Math 135 The Logarithm Worksheet • Rules of Logarithms 1. loga x = y ⇐⇒ ay = x 2. aloga M = M 3. loga a = 1 4. loga 1 = 0 5. loga M r = r loga M 6. loga (M · N ) = loga M + loga N 7. loga ( M ) = loga M − loga N N 8. loga M = logb M logb a • Common Mistakes 1. loga (M − N ) = loga M loga N 2. loga (M + N ) = loga (M N ) 3. logb M logb a = M a • Arrange from least to greatest: 1. e, ln e, 12 2. e2 , 1, ln e2 3. ln 1e , e−1 , 1 4. 4, ln 4, e • Simplify: 1. log10 10−3 5 2. log3 27 3 √ 3. log2 2 8 4. (ln(e2 ))−1 5. 2log2 3 · 3log3 2 6. * log2 3 log3 4 log4 8 7. * eloge3 27 • Write as a sum or difference of logarithms without any exponents: 1. ln(x2 − y 2 ) 2. log2 3. loga 4. logb 3x5 y8 q 5 2x x2 −1 q 3 1 y2 · University of Hawai‘i at Mānoa q x2 z 161 R Spring - 2014 Math 135 The Logarithm Worksheet • Combine into a single logarithm: 1. log2 4x + log2 x + 2 log2 x 2. 1 [ln 2 3 4. ln x3 +1 ln 2 + ln y − ln y 2 − 4 ln y] p 3. 31 loga x2 + loga x + y 2 − loga (x2 + y) − log2 (x3 + 1) [Hint: Change of base.] Sample Midterm University of Hawai‘i at Mānoa Sample Final 9 A B C D 13 A B C D 16 A B C D 23 A B C D 29 A B C D 40 A B C D 162 R Spring - 2014 Math 135 The Logarithm Solutions • Arrange from least to greatest: 1. e, ln e, 12 1 < ln e = 1 < e ≈ 2.718 2 2. e2 , 1, ln e2 1 < ln e2 = 2 < e2 ≈ 7.389 3. ln 1e , e−1 , 1 ln 1 = −1 < e−1 ≈ 0.368 < 1 e 4. 4, ln 4, e ln 4 ≈ 1.386 < e ≈ 2.718 < 4 • Simplify: 1. log10 10−3 = −3 5 5 2. log3 27 3 = log3 (33 ) 3 = log3 35 = 5 √ √ 1 5 3. log2 2 8 = log2 2 · 2 2 = log2 22+ 2 = log2 2 2 = 4. (ln(e2 ))−1 = 2−1 = 5 2 1 2 5. 2log2 3 · 3log3 2 = 3 · 2 = 6 6. log2 3 log3 4 log4 8 log2 3 log3 4 log4 8 = log2 3(log3 4 log4 8) = (log3 4 log4 8) · log2 3 = log2 3(log3 4 log4 8) log4 8 = log2 3log3 4 = log2 8 = 3 3 7. eloge3 27 = eloge3 3 = e3 loge3 3 = (e3 ) loge3 3 =3 • Write as a sum or difference of logarithms without any exponents: 1. ln(x2 − y 2 ) = ln(x + y)(x − y) = ln(x + y) + ln(x − y) 2. log2 3x5 = log2 3x5 − log2 y 8 y8 = log2 3 + log2 x5 − log2 y 8 = log2 3 + 5 log2 x − 8 log2 y 3. r loga 5 University of Hawai‘i at Mānoa 2x 1 = loga 2 x −1 5 2x 2 x −1 163 R Spring - 2014 Math 135 The Logarithm Solutions 1 [loga 2x − loga (x2 − 1)] 5 1 = [loga 2x − loga (x + 1)(x − 1)] 5 1 = [loga 2 + loga x − (loga (x + 1) + loga (x − 1))] 5 1 1 1 1 = loga 2 + loga x − loga (x + 1) − loga (x − 1) 5 5 5 5 = 4. r logb 3 1 · y2 r x2 z ! = 1 1 x2 1 logb 2 + logb 3 y 2 z 1 1 logb y −2 + [logb x2 − logb z] 3 2 2 1 = − logb y + [2 logb x − logb z] 3 2 2 1 = − logb y + logb x − logb z 3 2 = • Combine into a single logarithm: 1. log2 4x + log2 x + 2 log2 x = log2 4x + log2 x + log2 x2 = log2 (4x · x · x2 ) = log2 4x4 2. 1 1 [ln 2 + ln y − ln y 2 − 4 ln y] = [ln 2 + ln y − (ln y 2 + 4 ln y)] 3 3 1 = [ln 2y − (ln y 2 + ln y 4 )] 3 1 = [ln 2y − ln y 6 ] 3 1 2y = ln 3 y6 r 2y = ln 3 6 y r 2 = ln 3 5 y 3. p p 2 1 loga x2 + loga x + y 2 − loga (x2 + y) = loga x 3 + loga x + y 2 − loga (x2 + y) 3 p 2 = loga (x 3 · x + y 2 ) − loga (x2 + y) p 2 (x 3 · x + y 2 ) = loga x2 + y 4. ln x3 +1 ln 2 − log2 (x3 + 1) = log2 (x3 + 1) − log2 (x3 + 1) = log2 1 = 0 University of Hawai‘i at Mānoa 164 R Spring - 2014
© Copyright 2026 Paperzz