš
3๐œ‹
3๐œ‹ 1
3๐œ‹
2
2
3๐œ‹
One value of โˆ’๐‘– is ๐‘’๐‘– 2 = (๐‘’๐‘– 2 ) 2 = ๐‘’๐‘– 4 = cos 3๐œ‹
+
๐‘–
sin
=
โˆ’
+
๐‘–
4
4
2
2
โˆš
โˆš
โˆš
๐œ‹
๐œ‹
๐œ‹ 1
3
One value of 3 ๐‘– is ๐‘’๐‘– 2 = (๐‘’๐‘– 2 ) 3 = ๐‘’๐‘– 6 = cos ๐œ‹6 + ๐‘– sin ๐œ‹6 = 23 + 2๐‘–
โˆš
โˆš
โˆš ๐œ‹
โˆš ๐œ‹ โˆš
โˆš
โˆš
๐œ‹ 1
One value of 7๐‘– is 7๐‘’๐‘– 2 = (7๐‘’๐‘– 2 ) 2 = 7๐‘’๐‘– 4 = 7 cos ๐œ‹4 + ๐‘– 7 sin ๐œ‹4 = 214 + ๐‘– 214
โˆš
โˆš
( )
โˆš
โˆš
4
4
One value of โˆ’1 is ๐‘’๐‘–๐œ‹ = (๐‘’๐‘–๐œ‹ )1โˆ•4 = ๐‘’๐‘–๐œ‹โˆ•4 = cos ๐œ‹4 + ๐‘– sin( ๐œ‹4 ) = 22 + ๐‘– 22 .
โˆš
โˆš
โˆš
โˆš
โˆš
โˆš
โˆš ๐œ‹
๐œ‹
1
๐œ‹ 2
3
3
3
3
3
One value of (1 + ๐‘–)2โˆ•3 is ( 2๐‘’๐‘– 4 )2โˆ•3 = (2 2 ๐‘’๐‘– 4 ) 3 = 2๐‘’๐‘– 6 = 2 cos ๐œ‹6 + ๐‘– 2 sin ๐œ‹6 = 2 โ‹… 23 + ๐‘– 2 โ‹… 12
โˆš
One value ofโˆš( 3 + ๐‘–)1โˆ•2
โˆš is ๐œ‹
โˆš
๐œ‹
๐œ‹
๐œ‹
(2๐‘’๐‘– 6 )1โˆ•2 = 2๐‘’๐‘– 12 = 2 cos 12
+ ๐‘– 2 sin 12
โ‰ˆ 1.366 + 0.366๐‘–
โˆš
One๐œ‹value of ( 3 +๐œ‹๐‘–)โˆ’1โˆ•2 is
๐œ‹
๐œ‹
) + ๐‘– โˆš1 sin(โˆ’ 12
) โ‰ˆ 0.683 โˆ’ 0.183๐‘–
(2๐‘’๐‘– 6 )โˆ’1โˆ•2 = โˆš1 ๐‘’๐‘–(โˆ’ 12 ) = โˆš1 cos(โˆ’ 12
2
2
2
โˆš
โˆš
โˆš
โˆš
โˆš
โˆš
โˆš
โˆš
2
Since 5 + 2๐‘– = 3๐‘’๐‘–๐œƒ , where ๐œƒ = arctan โˆš2 โ‰ˆ 0.730, one value of ( 5 + 2๐‘–) 2 is (3๐‘’๐‘–๐œƒ ) = 3 2 ๐‘’๐‘– 2๐œƒ = 3 2 cos 2๐œƒ +
5
โˆš
โˆš
โˆš
โˆš
๐‘–3 2 sin 2๐œƒ โ‰ˆ 3 2 (0.513) + ๐‘–3 2 (0.859) โ‰ˆ 2.426 + 4.062๐‘–
15. One value of
16.
17.
18.
19.
20.
21.
22.
23.
โˆš
4๐‘– is
24. Substituting ๐ด1 = 2 โˆ’ ๐ด2 into the second equation gives
(1 โˆ’ ๐‘–)(2 โˆ’ ๐ด2 ) + (1 + ๐‘–)๐ด2 = 0
so
2๐‘–๐ด2 = โˆ’2(1 โˆ’ ๐‘–)
โˆ’(1 โˆ’ ๐‘–)
โˆ’๐‘–(1 โˆ’ ๐‘–)
= ๐‘–(1 โˆ’ ๐‘–) = 1 + ๐‘–
๐ด2 =
=
๐‘–
๐‘–2
Therefore ๐ด1 = 2 โˆ’ (1 + ๐‘–) = 1 โˆ’ ๐‘–.
25. Substituting ๐ด2 = ๐‘– โˆ’ ๐ด1 into the second equation gives
๐‘–๐ด1 โˆ’ (๐‘– โˆ’ ๐ด1 ) = 3,
so
๐‘–๐ด1 + ๐ด1 = 3 + ๐‘–
3+๐‘–
3+๐‘– 1โˆ’๐‘–
3 โˆ’ 3๐‘– + ๐‘– โˆ’ ๐‘–2
=
โ‹…
=
1+๐‘–
1+๐‘– 1โˆ’๐‘–
2
= 2โˆ’๐‘–
๐ด1 =
Therefore ๐ด2 = ๐‘– โˆ’ (2 โˆ’ ๐‘–) = โˆ’2 + 2๐‘–.
26. If the roots are complex numbers, we must have (2๐‘)2 โˆ’ 4๐‘ < 0 so ๐‘2 โˆ’ ๐‘ < 0. Then the roots are
โˆš
โˆš
โˆ’2๐‘ ± (2๐‘)2 โˆ’ 4๐‘
= โˆ’๐‘ ± ๐‘2 โˆ’ ๐‘
๐‘ฅ=
2
โˆš
= โˆ’๐‘ ± โˆ’1(๐‘ โˆ’ ๐‘2 )
โˆš
= โˆ’๐‘ ± ๐‘– ๐‘ โˆ’ ๐‘2 .
โˆš
Thus, ๐‘ = โˆ’๐‘ and ๐‘ž = ๐‘ โˆ’ ๐‘2 .
9.6 SOLUTIONS
565
27. (a) The polar coordinates of ๐‘– are ๐‘Ÿ = 1 and ๐œƒ = ๐œ‹โˆ•2, as in Figure 9.46. Thus, the polar form of ๐‘– is ๐‘– = ๐‘Ÿ๐‘’๐‘–๐œƒ = 1๐‘’๐‘–๐œ‹โˆ•2 = ๐‘’๐‘–๐œ‹โˆ•2 .
(b) Since ๐‘ง = ๐‘Ÿ๐‘’๐‘–๐œƒ and ๐‘– = ๐‘’๐‘–๐œ‹โˆ•2 , we have ๐‘–๐‘ง = ๐‘’๐‘–๐œ‹โˆ•2 โ‹… ๐‘Ÿ๐‘’๐‘–๐œƒ = ๐‘Ÿ๐‘’๐‘–(๐œƒ+๐œ‹โˆ•2) . The polar coordinates of ๐‘ง are (๐‘Ÿ, ๐œƒ), while the polar
coordinates of ๐‘–๐‘ง are (๐‘Ÿ, ๐œƒ + ๐œ‹โˆ•2). The points ๐‘ง and ๐‘–๐‘ง are related as in Figure 9.47.
๐‘ฆ
๐‘–
๐‘ฆ
๐‘–๐‘ง
๐‘Ÿ
๐œ‹โˆ•2
๐‘ง
๐‘Ÿ
๐œ‹โˆ•2
๐œƒ
๐‘ฅ
Figure 9.46
๐‘ฅ
Figure 9.47
28. Using Eulerโ€™s formula, we have:
๐‘’๐‘–(2๐œƒ) = cos 2๐œƒ + ๐‘– sin 2๐œƒ
On the other hand,
2
๐‘’๐‘–(2๐œƒ) = (๐‘’๐‘–๐œƒ ) = (cos ๐œƒ + ๐‘– sin ๐œƒ)2 = (cos2 ๐œƒ โˆ’ sin2 ๐œƒ) + ๐‘–(2 cos ๐œƒ sin ๐œƒ)
Equating imaginary parts, we find
sin 2๐œƒ = 2 sin ๐œƒ cos ๐œƒ.
29. Using Eulerโ€™s formula, we have:
๐‘’๐‘–(2๐œƒ) = cos 2๐œƒ + ๐‘– sin 2๐œƒ
On the other hand,
2
๐‘’๐‘–(2๐œƒ) = (๐‘’๐‘–๐œƒ ) = (cos ๐œƒ + ๐‘– sin ๐œƒ)2 = (cos2 ๐œƒ โˆ’ sin2 ๐œƒ) + ๐‘–(2 cos ๐œƒ sin ๐œƒ)
Equating real parts, we find
cos 2๐œƒ = cos2 ๐œƒ โˆ’ sin2 ๐œƒ.
30. Since ๐‘’โˆ’๐‘–๐œƒ = cos(โˆ’๐œƒ) + ๐‘– sin(โˆ’๐œƒ), we want to investigate ๐‘’โˆ’๐‘–๐œƒ . By the definition of negative exponents,
๐‘’โˆ’๐‘–๐œƒ =
1
1
.
=
cos ๐œƒ + ๐‘– sin ๐œƒ
๐‘’๐‘–๐œƒ
Multiplying by the conjugate cos ๐œƒ โˆ’ ๐‘– sin ๐œƒ gives
๐‘’โˆ’๐‘–๐œƒ =
1
cos ๐œƒ โˆ’ ๐‘– sin ๐œƒ
cos ๐œƒ โˆ’ ๐‘– sin ๐œƒ
โ‹…
=
= cos ๐œƒ โˆ’ ๐‘– sin ๐œƒ.
cos ๐œƒ + ๐‘– sin ๐œƒ cos ๐œƒ โˆ’ ๐‘– sin ๐œƒ
cos2 ๐œƒ + sin2 ๐œƒ
Thus
cos(โˆ’๐œƒ) + ๐‘– sin(โˆ’๐œƒ) = cos ๐œƒ โˆ’ ๐‘– sin ๐œƒ,
so equating real parts, we see that cosine is even: cos(โˆ’๐œƒ) = cos ๐œƒ.
31. Since ๐‘’โˆ’๐‘–๐œƒ = cos(โˆ’๐œƒ) + ๐‘– sin(โˆ’๐œƒ), we want to investigate ๐‘’โˆ’๐‘–๐œƒ . By the definition of negative exponents,
๐‘’โˆ’๐‘–๐œƒ =
1
1
=
.
๐‘’๐‘–๐œƒ
cos ๐œƒ + ๐‘– sin ๐œƒ
Multiplying by the conjugate cos ๐œƒ โˆ’ ๐‘– sin ๐œƒ gives
๐‘’โˆ’๐‘–๐œƒ =
1
cos ๐œƒ โˆ’ ๐‘– sin ๐œƒ
cos ๐œƒ โˆ’ ๐‘– sin ๐œƒ
= cos ๐œƒ โˆ’ ๐‘– sin ๐œƒ.
โ‹…
=
cos ๐œƒ + ๐‘– sin ๐œƒ cos ๐œƒ โˆ’ ๐‘– sin ๐œƒ
cos2 ๐œƒ + sin2 ๐œƒ
Thus
cos(โˆ’๐œƒ) + ๐‘– sin(โˆ’๐œƒ) = cos ๐œƒ โˆ’ ๐‘– sin ๐œƒ,
so equating imaginary parts, we see that sine is odd: sin(โˆ’๐œƒ) = โˆ’ sin ๐œƒ.
566
Chapter Nine /SOLUTIONS
32. The number ๐‘ง = ๐‘’2๐‘– is given in polar form with (๐‘Ÿ, ๐œƒ) = (1, 2). Two more sets of polar coordinates for ๐‘ง are (1, 2 + 2๐œ‹),
and (1, 2 + 4๐œ‹). Three cube roots of ๐‘ง are given by
( 2๐‘– )1โˆ•3
1๐‘’
= 11โˆ•3 ๐‘’1โˆ•3โ‹…2๐‘– = ๐‘’2๐‘–โˆ•3 = cos(2โˆ•3) + ๐‘– sin(2โˆ•3)
= 0.786 + 0.618๐‘–.
(
1๐‘’(2+2๐œ‹)๐‘–
)1โˆ•3
= 11โˆ•3 ๐‘’1โˆ•3โ‹…(2+2๐œ‹)๐‘– = ๐‘’(2+2๐œ‹)๐‘–โˆ•3 = cos((2 + 2๐œ‹)โˆ•3) + ๐‘– sin((2 + 2๐œ‹)โˆ•3)
= โˆ’0.928 + 0.371๐‘–.
( (2+4๐‘–)๐‘– )1โˆ•3
1๐‘’
= 11โˆ•3 ๐‘’1โˆ•3โ‹…(2+4๐œ‹)๐‘– = ๐‘’(2+4๐œ‹)๐‘–โˆ•3 = cos((2 + 4๐œ‹)โˆ•3) + ๐‘– sin((2 + 4๐œ‹)โˆ•3)๐‘–
= 0.143 โˆ’ 0.909๐‘–.
33. One polar form for ๐‘ง = โˆ’8 is ๐‘ง = 8๐‘’๐‘–๐œ‹ with (๐‘Ÿ, ๐œƒ) = (8, ๐œ‹). Two more sets of polar coordinates for ๐‘ง are (8, 3๐œ‹), and (8, 5๐œ‹).
Three cube roots of ๐‘ง are given by
( ๐œ‹๐‘– )1โˆ•3
8๐‘’
= 81โˆ•3 ๐‘’1โˆ•3โ‹…๐œ‹๐‘– = 2๐‘’๐œ‹๐‘–โˆ•3 = 2 cos(๐œ‹โˆ•3) + ๐‘–2 sin(๐œ‹โˆ•3)
= 1 + 1.732๐‘–.
(
8๐‘’3๐œ‹๐‘–
)1โˆ•3
= 81โˆ•3 ๐‘’1โˆ•3โ‹…3๐œ‹๐‘– = 2๐‘’๐œ‹๐‘– = 2 cos ๐œ‹ + ๐‘–2 sin ๐œ‹
(
8๐‘’5๐œ‹๐‘–
)1โˆ•3
= 81โˆ•3 ๐‘’1โˆ•3โ‹…5๐œ‹๐‘– = 2๐‘’5๐œ‹๐‘–โˆ•3 = 2 cos(5๐œ‹โˆ•3) + ๐‘–2 sin(5๐œ‹โˆ•3)
= โˆ’2.
= 1 โˆ’ 1.732๐‘–.
34. Three polar forms for ๐‘ง = 8 have (๐‘Ÿ, ๐œƒ) equal to (8, 0), (8, 2๐œ‹), and (8, 4๐œ‹). Three cube roots of ๐‘ง are given by
( 0๐‘– )1โˆ•3
= 81โˆ•3 ๐‘’1โˆ•3โ‹…0๐‘– = 2๐‘’0๐‘– = 2 cos 0 + ๐‘–2 sin 0
8๐‘’
= 2.
(
8๐‘’2๐œ‹๐‘–
)1โˆ•3
= 81โˆ•3 ๐‘’1โˆ•3โ‹…2๐œ‹๐‘– = 2๐‘’2๐œ‹๐‘–โˆ•3 = 2 cos(2๐œ‹โˆ•3) + ๐‘–2 sin(2๐œ‹โˆ•3)
(
8๐‘’4๐œ‹๐‘–
)1โˆ•3
= 81โˆ•3 ๐‘’1โˆ•3โ‹…4๐œ‹๐‘– = 2๐‘’4๐œ‹๐‘–โˆ•3 = 2 cos(4๐œ‹โˆ•3) + ๐‘–2 sin(4๐œ‹โˆ•3)
= โˆ’1 + 1.732๐‘–.
= โˆ’1 โˆ’ 1.732๐‘–.
โˆš
35. One
(๐‘Ÿ, ๐œƒ) = ( 2, ๐œ‹โˆ•4). Two more sets of polar coordinates for ๐‘ง are
โˆš polar form of the
โˆš complex number
โˆš ๐‘ง = 1 + ๐‘– has โˆš
( 2, ๐œ‹โˆ•4 + 2๐œ‹) = ( 2, 9๐œ‹โˆ•4) and ( 2, ๐œ‹โˆ•4 + 4๐œ‹) = ( 2, 17๐œ‹โˆ•4). Three cube roots of ๐‘ง are given by
)1โˆ•3 (
(โˆš
)1โˆ•3 1โˆ•3โ‹…๐œ‹๐‘–โˆ•4
๐‘’
= 21โˆ•6 ๐‘’๐œ‹๐‘–โˆ•12 = 21โˆ•6 cos(๐œ‹โˆ•12) + ๐‘–21โˆ•6 sin(๐œ‹โˆ•12)
= 21โˆ•2
2๐‘’๐œ‹๐‘–โˆ•4
= 1.084 + 0.291๐‘–.
(โˆš
)1โˆ•3 (
)
1โˆ•2 1โˆ•3 1โˆ•3โ‹…9๐œ‹๐‘–โˆ•4
9๐œ‹๐‘–โˆ•4
= 2
๐‘’
= 21โˆ•6 ๐‘’9๐œ‹๐‘–โˆ•12 = 21โˆ•6 cos(9๐œ‹โˆ•12) + ๐‘–21โˆ•6 sin(9๐œ‹โˆ•12)
2๐‘’
= โˆ’0.794 + 0.794๐‘–.
)1โˆ•3 (
(โˆš
)
1โˆ•3
2๐‘’17๐œ‹โˆ•๐‘–4
= 21โˆ•2
๐‘’1โˆ•3โ‹…17๐œ‹๐‘–โˆ•4 = 21โˆ•6 ๐‘’17๐œ‹๐‘–โˆ•12 = 21โˆ•6 cos(17๐œ‹โˆ•12) + ๐‘–21โˆ•6 sin(17๐œ‹โˆ•12)
= โˆ’0.291 โˆ’ 1.084๐‘–.
36. By de Moivreโ€™s formula we have
(cos ๐œ‹โˆ•4 + ๐‘– sin ๐œ‹โˆ•4)4 = cos(4 โ‹… ๐œ‹โˆ•4) + ๐‘– sin(4 โ‹… ๐œ‹โˆ•4) = โˆ’1 + ๐‘–0 = โˆ’1.
37. By de Moivreโ€™s formula we have
(cos 2๐œ‹โˆ•3 + ๐‘– sin 2๐œ‹โˆ•3)3 = cos(3 โ‹… 2๐œ‹โˆ•3) + ๐‘– sin(3 โ‹… 2๐œ‹โˆ•3) = 1 + ๐‘–0 = 1.
SOLUTIONS to Review Problems For Chapter Nine
38. By de Moivreโ€™s formula we have
(cos 2 + ๐‘– sin 2)โˆ’1 = cos(โˆ’2) + ๐‘– sin(โˆ’2) = cos 2 โˆ’ ๐‘– sin 2.
39. By de Moivreโ€™s formula we have
(cos ๐œ‹โˆ•4 + ๐‘– sin ๐œ‹โˆ•4)
โˆ’7
โˆš
โˆš
2
2
= cos(โˆ’7๐œ‹โˆ•4) + ๐‘– sin(โˆ’7๐œ‹โˆ•4) =
+๐‘–
.
2
2
40. From the exponent rules, we know
๐‘’๐‘–๐œƒ โ‹… ๐‘’โˆ’๐‘–๐œƒ = ๐‘’๐‘–๐œƒโˆ’๐‘–๐œƒ = ๐‘’0 = 1.
Using Eulerโ€™s formula, we rewrite this as
(cos ๐œƒ + ๐‘– sin ๐œƒ) (cos ๐œƒ โˆ’ ๐‘– sin ๐œƒ) = 1.
โŸโžโžโžโžโžโžโžโŸโžโžโžโžโžโžโžโŸ โŸโžโžโžโžโžโžโžโŸโžโžโžโžโžโžโžโŸ
๐‘’โˆ’๐‘–๐œƒ
๐‘’๐‘–๐œƒ
Multiplying out the left-hand side gives
(cos ๐œƒ + ๐‘– sin ๐œƒ) (cos ๐œƒ โˆ’ ๐‘– sin ๐œƒ) = cos2 ๐œƒ โˆ’ ๐‘– sin ๐œƒ cos ๐œƒ + ๐‘– sin ๐œƒ cos ๐œƒ โˆ’ ๐‘–2 sin2 ๐œƒ = 1.
Since โˆ’๐‘–2 = +1, simplifying the left side gives the Pythagorean identity
cos2 ๐œƒ + sin2 ๐œƒ = 1.
41. Using the exponent rules, we see from Eulerโ€™s formula that
๐‘’๐‘–(๐œƒ+๐œ™) = ๐‘’๐‘–๐œƒ โ‹… ๐‘’๐‘–๐œ™
= (cos ๐œƒ + ๐‘– sin ๐œƒ)(cos ๐œ™ + ๐‘– sin ๐œ™)
= cos ๐œƒ cos ๐œ™ + ๐‘– cos ๐œƒ sin ๐œ™ + ๐‘– sin ๐œƒ cos ๐œ™ + ๐‘–2 sin ๐œƒ sin ๐œ™
โŸโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโŸโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโŸ โŸโžโžโžโžโŸโžโžโžโžโŸ
๐‘–(cos ๐œƒ sin ๐œ™+sin ๐œƒ cos ๐œ™)
โˆ’ sin ๐œƒ sin ๐œ™
= cos ๐œƒ cos ๐œ™ โˆ’ sin ๐œƒ sin ๐œ™ +๐‘– (sin ๐œƒ cos ๐œ™ + cos ๐œƒ sin ๐œ™) .
โŸโžโžโžโžโžโžโžโžโžโžโžโžโžโžโŸโžโžโžโžโžโžโžโžโžโžโžโžโžโžโŸ โŸโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโŸโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโŸ
Real part
Imaginary part
But Eulerโ€™s formula also gives
๐‘’๐‘–(๐œƒ+๐œ™) = cos(๐œƒ + ๐œ™) +๐‘– sin(๐œƒ + ๐œ™) .
โŸโžโžโŸโžโžโŸ
โŸโžโžโžโŸโžโžโžโŸ
Real part
Imaginary part
Two complex numbers are equal only if their real and imaginary parts are equal. Setting real parts equal gives
cos(๐œƒ + ๐œ™) = cos ๐œƒ cos ๐œ™ โˆ’ sin ๐œƒ sin ๐œ™.
Setting imaginary parts equal gives
sin(๐œƒ + ๐œ™) = sin ๐œƒ cos ๐œ™ + sin ๐œ™ cos ๐œƒ.
Solutions for Chapter 9 Review
Exercises
1. We have:
(1 โˆ’ sin ๐‘ก) (1 โˆ’ cos ๐‘ก) โˆ’ cos ๐‘ก sin ๐‘ก = 1 โˆ’ cos ๐‘ก โˆ’ sin ๐‘ก + sin ๐‘ก cos ๐‘ก โˆ’ cos ๐‘ก sin ๐‘ก multiply out
โŸโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโŸโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโŸ
(1โˆ’sin ๐‘ก)(1โˆ’cos ๐‘ก)
= 1 โˆ’ cos ๐‘ก โˆ’ sin ๐‘ก.
567
568
Chapter Nine /SOLUTIONS
2. We have:
2 cos ๐‘ก โˆ’ 3 sin ๐‘ก โˆ’ (2 sin ๐‘ก โˆ’ 3 cos ๐‘ก) = 2 cos ๐‘ก โˆ’ 3 sin ๐‘ก โˆ’ 2 sin ๐‘ก + 3 cos ๐‘ก
= 5 cos ๐‘ก โˆ’ 5 sin ๐‘ก.
3. We have:
1
โ‹… sin ๐‘ก + 3 tan ๐‘ก
cos ๐‘ก
sin ๐‘ก
+3 tan ๐‘ก
=
cos ๐‘ก
โŸโŸโŸ
sec ๐‘ก sin ๐‘ก + 3 tan ๐‘ก =
tan ๐‘ก
= 4 tan ๐‘ก.
4. We have:
) (
)
cos ๐‘ก
sin ๐‘ก
โ‹…
โ‹… sin ๐‘ก
sin ๐‘ก
cos ๐‘ก
โŸโŸโŸ โŸโŸโŸ
(
cot ๐‘ก tan ๐‘ก sin ๐‘ก =
cot ๐‘ก
tan ๐‘ก
= sin ๐‘ก.
5. We have:
(
sec ๐‘ก
= (
csc ๐‘ก
1
cos ๐‘ก
)
1
sin ๐‘ก
)
cos ๐‘ก
)
1
โ‹… sin ๐‘ก
cos ๐‘ก
= tan ๐‘ก.
=
6. We have:
(
sin ๐‘ก
cot ๐‘ก
= ( )
1
csc ๐‘ก
sin ๐‘ก
cos ๐‘ก
โ‹… sin ๐‘ก
sin ๐‘ก
= cos ๐‘ก.
=
7. We have:
multiply out
(sec ๐‘ก cot ๐‘ก โˆ’ csc ๐‘ก tan ๐‘ก) sin ๐‘ก cos ๐‘ก = sec ๐‘ก cot ๐‘ก sin ๐‘ก cos ๐‘ก โˆ’ csc ๐‘ก tan ๐‘ก sin ๐‘ก cos ๐‘ก
)(
)
)(
)
(
(
1
1
cos ๐‘ก
sin ๐‘ก
sin ๐‘ก cos ๐‘ก โˆ’
sin ๐‘ก cos ๐‘ก
=
cos ๐‘ก
sin ๐‘ก
sin ๐‘ก
cos ๐‘ก
โŸโŸโŸ โŸโŸโŸ
โŸโŸโŸ โŸโŸโŸ
sec ๐‘ก
cot ๐‘ก
csc ๐‘ก
tan ๐‘ก
= cos ๐‘ก โˆ’ sin ๐‘ก.
8. We have:
1
=
2 csc ๐‘ก cos ๐‘ก โˆ’ 3 cot ๐‘ก
1
)
1
2
cos ๐‘ก โˆ’ 3 cot ๐‘ก
sin ๐‘ก
โŸโŸโŸ
(
csc ๐‘ก
=
1
)
(
cos ๐‘ก
cos ๐‘ก
โˆ’3
2
sin ๐‘ก
sin ๐‘ก
โŸโŸโŸ
cot ๐‘ก
=
1
sin ๐‘ก
= โˆ’ tan ๐‘ก.
) =โˆ’
cos ๐‘ก
cos ๐‘ก
โˆ’
sin ๐‘ก
(
SOLUTIONS to Review Problems For Chapter Nine
9. Using 1 โˆ’ cos2 ๐œƒ = sin2 ๐œƒ, we have
sin2 ๐œƒ
1 โˆ’ cos2 ๐œƒ
=
= sin ๐œƒ.
sin ๐œƒ
sin ๐œƒ
10. Writing cot ๐‘ฅ = cos ๐‘ฅโˆ• sin ๐‘ฅ and csc ๐‘ฅ = 1โˆ• sin ๐‘ฅ, we have
cot ๐‘ฅ
cos ๐‘ฅ
1
=
โ‹…
= cos ๐‘ฅ.
csc ๐‘ฅ
sin ๐‘ฅ 1โˆ• sin ๐‘ฅ
11. Writing cos 2๐œ™ = 2 cos2 ๐œ™ โˆ’ 1, we have
cos 2๐œ™ + 1
2 cos2 ๐œ™ โˆ’ 1 + 1
2 cos2 ๐œ™
=
=
= 2 cos ๐œ™.
cos ๐œ™
cos ๐œ™
cos ๐œ™
12. Multiplying out and using the fact that 1 โˆ’ tan2 ๐œƒ = 1โˆ• cos2 ๐œƒ, we have
cos2 ๐œƒ(1 + tan ๐œƒ)(1 โˆ’ tan ๐œƒ) = cos2 ๐œƒ(1 โˆ’ tan2 ๐œƒ) = cos2 ๐œƒ โ‹…
1
= 1.
cos2 ๐œƒ
13. 8 โˆ’ 5๐‘–
14. (2 + 3๐‘–)(3 + 5๐‘–) = 6 + 9๐‘– + 10๐‘– โˆ’ 15 = โˆ’9 + 19๐‘–.
โˆš
15. We have (2)2 + (โˆ’4)2 = 20, and arctan(โˆ’2) โ‰ˆ โˆ’1.107. So the number is 20๐‘’โˆ’1.107๐‘– .
โˆš
16. We have (3)2 + (5)2 = 34, and arctan(5โˆ•3) โ‰ˆ 1.030. So the number is 34๐‘’1.030๐‘– .
Problems
17. We first solve for cos ๐›ผ,
2 cos ๐›ผ = 1
1
cos ๐›ผ =
2
๐œ‹ 5๐œ‹
๐›ผ= ,
.
3 3
18. We first solve for tan ๐›ผ,
tan ๐›ผ =
โˆš
3 โˆ’ 2 tan ๐›ผ
โˆš
3
โˆš
3
tan ๐›ผ =
3
๐œ‹ 7๐œ‹
๐›ผ= ,
6 6
3 tan ๐›ผ =
19. We first solve for tan ๐›ผ,
4 tan ๐›ผ + 3 = 2
4 tan ๐›ผ = โˆ’1
1
tan ๐›ผ = โˆ’
4
๐›ผ = 2.897, 6.038.
569
570
Chapter Nine /SOLUTIONS
20. We first solve for sin ๐›ผ,
3 sin2 ๐›ผ + 4 = 5
3 sin2 ๐›ผ = 1
1
sin2 ๐›ผ =
3
โˆš
sin ๐›ผ = ±
โˆš
sin ๐›ผ =
1
3
โˆš
sin ๐›ผ = โˆ’ 13
1
3
๐›ผ = 0.616, 2.526
๐›ผ = 3.757, 5.668
21. (a) The graph resembles a cosine function with midline ๐‘˜ = 8, amplitude ๐ด = 10, and period ๐‘ = 60, so
(
)
2๐œ‹
๐‘ฆ = 10 cos
๐‘ฅ + 8.
60
(b) We find the zeros at ๐‘ฅ1 and ๐‘ฅ2 by setting ๐‘ฆ = 0. Solving gives
(
)
2๐œ‹
10 cos
๐‘ฅ +8 = 0
60
(
)
2๐œ‹
8
cos
๐‘ฅ =โˆ’
60
10
2๐œ‹
๐‘ฅ = cosโˆ’1 (โˆ’0.8)
60
60
๐‘ฅ=
cosโˆ’1 (โˆ’0.8)
2๐œ‹
= 23.8550.
Judging from the graph, this is the value of ๐‘ฅ1 . By symmetry, ๐‘ฅ2 = 60 โˆ’ ๐‘ฅ1 = 36.1445.
22. (a) The midline, ๐ท = 10, the amplitude ๐ด = 4, and the period 1, so
1=
2๐œ‹
๐ต
and
๐ต = 2๐œ‹.
Therefore the formula is
๐‘“ (๐‘ก) = 4 sin(2๐œ‹๐‘ก) + 10.
(b) Solving ๐‘“ (๐‘ก) = 12, we have
12 = 4 sin(2๐œ‹๐‘ก) + 10
2 = 4 sin(2๐œ‹๐‘ก)
1
sin 2๐œ‹๐‘ก =
2
๐œ‹ 5๐œ‹ 13๐œ‹ 17๐œ‹
,
,
2๐œ‹๐‘ก = ,
6 6
6
6
1 5 13 17
๐‘ก=
,
,
,
12 12 12 12
The spring is 12 centimeters from the ceiling at 1โˆ•12 sec, 5โˆ•12 sec, 13โˆ•12 sec, 17โˆ•12 sec.
23. (a) The average monthly temperature in Fairbanks is shown in Figure 9.48.
(b) These data are best modeled by a vertically reflected cosine curve, which is reasonable for something like temperature
that oscillates with a 12-month period.
(c) The midline temperature is (61.3 + (โˆ’11.5))โˆ•2 = 24.9. The amplitude is 61.3 โˆ’ 24.9 = 36.4 Since the period is 12,
we have ๐ต = 2๐œ‹โˆ•12 = ๐œ‹โˆ•6. There is no horizontal shift, so ๐ถ = 0. Hence our function is
( )
๐œ‹
๐‘ก .
๐‘“ (๐‘ก) = 24.9 โˆ’ 36.4 cos
6
571
SOLUTIONS to Review Problems For Chapter Nine
(d) To solve ๐‘“ (๐‘ก) = 32, we must solve the equation
( )
๐œ‹
๐‘ก
32 = 24.9 โˆ’ 36.4 cos
6
( )
๐œ‹
7.1 = โˆ’36.4 cos
๐‘ก
6
( )
๐œ‹
๐‘ก = โˆ’0.1950.197
cos
6
๐œ‹
๐‘ก = cosโˆ’1 (โˆ’0.195) = 1.767
6
๐‘ก = 3.375
๐œ‹
๐‘ก = 2๐œ‹ โˆ’ 1.767 = 4.516
6
๐‘ก = 8.625
The temperature in Fairbanks reaches the freezing point in the middle of April and the middle of September.
(e) See Figure 9.49.
temperature (โ—ฆ ๐น )
75
temperature (โ—ฆ ๐น )
75
(
๐‘“ (๐‘ก) = 24.9 โˆ’ 36.4 cos
๐œ‹
๐‘ก
6
)
32
month
โˆ’1
โˆ’15
12
month
โˆ’1
โˆ’15
4
12
8
Figure 9.49
Figure 9.48
(f) The amplitude, period, and midline would be the same, but the function would be reflected vertically:
( )
๐œ‹
๐‘ฆ = 24.9 + 36.4 cos
๐‘ก .
6
24. They are both right. The first student meant that sin 2๐œƒ = 2 sin ๐œƒ is not an identity, meaning that it is not true for all ๐œƒ. The
second student had found one value for ๐œƒ for which it was true.
25. Graphs of the four functions are in Figures 9.50 โ€“9.53. The graphs in Figures 9.51 and 9.52 suggest that (tan2 ๐‘ฅ)(sin2 ๐‘ฅ)
and tan2 ๐‘ฅ โˆ’ sin2 ๐‘ฅ may be identical.
2
2
1
1
๐‘ฅ
โˆ’2๐œ‹
2๐œ‹
๐‘ฅ
โˆ’2๐œ‹
โˆ’1
2๐œ‹
โˆ’1
2
2
Figure 9.51: (tan2 ๐‘ฅ)(sin2 ๐‘ฅ)
Figure 9.50: tan ๐‘ฅ + sin ๐‘ฅ
2
2
1
1
๐‘ฅ
โˆ’2๐œ‹
2๐œ‹
โˆ’1
๐‘ฅ
โˆ’2๐œ‹
2๐œ‹
โˆ’1
2
2
Figure 9.52: tan ๐‘ฅ โˆ’ sin ๐‘ฅ
Figure 9.53: tan2 ๐‘ฅโˆ• sin2 ๐‘ฅ
572
Chapter Nine /SOLUTIONS
To prove the identity, use tan ๐‘ฅ = sin ๐‘ฅโˆ• cos ๐‘ฅ to rewrite each side in terms of sine and cosine. We have
(
)
sin ๐‘ฅ 2
sin4 ๐‘ฅ
(tan2 ๐‘ฅ)(sin2 ๐‘ฅ) =
(sin2 ๐‘ฅ) =
.
cos ๐‘ฅ
cos2 ๐‘ฅ
In addition,
)
(
sin ๐‘ฅ 2
โˆ’ sin2 ๐‘ฅ
tan2 ๐‘ฅ โˆ’ sin2 ๐‘ฅ =
cos ๐‘ฅ
sin2 ๐‘ฅ
=
โˆ’ sin2 ๐‘ฅ
cos2 ๐‘ฅ
)
(
1
โˆ’1
= sin2 ๐‘ฅ
2
cos ๐‘ฅ
sin2 ๐‘ฅ(1 โˆ’ cos2 ๐‘ฅ)
=
cos2 ๐‘ฅ
2
sin ๐‘ฅ(sin2 ๐‘ฅ)
=
cos2 ๐‘ฅ
4
sin ๐‘ฅ
=
.
cos2 ๐‘ฅ
Since both expressions equal
sin4 ๐‘ฅ
, they are identical.
cos2 ๐‘ฅ
opp
๐‘ฆ
= = ๐‘ฆ.
adj
1
opp
๐‘ฆ
.
(b) cos ๐œƒ =
= โˆš
hyp
1 + ๐‘ฆ2
(c) Since tan ๐œƒ = ๐‘ฆ, we have ๐œƒ =(tanโˆ’1 ๐‘ฆ. Other
) ( answers are
) possible.
๐‘ฆ
2๐‘ฆ
1
(d) cos(2๐œ™) = 2 cos ๐œ™ sin ๐œ™ = 2 โˆš
.
=
โˆš
1
+
๐‘ฆ2
2
2
1+๐‘ฆ
1+๐‘ฆ
26. (a) tan ๐œƒ =
27. Since csc ๐œƒ = 1โˆ• sin ๐œƒ, we have csc ๐œƒ = 1โˆ•(8โˆ•11) = 11โˆ•8. Since cos2 ๐œƒ + sin2 ๐œƒ = 1,
( )2
8
=1
cos2 ๐œƒ +
11
64
cos2 ๐œƒ = 1 โˆ’
121
โˆš
57
cos ๐œƒ = ±
.
121
โˆš
Since 0 โ‰ค ๐œƒ โ‰ค ๐œ‹โˆ•2, we know that cos ๐œƒ โ‰ฅ 0, so cos ๐œƒ = 57โˆ•121. Since tan ๐œƒ = sin ๐œƒโˆ• cos ๐œƒ, we have tan ๐œƒ =
โˆš
โˆš
โˆš
โˆš
(8โˆ•11)โˆ• 57โˆ•121 = 8 121โˆ•11 57 = 8โˆ• 57.
28. Since sin ๐œƒ = 1โˆ• csc ๐œƒ, we have sin ๐œƒ = 1โˆ•94. Using the Pythagorean identity, cos2 ๐œƒ + sin2 ๐œƒ = 1, we have
( )2
1
cos2 ๐œƒ +
=1
94
1
cos2 ๐œƒ = 1 โˆ’ 2
94
โˆš
โˆš
8835
8835
cos ๐œƒ = ±
=±
.
8836
94
โˆš
Since 0 โ‰ค ๐œƒ โ‰ค ๐œ‹โˆ•2, we know that cos ๐œƒ โ‰ฅ 0, so cos ๐œƒ = 8835โˆ•94.
โˆš
โˆš
Using the identity tan ๐œƒ = sin ๐œƒโˆ• cos ๐œƒ, we see that tan ๐œƒ = (1โˆ•94)โˆ•( 8835โˆ•94) = 1โˆ• 8835.
29. By the Pythagorean identity, we know that cos2 ๐œƒ + sin2 ๐œƒ = 1, so
0.272 + sin2 ๐œƒ = 1
sin2 ๐œƒ = 1 โˆ’ 0.272
โˆš
sin ๐œƒ = ± 0.927 โ‰ˆ ±0.963.
However, we only need one value, so we take sin ๐œƒ = 0.963, Since tan ๐œƒ = sin ๐œƒโˆ• cos ๐œƒ, we have tan ๐œƒ =
3.566.
โˆš
0.927โˆ•0.27 โ‰ˆ
SOLUTIONS to Review Problems For Chapter Nine
30. No. Since sin ๐œƒ cannot be greater than 1, sin ๐œƒ = 3 is impossible. The problem is that
and cos ๐œƒ could be 0.4. We only know the ratio is 3โˆ•4.
573
sin ๐œƒ
is a ratio, so sin ๐œƒ could be 0.3
cos ๐œƒ
31. We have 2โˆ•7 = cos 2๐œƒ = 2 cos2 ๐œƒ โˆ’ 1. Solving for cos ๐œƒ gives
9
7
9
cos2 ๐œƒ =
14
โˆš
โˆš
Since ๐œƒ is in the first quadrant, cos ๐œƒ = + 9โˆ•14 = 3โˆ• 14.
2 cos2 ๐œƒ =
32. We will use one of the three double-angle formulas for cosine to solve this equation algebraically. Since the equation
involves sin ๐œƒ, we will try the double-angle formula for cosine which involves the sine:
cos 2๐œƒ = 1 โˆ’ 2 sin2 ๐œƒ.
This gives
1 โˆ’ 2 sin2 ๐œƒ = sin ๐œƒ,
and we can rewrite this equation as follows:
2(sin ๐œƒ)2 + sin ๐œƒ โˆ’ 1 = 0.
Factoring, we have
(2 sin ๐œƒ โˆ’ 1)(sin ๐œƒ + 1) = 0.
The fact that the product (2 sin ๐œƒ โˆ’ 1)(sin ๐œƒ + 1) equals zero implies that
2 sin ๐œƒ โˆ’ 1 = 0 or
sin ๐œƒ + 1 = 0.
Solving sin ๐œƒ + 1 = 0, we have sin ๐œƒ = โˆ’1. This means ๐œƒ = 3๐œ‹โˆ•2. Solving the other equation, we have
2 sin ๐œƒ โˆ’ 1 = 0
1
sin ๐œƒ = .
2
This gives
๐œ‹
5๐œ‹
๐œ‹
or ๐œƒ = ๐œ‹ โˆ’ =
.
6
6
6
In summary, there are three solutions for 0 โ‰ค ๐œƒ < 2๐œ‹ โˆถ ๐œƒ = ๐œ‹โˆ•6, 5๐œ‹โˆ•6, and 3๐œ‹โˆ•2. Figure 9.54 illustrates these solutions
graphically as the points where the graphs of cos 2๐œƒ and sin ๐œƒ intersect.
๐œƒ=
๐‘ฆ
๐‘ฆ = cos 2๐œƒ
1
3๐œ‹
2
๐œ‹
6
โˆ’1
5๐œ‹
6
2๐œ‹
๐œƒ
๐‘ฆ = sin ๐œƒ
Figure 9.54: There are three solutions to the equation cos 2๐œƒ = sin ๐œƒ, for 0 โ‰ค ๐œƒ < 2๐œ‹
33.
cos(2๐›ผ) = โˆ’ sin ๐›ผ
1 โˆ’ 2 sin2 ๐›ผ + sin ๐›ผ = 0
โˆ’2 sin2 ๐›ผ + sin ๐›ผ + 1 = 0
2 sin2 ๐›ผ โˆ’ sin ๐›ผ โˆ’ 1 = 0
(2 sin ๐›ผ + 1)(sin ๐›ผ โˆ’ 1) = 0
574
Chapter Nine /SOLUTIONS
2 sin ๐›ผ + 1 = 0
sin ๐›ผ โˆ’ 1 = 0
2 sin ๐›ผ = โˆ’1
1
sin ๐›ผ = โˆ’
2
7๐œ‹ 11๐œ‹
,
๐›ผ=
6
6
sin ๐›ผ = 1
๐œ‹
๐›ผ=
2
34. Let ๐œƒ = cosโˆ’1 ( 135 ). We can use the Pythagorean theorem and create a triangle with sides 5, 12, and 13 as in Figure 9.55. We
see that sin ๐œƒ =
120
.
169
12
.
13
However we want sin(2๐œƒ), so we use the double-angle identity sin(2๐œƒ) = 2 sin ๐œƒ cos ๐œƒ = 2( 12
)( 5 ) =
13 13
You can check this on a calculator by finding that sin(2 cosโˆ’1 (5โˆ•13)) โ‰ˆ 0.7100591716, which is 120โˆ•169 in decimal
form.
13
12
๐œƒ
5
Figure 9.55
35. Start with the right side, which is more complex. Use a double-angle identity, so both sides are expressed as trigonometric
functions of ๐œƒ.
1 โˆ’ (2 cos2 ๐œƒ โˆ’ 1)
1 โˆ’ cos 2๐œƒ
=
2 cos ๐œƒ sin ๐œƒ
2 cos ๐œƒ sin ๐œƒ
2(1 โˆ’ cos2 ๐œƒ)
=
2 cos ๐œƒ sin ๐œƒ
2(sin2 ๐œƒ)
=
2 cos ๐œƒ sin ๐œƒ
sin2 ๐œƒ
=
cos ๐œƒ sin ๐œƒ
sin ๐œƒ
=
cos ๐œƒ
= tan ๐œƒ.
36. Start with the left side, which is more complex, and reduce it using the Pythagorean identity:
(sin2 2๐œ‹๐‘ก + cos2 2๐œ‹๐‘ก)3 = (1)3 = 1.
37. Start with the expression on the left and factor it as the difference of two squares, and then apply the Pythagorean identity
to one factor.
sin4 ๐‘ฅ โˆ’ cos4 ๐‘ฅ = (sin2 ๐‘ฅ)2 โˆ’ (cos2 ๐‘ฅ)2
= (sin2 ๐‘ฅ โˆ’ cos2 ๐‘ฅ)(sin2 ๐‘ฅ + cos2 ๐‘ฅ)
= (sin2 ๐‘ฅ โˆ’ cos2 ๐‘ฅ)(1)
= (sin2 ๐‘ฅ โˆ’ cos2 ๐‘ฅ).
38. Because both sides are equally complicated, many different approaches are possible. We multiply the right side by (1 +
sin ๐œƒ)โˆ•(1 + sin ๐œƒ) in order to introduce a factor of 1 + sin ๐œƒ to the numerator (the left side already has one) and to simplify
SOLUTIONS to Review Problems For Chapter Nine
the denominator. In the calculation which follows, we work only on the right side:
cos ๐œƒ
cos ๐œƒ
1 + sin ๐œƒ
=
โ‹…
1 โˆ’ sin ๐œƒ
1 โˆ’ sin ๐œƒ 1 + sin ๐œƒ
cos ๐œƒ(1 + sin ๐œƒ)
=
1 โˆ’ sin2 ๐œƒ
cos ๐œƒ(1 + sin ๐œƒ)
=
cos2 ๐œƒ
1 + sin ๐œƒ
=
.
cos ๐œƒ
39. (a) cos (
๐œƒ = ๐‘ฅ. )
โˆš
โˆš
๐œ‹
โˆ’ ๐œƒ = sin ๐œƒ = 1 โˆ’ cos2 ๐œƒ = 1 โˆ’ ๐‘ฅ2 .
(b) cos
2
)2
(โˆš
(
)
1 โˆ’ ๐‘ฅ2
sin ๐œƒ 2
1 โˆ’ ๐‘ฅ2
2
.
(c) tan ๐œƒ =
=
=
cos ๐œƒ
๐‘ฅ
๐‘ฅ2
โˆš
(d) sin(2๐œƒ) = 2 sin ๐œƒ cos ๐œƒ = 2 1 โˆ’ ๐‘ฅ2 (๐‘ฅ).
(e) cos(4๐œƒ) = 1 โˆ’ 2 sin2โˆš
(2๐œƒ). Now we use part (d):
cos(4๐œƒ) = 1 โˆ’ 2(2๐‘ฅ 1 โˆ’ ๐‘ฅ2 )2 = 1 โˆ’ 8๐‘ฅ2 (1 โˆ’ ๐‘ฅ2 ).
โˆš
(f) Using part (a), we see that cosโˆ’1 (๐‘ฅ) = ๐œƒ, so sin(cosโˆ’1 ๐‘ฅ) = sin(๐œƒ) = 1 โˆ’ ๐‘ฅ2 .
40. We first solve for cos ๐›ผ,
3 cos2 ๐›ผ + 2 = 3 โˆ’ 2 cos ๐›ผ
3 cos2 ๐›ผ + 2 cos ๐›ผ โˆ’ 1 = 0
(3 cos ๐›ผ โˆ’ 1)(cos ๐›ผ + 1) = 0
3 cos ๐›ผ โˆ’ 1 = 0
cos ๐›ผ =
cos ๐›ผ + 1 = 0
1
3
cos ๐›ผ = โˆ’1
๐›ผ = 1.231, 5.052
๐›ผ=๐œ‹
41. We first solve for sin ๐›ผ,
3 sin2 ๐›ผ + 3 sin ๐›ผ + 4 = 3 โˆ’ 2 sin ๐›ผ
3 sin2 ๐›ผ + 5 sin ๐›ผ + 1 = 0
โˆš
25 โˆ’ 12
sin ๐›ผ =
6
โˆš
โˆ’5 ± 13
sin ๐›ผ =
6
โˆ’5 ±
sin ๐›ผ =
โˆš
โˆ’5+ 13
6
sin ๐›ผ =
๐›ผ = 3.376, 6.049
โˆš
โˆ’5โˆ’ 13
6
No solution (โˆ’1 โ‰ค sin ๐›ผ โ‰ค 1)
42. Using the formula for cos(๐ด + ๐ต) with ๐ด = 2๐œƒ and ๐ต = ๐œƒ:
cos 3๐œƒ = cos(2๐œƒ + ๐œƒ) = cos 2๐œƒ cos ๐œƒ โˆ’ sin 2๐œƒ sin ๐œƒ
= (2 cos2 ๐œƒ โˆ’ 1) cos ๐œƒ โˆ’ (2 sin ๐œƒ cos ๐œƒ) sin ๐œƒ
= 2 cos3 ๐œƒ โˆ’ cos ๐œƒ โˆ’ 2 cos ๐œƒ(sin2 ๐œƒ)
= 2 cos3 ๐œƒ โˆ’ cos ๐œƒ โˆ’ 2 cos ๐œƒ(1 โˆ’ cos2 ๐œƒ)
= 4 cos3 ๐œƒ โˆ’ 3 cos ๐œƒ
575
576
Chapter Nine /SOLUTIONS
43. Start with the double-angle identity
cos(2๐‘ฅ) = 2 cos2 ๐‘ฅ โˆ’ 1.
Next, solve for cos ๐‘ฅ:
2 cos2 ๐‘ฅ = 1 + cos(2๐‘ฅ)
1
cos2 ๐‘ฅ = (1 + cos(2๐‘ฅ))
2
โˆš
1
cos ๐‘ฅ =
(1 + cos(2๐‘ฅ)).
2
Note that we chose the positive square root. We made this choice because we assumed that 0 โ‰ค ๐œƒ โ‰ค ๐œ‹โˆ•2 which implies
that cos ๐‘ฅ โ‰ฅ 0. Now we substitute ๐‘ฅ = ๐œƒโˆ•2:
( ) โˆš
1
๐œƒ
=
(1 + cos ๐œƒ).
cos
2
2
44. Since 0 < ln ๐‘ฅ < ๐œ‹2 and 0 < ln ๐‘ฆ < ๐œ‹2 , the angles represented by ln ๐‘ฅ and ln ๐‘ฆ are in the first quadrant. This means that both
their sine and cosine values will be positive. Since ln(๐‘ฅ๐‘ฆ) = ln ๐‘ฅ + ln ๐‘ฆ, we can write
sin(ln(๐‘ฅ๐‘ฆ)) = sin (ln ๐‘ฅ + ln ๐‘ฆ) .
By the sum-of-angle formula we have
sin (ln ๐‘ฅ + ln ๐‘ฆ) = sin(ln ๐‘ฅ) cos(ln ๐‘ฆ) + cos(ln ๐‘ฅ) sin(ln ๐‘ฆ).
Since cosine is positive, we have
โˆš
โˆš
cos(ln ๐‘ฅ) =
2
1 โˆ’ sin (ln ๐‘ฅ) =
and
โˆš
โˆš
cos(ln ๐‘ฆ) =
โˆš
( )2
8
1
=
1โˆ’
3
3
1 โˆ’ sin2 (ln ๐‘ฆ) =
1โˆ’
( )2
1
=
5
โˆš
24
.
5
Thus,
sin (ln ๐‘ฅ + ln ๐‘ฆ) = sin(ln ๐‘ฅ) cos(ln ๐‘ฆ) + cos(ln ๐‘ฅ) sin(ln ๐‘ฆ)
(โˆš ) (โˆš )
( )
24
8 (1)
1
+
=
3
5
3
5
โˆš
โˆš
24 + 8
=
15
โ‰ˆ 0.515.
45. (a) The graph of ๐‘”(๐œƒ) = sin ๐œƒ โˆ’ cos ๐œƒ is shown in Figure 9.56.
๐‘ฆ
1
๐œ‹
โˆ’1
Figure 9.56
2๐œ‹
๐œƒ
SOLUTIONS to Review Problems For Chapter Nine
577
โˆš
(b) We know ๐‘Ž1 sin ๐‘ก + ๐‘Ž2 cos ๐‘ก = ๐ด sin(๐‘ก + ๐œ™), where ๐ด = ๐‘Ž21 + ๐‘Ž22 and tan ๐œ™ = ๐‘Ž2 โˆ•๐‘Ž1 . We let ๐‘Ž1 = 1 and ๐‘Ž2 = โˆ’1. This
โˆš
gives ๐ด = 2 and ๐œ™ = tanโˆ’1 (โˆ’1) = โˆ’๐œ‹โˆ•4, so
)
(
โˆš
๐œ‹
.
๐‘”(๐œƒ) = 2 sin ๐œƒ โˆ’
4
46. (a)
(b)
(c)
(d)
Note
โˆš that we have chosen ๐ต = 1 and ๐‘˜ = 0. We can check that this is correct by plotting the original function and
2 sin(๐œƒ โˆ’ ๐œ‹โˆ•4) together.
We know that sin ๐‘ก = cos(๐‘ก โˆ’ ๐œ‹โˆ•2), that is, the sine graph may be obtained by shifting the cosine graph ๐œ‹โˆ•2 units
to the right. Thus,
) โˆš
)
(
(
โˆš
๐œ‹ ๐œ‹
3๐œ‹
= 2 cos ๐œƒ โˆ’
.
๐‘”(๐œƒ) = 2 cos ๐œƒ โˆ’ โˆ’
4
2
4
The population ๐‘ƒ2 swings from a low of 3๐‘Ž โˆ’ 2๐‘Ž = ๐‘Ž to a high of 3๐‘Ž + 2๐‘Ž = 5๐‘Ž, whereas ๐‘ƒ1 swings from a low of
7๐‘Ž โˆ’ ๐‘Ž = 6๐‘Ž to a high of 7๐‘Ž + ๐‘Ž = 8๐‘Ž. Thus, ๐‘ƒ2 has larger swings.
The period of ๐‘ƒ2 is ๐‘ + 2, and the period of ๐‘ƒ1 is ๐‘. Since ๐‘ƒ2 has the longer period, it makes slower swings from low
to high.
At its smallest, ๐‘ƒ1 = 6๐‘Ž, while at its largest, ๐‘ƒ2 = 5๐‘Ž, so this statement describes ๐‘ƒ1 .
The population ๐‘ƒ2 reaches a low of ๐‘Ž, where as ๐‘ƒ1 reaches a low of 6๐‘Ž, so ๐‘ƒ2 appears more vulnerable to extinction.
47. See Figure 9.57. They appear to be the same graph. This suggests the truth of the identity cos ๐‘ก = sin(๐‘ก + ๐œ‹2 ).
๐‘ฆ
๐‘ก
โˆ’2๐œ‹
2๐œ‹
(
)
Figure 9.57: Graphs showing cos(๐‘ก) = sin ๐‘ก + ๐œ‹2
โˆš
โˆš
โˆš
โˆš
โˆš
โˆš
48. (a) ๐‘ง1 ๐‘ง2 = (โˆ’3 โˆ’ ๐‘– 3)(โˆ’1 + ๐‘– 3) = 3 + ( 3)2 + ๐‘–( 3 โˆ’ 3 3) = 6 โˆ’ ๐‘–2 3.
โˆš
โˆš
โˆš
โˆš
โˆš
โˆš
โˆš
๐‘ง1
โˆ’3 โˆ’ ๐‘– 3 โˆ’1 โˆ’ ๐‘– 3
3 โˆ’ ( 3)2 + ๐‘–( 3 + 3 3)
๐‘–โ‹…4 3
=
= ๐‘– 3.
=
โˆš โ‹…
โˆš =
โˆš
๐‘ง2
4
โˆ’1 + ๐‘– 3 โˆ’1 โˆ’ ๐‘– 3
(โˆ’1)2 + ( 3)2
โˆš
(b) We find
to ๐‘ง1 = โˆ’3 โˆ’ ๐‘– 3.
โˆš (๐‘Ÿ1 , ๐œƒ1 ) corresponding
โˆš
โˆš
โˆš
๐‘Ÿ1 = (โˆ’3)2 + ( 3)2 = 12 = 2 3.
โˆš
โˆš
3
โˆ’ 3
7๐œ‹
๐œƒ1
tan ๐œƒ1 =
=
, so ๐œƒ1 =
.
โˆ’3
โˆ’3โˆš
3
โˆš 6 7๐œ‹
Thus โˆ’3 โˆ’ ๐‘– 3 = ๐‘Ÿ1 ๐‘’๐‘–๐œƒ1 = 2 3 ๐‘’๐‘– 6 .
โˆš
๐‘Ÿ1
โˆ’ 3
๐‘ง1
โˆš
We find
(๐‘Ÿ
,
๐œƒ
)
corresponding
to
๐‘ง
=
โˆ’1
+
๐‘–
3.
2
2
2
โˆš
โˆš
๐‘Ÿ2 = (โˆ’1)2 + ( 3)2 = 2;
โˆš
โˆš
3
2๐œ‹
= โˆ’ 3, so ๐œƒ2 =
.
tan ๐œƒ2 =
โˆ’1 โˆš
3
๐‘– 2๐œ‹
๐‘–๐œƒ2
Thus, โˆ’1 + ๐‘– 3 = ๐‘Ÿ2 ๐‘’ = 2๐‘’ 3 .
โˆš
๐‘ง2
๐‘Ÿ2
โˆ’1
๐œƒ2
3
578
Chapter Nine /SOLUTIONS
๐‘ง1
.
๐‘ง2
( โˆš 7๐œ‹ ) ( 2๐œ‹ )
โˆš
โˆš 11๐œ‹
7๐œ‹ 2๐œ‹
2๐‘’๐‘– 3 = 4 3๐‘’๐‘–( 6 + 3 ) = 4 3๐‘’๐‘– 6
๐‘ง1 ๐‘ง2 = 2 3๐‘’๐‘– 6
]
[โˆš
]
โˆš
โˆš
โˆš [
3
11๐œ‹
1
11๐œ‹
=4 3
+ ๐‘– sin
โˆ’๐‘–
= 6 โˆ’ ๐‘–2 3.
= 4 3 cos
6
6
2
2
We now calculate ๐‘ง1 ๐‘ง2 and
โˆš 7๐œ‹
โˆš ๐œ‹
โˆš
7๐œ‹ 2๐œ‹
๐‘ง1
2 3๐‘’๐‘– 6
=
= 3๐‘’๐‘–( 6 โˆ’ 3 ) = 3๐‘’๐‘– 2
2๐œ‹
๐‘ง2
2๐‘’๐‘– 3
)
โˆš (
โˆš
๐œ‹
๐œ‹
= 3 cos + ๐‘– sin
= ๐‘– 3.
2
2
These agree with the values found in (a).
49. (a) Since ๐‘ง = 3 + 2๐‘–, we have ๐‘–๐‘ง = ๐‘–(3 + 2๐‘–) = 3๐‘– + 2๐‘–2 = โˆ’2 + 3๐‘–. See Figure 9.58.
๐‘ฆ
๐‘–๐‘ง = โˆ’2 + 3๐‘–
๐‘ง = 3 + 2๐‘–
๐‘™2
๐‘™1
๐‘ฅ
Figure 9.58
(b) The slope of the line ๐‘™1 in Figure 9.58 is 2โˆ•3, and the slope of the line ๐‘™2 is โˆ’3โˆ•2. Since the product (2โˆ•3)(โˆ’3โˆ•2) = โˆ’1
of these two slopes is โˆ’1, the lines are perpendicular.
STRENGTHEN YOUR UNDERSTANDING
1. True, because the factor ๐‘’โˆ’๐‘ก decreases the oscillations of cos ๐‘ก as ๐‘ก grows.
2. True. Substitute in tan ๐œ™ = sin ๐œ™โˆ• cos ๐œ™ and simplify to see that this is an identity.
3. True. This is the definition of an identity.
โˆš
2
๐œ‹
๐œ‹
.
4. False. An odd function would require ๐‘“ (โˆ’๐œƒ) = โˆ’๐‘“ (๐œƒ), but ๐‘“ (โˆ’ ) = ๐‘“ ( ) =
4
4
2
5. True. This is an identity. Substitute using tan2 ๐œƒ = sin2 ๐œƒโˆ• cos2 ๐œƒ and simplify to obtain 2 = 2 sin2 ๐œƒ + 2 cos2 ๐œƒ. Divide by
2 to reach the Pythagorean identity.
6. False. This is not the Pythagorean identity, since the square is on the variable ๐›ฝ. As a counterexample, let ๐›ฝ = 1. Note that
cos ๐›ฝ 2 โ‰  (cos ๐›ฝ)2 and cos2 ๐›ฝ = (cos ๐›ฝ)2 .
7. True. First find sin ๐›ผ and then use the double-angle formula. Since cos2 ๐›ผ +sin2 ๐›ผ = 1, we have sin2 ๐›ผ = 1โˆ’ 94 = 59 . Because
โˆš
๐›ผ is in the third quadrant, its sine is negative, so sin ๐›ผ = โˆ’
5
.
3
โˆš
We find sin(2๐›ผ) = 2 sin ๐›ผ cos ๐›ผ = 2(โˆ’
โˆš
5
)(โˆ’ 23 ) = 4 9 5 .
3
โ—ฆ
โ—ฆ
8. False. Although true for the value ๐œƒ = 45โ—ฆ , it is not true for all values of ๐œƒ. A counterexample is sin 0 โ‰  cos 0 .
9. True. There are many ways to prove this identity. We use the identity cos 2๐œƒ = cos2 ๐œƒ โˆ’ sin2 ๐œƒ to substitute in the right side
of the equation. This becomes 21 (1 โˆ’ (cos2 ๐œƒ โˆ’ sin2 ๐œƒ)). Now substitute using 1 โˆ’ cos2 ๐œƒ = sin2 ๐œƒ (a form of the Pythagorean
identity.) The right side then simplifies to sin2 ๐œƒ, which is the left side.
10. False. A counterexample is cos(4 โ‹… 0โ—ฆ ) = 1 โ‰  โˆ’ cos(โˆ’4 โ‹… 0โ—ฆ ) = โˆ’1.
11. False. For a counterexample, let ๐œƒ = ๐œ™ = 90โ—ฆ . Then sin(๐œƒ + ๐œ™) = sin 180โ—ฆ = 0, but sin ๐œƒ + sin ๐œ™ = sin 90โ—ฆ + sin 90โ—ฆ =
1 + 1 = 2.
12. False. For a counterexample let ๐œƒ = 90โ—ฆ . Then sin(2๐œƒ) = sin 180โ—ฆ = 0, but 2 sin ๐œƒ = 2 sin 90โ—ฆ = 2.
STRENGTHEN YOUR UNDERSTANDING
579
13. True. Start with the sine sum-of-angle identity:
sin(๐œƒ + ๐œ™) = sin ๐œƒ cos ๐œ™ + sin ๐œ™ cos ๐œƒ
and let ๐œ™ = ๐œ‹โˆ•2, so
sin(๐œƒ + ๐œ‹โˆ•2) = sin ๐œƒ cos(๐œ‹โˆ•2) + sin(๐œ‹โˆ•2) cos ๐œƒ.
Simplify to
sin(๐œƒ + ๐œ‹โˆ•2) = sin ๐œƒ โ‹… 0 + 1 โ‹… cos ๐œƒ = cos ๐œƒ.
14. False. We have ๐‘“ (๐‘ก) = sin ๐‘ก cos ๐‘ก = (1โˆ•2) sin 2๐‘ก which is periodic with period ๐œ‹.
15. True. We have sin(๐‘ก โˆ’ ๐œ‹) = sin((๐‘ก โˆ’ ๐œ‹) + 2๐œ‹) = sin(๐‘ก + ๐œ‹) where the first equality is by periodicity of the sine function.
16. False. For example, ๐‘ก = ๐œ‹โˆ•2 gives cos(๐‘ก โˆ’ ๐œ‹โˆ•2) = 1 and cos(๐‘ก + ๐œ‹โˆ•2) = โˆ’1. The correct identity is cos(๐‘ก โˆ’ ๐œ‹โˆ•2) =
โˆ’ cos(๐‘ก + ๐œ‹โˆ•2).
17. True. Since ๐ด cos(๐ต๐‘ก) = ๐ด sin(๐ต๐‘ก + ๐œ‹โˆ•2) = ๐ด sin(๐ต(๐‘ก + ๐œ‹โˆ•(2๐ต))), the graph of ๐ด cos(๐ต๐‘ก) is a shift of ๐ด sin(๐ต๐‘ก) to the left
by ๐œ‹โˆ•(2๐ต).
18. True. We have
๐‘“ (๐‘ฅ + 2๐œ‹) = sin 2(๐‘ฅ + 2๐œ‹) + sin 3(๐‘ฅ + 2๐œ‹)
= sin(2๐‘ฅ + 4๐œ‹) + sin(3๐‘ฅ + 6๐œ‹)
= sin 2๐‘ฅ + sin 3๐‘ฅ = ๐‘“ (๐‘ฅ)
which shows that ๐‘“ (๐‘ฅ) is periodic. The period is 2๐œ‹.
19. False. The sum of two nonzero sinusoidal functions with different periods is not a sinusoidal function. A graph of ๐‘“ (๐‘ฅ) on
the interval 0 โ‰ค ๐‘ฅ โ‰ค 4๐œ‹ shows a more complicated shape that the graphs of a sinusoid.
20. False. If the periods are different the sum may not be sinusoidal. As a counterexample, graph ๐‘“ (๐‘ก) = sin ๐‘ก + sin 2๐‘ก, to see
that ๐‘“ (๐‘ก) is not sinusoidal.
โˆš
21. True. We use the assumption that ๐‘Ž1 and ๐‘Ž2 are nonzero. The amplitude of the single sine function is ๐ด = ๐‘Ž21 + ๐‘Ž22 . Thus,
๐ด is greater than either ๐‘Ž1 or ๐‘Ž2 .
โˆš
22. True. We have ๐‘“ (๐‘ก) = ๐ด sin(2๐œ‹๐‘ก + ๐œ™) where ๐ด = 32 + 42 = 5, cos ๐œ™ = 53 and sin ๐œ™ = 45 .
23. False. The amplitude of ๐‘” increases exponentially.
24. True. The maximum of ๐‘” occurs when sin(๐œ‹๐‘กโˆ•12) = โˆ’1, so the maximum value of the function is 55 + 10 = 65.
25. True. Hertz is a measure of cycles per second and so a single cycle will take 1/60th of a second.
26. True. The zeros occur when cos(๐œ‹๐‘ก) + 1 = 0, so cos(๐œ‹๐‘ก) = โˆ’1. Hence, ๐œ‹๐‘ก = ๐‘›๐œ‹, where ๐‘› is an odd integer. Thus, ๐‘ก = ๐‘› is
an odd integer.
27. False. The variable ๐ต affects the period; the variable ๐ด affects the amplitude.
28. True; divide by ๐‘’๐‘ก , which is never zero, and obtain tan ๐‘ก = 2โˆ•3.
29. True. Since 0 โ‰ค cosโˆ’1 (๐‘ฅ) โ‰ค ๐œ‹, we have 0 โ‰ค sin(cosโˆ’1 ๐‘ฅ) โ‰ค 1. Thus, cosโˆ’1 (sin(cosโˆ’1 ๐‘ฅ)) is an angle ๐œƒ whose cosine is
between 0 and 1. In addition, we have 0 โ‰ค ๐œƒ โ‰ค ๐œ‹, as this is part of the definition of cosโˆ’1 ๐‘ฅ. Hence 0 โ‰ค ๐œƒ โ‰ค ๐œ‹โˆ•2.
30. True; we need ๐‘Ž + ๐‘ sin ๐‘ก to be positive for the natural logarithm to be defined. Since sin ๐‘ก โ‰ฅ โˆ’1, we have ๐‘Ž + ๐‘ sin ๐‘ก โ‰ฅ
๐‘Ž โˆ’ ๐‘ > 0.
โˆš
31. True, since ๐‘Ž is real for all ๐‘Ž โ‰ฅ 0.
32. True, since (๐‘ฅ โˆ’ ๐‘–๐‘ฆ)(๐‘ฅ + ๐‘–๐‘ฆ) = ๐‘ฅ2 + ๐‘ฆ2 is real.
33. False, since (1 + ๐‘–)2 = 2๐‘– is not real.
34. False. Let ๐‘“ (๐‘ฅ) = ๐‘ฅ. Then ๐‘“ (๐‘–) = ๐‘– but ๐‘“ (๐‘–ฬ„) = ๐‘–ฬ„ = โˆ’๐‘–.
35. True. We can write any nonzero complex number ๐‘ง as ๐‘Ÿ๐‘’๐‘–๐›ฝ , where ๐‘Ÿ and ๐›ฝ are real numbers with ๐‘Ÿ > 0. Since ๐‘Ÿ > 0, we
can write ๐‘Ÿ = ๐‘’๐‘ for ๐‘ = ln ๐‘Ÿ. Therefore, ๐‘ง = ๐‘Ÿ๐‘’๐‘–๐›ฝ = ๐‘’๐‘ ๐‘’๐‘–๐›ฝ = ๐‘’๐‘+๐‘–๐›ฝ = ๐‘’๐‘ค where ๐‘ค = ๐‘ + ๐‘–๐›ฝ is a complex number.
36. False, since (1 + 2๐‘–)2 = โˆ’3 + 4๐‘–.
37. True. This is Eulerโ€™s formula, fundamental in higher mathematics.
38. True. (1 + ๐‘–)2 = 12 + 2 โ‹… 1 โ‹… ๐‘– + ๐‘–2 = 1 + 2๐‘– โˆ’ 1 = 2๐‘–.
39. True. Since ๐‘–4 = 1, we have ๐‘–101 = (๐‘–4 )25 ๐‘– = 1 โ‹… ๐‘– = ๐‘–.