University of South Florida Scholar Commons Marine Science Faculty Publications College of Marine Science 3-15-2000 Plankton Community Composition, Production, and Respiration in Relation to Dissolved Inorganic Carbon on the West Florida Shelf, April 1996 Gary L. Hitchcock University of Miami Gabriel A. Vargo University of South Florida St. Petersburg, [email protected] Mary-Lynn L. Dickson University of Rhode Island Follow this and additional works at: http://scholarcommons.usf.edu/msc_facpub Part of the Marine Biology Commons Scholar Commons Citation Hitchcock, Gary L.; Vargo, Gabriel A.; and Dickson, Mary-Lynn L., "Plankton Community Composition, Production, and Respiration in Relation to Dissolved Inorganic Carbon on the West Florida Shelf, April 1996" (2000). Marine Science Faculty Publications. 117. http://scholarcommons.usf.edu/msc_facpub/117 This Article is brought to you for free and open access by the College of Marine Science at Scholar Commons. It has been accepted for inclusion in Marine Science Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 105,NO. C3, PAGES 6579-6589,MARCH 15, 2000 Planktoncommunitycomposition, production,and respiration in relation to dissolvedinorganiccarbon on the West Florida Shell April 1996 Gary L. Hitchcock Rosenstiel Schoolof MarineandAtmospheric Science, University of Miami,Miami,Florida GabrielA. Vargo Department of MarineScience, University of SouthFlorida,St.Petersburg Mary-Lynn Dickson Graduate School of Oceanography, University of RhodeIsland,Narragansett Abstract.In April 1996theFloridaShelfLagrangian Experiment examined dissolved inorganiccarbon(DIC) dynamicsonthe West Florida Shelf. DIC concentrations increased over -1 -1 2 weeksatanaverage rateof 1 gmolkg d in a patchof theintentionally released tracers sulfur hexafluoride (SF6) andhelium 3 (3He).Approximately 20%oftheincrease wasdueto air-seaexchange withtheremaining 80%attributed to plankton respiration [Wanninkhofet al., 1997].Herewepresent particulate matterconcentrations, phytoplankton production, and community respiration ratesfromthetracerpatchthatsuggest thatheterotrophs dominated thecommunity afterthetermination of a spring bloom.Duringtheexperiment, chlorophyll a andphaeopigment concentrations declined from> 1.5to< 0.5ggL-•,with75-85%oftotal chlorophyll a in the< 5gmsizefraction. Particulate mattercomposition, withmeanratiosof particulate organic carbon:chlorophyll a > 200andparticulate organic nitrogen:chlorophyll a > 100,suggests thatphytoplankton werea minorcomvonent of theplankton biomass. Rates ofdailygross primary production estimated bytheH2180 method averaged 69+ 5 mmol C d (n = 3) whfiedarkrespiration rates,estimated fromdarkbottleincubations, werea•p- proximately40+ 3 mmol Cm'2d-1.Netcommunity production rates (6ñ 6 mmol Cm-2d-1) weremuchlowerthanrespiration rates.Thusrespiration ratesnearlybalanced phytoplankton production. Lightrespiration rateswereestimated fromgross production minusnetcommu- nityproduction (-51•-8mrnol Cm-2d-1)andexceeded dark respiration. Plankton community respiration rates,corrected for autotrophic carbonfixation,weremorethansufficient to accountfortheobserved increase of DIC withinthetracerpatch. 1. Introduction 'highnutrient-low biomass'waters,whereCO2fugacityde- creases afteriron enrichment[Cooperet al., 1996;de Baar et Plankton communities alterthedissolved inorganic carbon al., 1995]. (DIC)content of oceanic surface waters through theprocesses Whileseveralstudieshaveexamined planktonproductivity of photosynthesis andrespiration. In surface waters,DIC con- andDIC in theopenocean,fewerhaveexamined theseproccentrations decrease if primaryproduction ratesexceedthe esseson continental shelves[Frankignoulle et al., 1996].In combined influxof carbon fromtheatmosphere andrespira- comparisonto the open sea, continentalshelf environments tion [Robertson and Watson,1995]. In the NorthAtlantic are characterized by high ratesof carbondeposition dueto Ocean,for example, DIC concentrations declinewhenprienhanced nutrientinputs,highproductivity rates,and an inmaryproductivity increases duringthe springbloom[Chipflux of organicmatterfrom terrestrialsources[Wollast, manet al., 1993]. Measurements of air-seaCO2exchange in contribute to coastalwatersasa sigtheNorthAtlanticshowthatspatial distributions of primary 1993]. Theseprocesses environment in theglobalocean[Smith producers correlatesignificantly with variationsin surface nificantheterotrophic and Mackenzie, 1987]. Nevertheless, ratesof photopCO2at lengthscales < 100km [Watson et al., 1991]. Pro- autotrophiccarbon fixation can reducehigh DIC levels in shelf ductivityalsoinfluences the spatialdistribution of DIC in surface waters.Codispoti et al. (1986)observed thatphotosyntheticcarbonuptakereducedpCO2from > 300 to < 125 ppmduringa springbloomin theBeringSea.In April 1990, DIC concentrations on GeorgesBankinitiallydecreased, and Copyright2000 by theAmericanGeophysical Union. thenincreased, atrates ofseveral I.tmolC kg-•d-t asthespring bloomdeveloped andsubsequently declined[Sambrotto and Langdon,1994]. In contrastto temperate and boreallati- Papernumber 1998JC000293. 0148-0227/00/1998JC00029359.00 6579 6580 HITCHCOCK ET AL.: PLANKTON PRODUCTION ON THE WEST FLORIDA SHELF tudes,few studieshavebeenmadein subtropical or tropical from 24ø N, 84ø W reveal that net particle displacementin of theShelfis of theorderof a fewkmd'• with shelfenvironments wherephytoplankton biomassand pro- thisregion ductivityratesarerelativelylow. corresponding along-shoretrajectoriesof hundredsof kiloIn April 1996 the Florida Shelf LagrangianExperiment metersper month[Weisberget al., 1996]. Theselengthscales (FSLE)characterized the dissolved inorganiccarbonsystem agree with the observeddisplacementof the tracer patch on the West Florida Shelf [Wanninkhofet al., 1997]. The [Wanninkhofet al., 1997]. main objectiveof the studywas to quantifyair-seagasexProductivitystudiesindicatethat the West Florida Shelf is changeratesin a subtropicalshelfecosystem.Sincecarbon oligotrophic.Annualproductivityestimatesrangefrom 30 to dynamics on continental shelvesarecomplicated by advection 180g C m-2yr4 [Vargo et al., 1987;El-Sayed, 1972;Wroand mixing of oceanic,coastal,and riverinewaters [De- blewskiand 0 'Brien, 1973] with maximumratesin bloomsof Grandpreet al., 1998],the FSLEwasdesigned as a "patch" the dinoflagellateGymnodiniumbreve Davis. However,most study throughthe releaseof the intentionaltracerssulfur of the production measurementshave been made during hexafluoride (SF6)andhelium 3 (3He).TheLagrangian de- nonbloomperiodswhen G. breve is absentfrom surfacewa- signof the experiment providedinvestigators with the op- tersorpresent atbackground concentrations of< 103cellsL-• portunityto follow DIC dynamicsin a taggedwatermassfor [Geeseyand Tester, 1993]. Shorewardof the 40-m isobath 2 weeks. Duringthe study,DIC concentrations in the mixed thedailyproduction ratesaretypically < 500mgC m-2d4 layerincreased at anaverage rateof- 1 lamolkg'• d-•,with withsurface chlorophyll a concentrations < 1 lagL4 [Vargo et 20% of the increasedue to the influx of atmospheric CO2 al., 1987, Table 1). Chlorophylla concentrations on the mid[Wanninkhofet al., 1997].Theremaining80% of theincrease dletoouter Shelfcanexceed 1 lagL'• forseveral weeks inthe wasattributed to plankton respiration. Herewe reportpigment spring(Gilbeseta!., 1996). This springbloomon the West concentrations, particulatemattercomposition, and commu- Florida Shelf may be initiatedby an influx of allochthonous nity production andrespiration ratesfromthe tracerpatch. nutrientsfrom riverine sourceson the northernGulf coast,inThe observations supportthe conclusions of Wanninkhof et cludingthe MississippiRiver and Mobile Bay, or from onal. [1997],sincerespiration ratesby the predominantly het- shoretransportof nutrient-rich,deep water upwelled at the erotrophicplanktoncommunitywere morethan sufficientto Shelf break. In April 1996 we observedthat surfacechloroaccount for observed increases in DIC. phyll a and phaeopigmentconcentrations at mid-Shelf de- The WestFloridaShelfis at the easternboundaryof the clined frominitiallevelsof 1.5to < 0.5lagL4. OurobservaoligotrophicGulf of Mexico. Nutrient concentrationsare tions thereforelikely coincidedwith the terminationof the relativelylow in surfacewaterson the Shelf,althoughnutri- 1996 springbloom. entlevelsareoftenenhanced followingwindevents[Fanning et al., 1982]. Circulationon the inner Shelf is primarily drivenby windsand tides [Marmorino,1983;Mitchurnand 2. Methods Clarke, 1986]. The experimentwas locatedat 29øN, 84ø W, with the tracerreleasedalongthe 25-m isobath(Figure1). 2.1. Particulate Analyses Long-termacousticDopplercurrentprofiler(ADCP) records Particulatematterwas analyzedfor chlorophylla, phaeopigrnent, andparticulate organiccarbon,nitrogen,andphosphorus.Chlorophylla concentrations were measuredon samples collected at 20 stations from 30-L Niskin bottles 86 ø 84ø mounted on a General Oceanics rosette with a SeaBird 11 82 ø conductivity-temperature-depth (CTD). Duplicatealiquotsof 200 mL eachwere filteredonto Whatmanglassfiber filters (GF/F) at a vacuumof 50 mm of Hg. The filters were ex- 30 ø tracted in 10 mL of methanol for 4 hours in the dark at room x 28 ø - ".•v",..., "}_ i x. ,". b•";',. '/-'.,• ',. ) '• ; temperature. Chlorophylla and phaeopigrnent concentrations weredetermined from fluorescence readingsbeforeandafter acidificationon a TurnerDesignsModel 10 fluorometerfollowingthe methodof Holm-Hansenand Riemann[1978]. 'E'T I• The fluorometer was calibratedwith purifiedchlorophylla purchased from SigmaChemicalCorporation. Particulateorganiccarbon(POC) and particulateorganic nitrogen(PON) concentrations were measuredat 12 stations (Table 1) from duplicate200 mL aliquotsfilteredontoprecombustedWhatmanGF/F filters (2 hoursat 450øC). The 26 ø filterswere storedovera dessicant at-20øC and assayedin thelaboratory ona CarloErba1600carbonnitrogenhydrogen (CHN) analyzer[Sharp, 1974]. Blanksof precombusted filtersandstandards wereanalyzedat the beginningandendof eachday. Particulatephosphate was measured by the combustionmethodof SolorzanoandSharp[ 1980]on duplicate samplesfiltered onto precombusted Whatman GF/F filters acid-rinsed, glassscintilFigure 1. Bathymetryof the West Florida Shelf. The tracers andstoredfrozenin precombusted, lation vials. werereleased onthe25-misobath at 29øN, 84øW (dot). ', ',,,,,., -,., ,, - *-"'" I HITCHCOCK ET AL.: PLANKTON PRODUCTION ON THE WEST FLORIDA SHELF 6581 Table 1. Sampling Activityat CTD Stations for Particulate MatterandPigment Concentrations, PrimaryProductionRates,andNutrientMeasurements Day GMT CTD Latitude,øN Longitude,øWDepth,m 1 2 3 1331 1907 1246 8 11 15 29.049 28.038 29.066 3 2146 17 28.934 4 4 5 6 7 8 8 9 10 11 14 0827 1135 1220 0012 0320 0810 2226 1007 1012 0819 0809 18 19 25 28 34 40 43 45 54 58 72 29.017 28.967 29.066 28.999 29.099 29.063 29.144 29.041 28.493 28.947 29.063 Activity SF6 15 5 10 part. part. part. NS NS 130 84.084 5 nut. 242 84.013 84.083 84.001 84.092 84.067 83.986 83.966 84.078 84.064 84.102 83.986 5 10 11 10 10 5 10 5 10 5 5 prod.1 part. part. part. part. prod.2 part. part. part. prod.3 prod.4 161 95 106 60 83 25 23 33 34 21 20 84.111 84.022 84.031 14 1020 73 29.063 84.000 5 nut. 19 14 16 2214 1633 75 93 29.091 29.073 84.010 84.101 20 5 part. pan. 5 11 Day 1 corresponds to April 1, with time in UT and latitudeand longitudein decimaldegrees. Depthsof discrete samples arein meters.SF6concentrations arein partspertrillionby volume.The tracerinjection wasonApril 1;conductivity-temperature-depth (CTD) 8 wasontheinjection line.NS, no samples; part.,particulate matterandpigmentconcentrations; prod.,primaryproduction rates;nut., nutrient measurements. concentrations in initial,light,anddarkbottlesby the Winkler methodutilizinga potentiometric endpointtitrator.Seawater samples weredrawnfromthe Go-Flobottlesinto quartz125mL flasks, flushedwith severalhundredmilliliters of seawater,andthen closedwith groundglassstoppers.Four initial O2 samplesanda total of 16 light and darkbottleswere 2.2. Grossand Net Production and Respiration Rates filled with seawaterfrom each of the four samplingdepths. Samples for production andrespiration rateswerecollected The O2flasksweresuspended with the grossproductionsamfrom 2, 5, 10, and 20 m at four CTD stations(Table 1). plesat theircollectiondepthin acryliccarousels.Automatic Grossandnet production ratesare onlyavailablefromthree temperature recorders(OnsetComputerCorporation,Bourne, of the stationssincethe in situarraywas loston day 11 (proMassachusetts) were placedin eachcarouselto monitortemductivity3). Grossprimaryproduction ratesweremeasured perature. by the methodof Benderand Grande[1987] from samples After the in situarraywas retrievedat dusk,quadruplicate incubated for 24 hourswithH2•80[alsoseeBender et al., light anddarkbottleswere fixed with reagentsfor determin1987]. All seawatersamplesfor production and respiration ing photoperiod (daylight)ratesof NCP and DCR. The remeasurements were collectedat 0400 local time (0800 UT) to mainingfour light bottlesand four dark bottlesfrom each ensurethatphytoplankton werenotexposed to directsunlight depthwerethenplacedin the on-deckincubator to completea beforeincubation. Two samplesfrom each depthwere en24-hour incubation. The O2 sampleswere titrated after riched with200laLof 97.2atom% H2•80(Cambridge Isotope reachingthermalequilibriumwith an automated titrationsysLaboratories,Andover, Massachusetts) for 24-hour incubatem. The titrationswererun to a potentiometric endpointwith tions.TheH2•SO-enriched samples werethensuspended from a RadiometerAutomaticBurette(ABU) and a TitrationMana surfacefloat at their depthof collection.The float was deager(TIM) 90 controller.The analyticalprecisionin laboraployedbeforedawnandtrackedby a VHF beaconuntil it was torysamples, calculated asstandard deviations, is + 0.04% for retrievedat sundown. At duskthe grossproductionsamples iodatestandards and+ 0.07% for replicateO2 samples.At sea were placed in a darkenedon-deckincubatorcooled with the analyticalprecisionis + 0.15% for replicateoxygensamflowingsurfaceseawaterandincubateduntil dawn. plesdrawnfrom the sameGo-Flobottle.Precisionfor NCP Two samplesfrom the Niskin bottleswere collectedfor Verticalprofilesof scalarirradiance weremeasured with a LiCor LI-193S 4• sensorloweredfrom the stem of the ship. A total of sevenprofileswere takenwithin 2 hoursof local noonwhilethe stemwaspositionedtowardthe Sun. andDCRratesisestimated tobe+ 0.2lamol O2L'•. initial•SOconcentrations. Approximately 50 mLof seawater were dispensedinto preevacuated150 mL glassflaskspoi- soned with200txLof saturated HgC12.Thedissolved •802 was extractedfollowing the procedureof Emerson et al. [1991].The•gO2 samples wereanalyzed in thelaboratory of Daily oxygenproductionrateswere convertedto carbon equivalents by the followingequation: Gc = {(No2/1.4)+ ((Go2- No2)/1.1)} (1) M. Benderusing a FinniganMAT 252 massspectrometer. The analyticalprecisionof the grossproductionmeasurement where gross production from•gOincubations (Go2)andNCP (No2)from the Winkler titrationsare expressedas mmol 02 onreplicate samples was+_0.07ø/oo. Ratesof net communityproduction(NCP) and dark com- m'2t4 andGcisgross carbon production expressed asmmolC munityrespiration(DCR) were estimatedfrom changesin O2 m'2t'•. A photosynthetic quotient (PQ)of 1.4wasselected to 6582 HITCHCOCK ETAL.:PLANKTON PRODUCTION ONTHEWESTFLORIDASHELF 29.1ø L 29.00_] 28.9ø 29'1ø- 29'0 o 28.9 ø 29.1ø _ %• 5 . 29'00 0 ,,•,zi• 28.9ø- " -84.3ø -84.2ø -84.1o .84.0o _83.9o _83.8o O .83.7o Longitude Figure 2. Surface distributions inthetracer patch 11days afterrelease for(a)temperature, (b)salinity, and(c) relative chlorophyll a fluorescence. Thedotted lineinthetemperature map(a)shows theship track during thesurvey.Thefluorescence mapincludes thestation positions forproductivity andparticulate samples (solid diamonds), andadditional stations forchlorophyll a (open diamonds). Thespatial extent oftheSF6patch isindicated bythe5 partspertrillionbyvolume(pptv)contour (dashed line). tionsincreased from100nmolkg'• in themixedlayerto a tionsincreased from-• 0.25ggL'• inthesurface layerto 0.9 maximum of 150nmolkg'• at25m. In general, nitrate con- ggL'• below thepycnocline (Figure 40. Thedecline inchlo- centrations at CTD 74 were50% higherthanthoseat CTD rophylla andphaeopigment concentrations duringthe first 17,varying from250to350nmolkg'• inthewatercolumn. few daysof the studyand the low initial chlorophyll Pigment profilesat CTD 75 weretypicalof the vertical a:phaeopigment ratiossuggest thatthe phytoplankton comdistributions of chlorophyll a andphaeopigment during the munitywasin declinesoonafterthetracerwasinjected. lastweekofthestudy. Chlorophyll a exceeded phaeopigrnent Chlorophylla concentrationswere measuredin three atalldepths, withmaximum chlorophyll a andphaeopigment sizefractions onApril8 (CTD 43) andApril 16 (CTD 93). concentrations in thebottomlayer.Chlorophyll a concentra-Size-fractionated samples werecollected fromfive depths HITCHCOCK ET AL.: PLANKTON PRODUCTION convertnet oxygenproductionratesto net carbonproduction, with a PQ of 1.1 to convertoxygenrespiration ratesto carbon equivalents [Laws,1991]. Respiration ratesin the light(RL) were estimatedby subtracting the NCP ratesfrom the gross ON THE WEST FLORIDA SHELF 6583 surfacesampleslisted in Table 1 the mean POC:Chl a ratio was226'1. Particulateorganicnitrogenconcentrations varied fourfold, from1.65-9.72txmol L'l, withnoapparent relationship to the variabilityin chlorophylla (Figure 3). As with •80production rates following theprocedure of Grande etal. POC, the weight-basedratiosof PON:Chl a were high com[1989]. 3. Results 3.1. Pigment and Particulate Distributions As discussed by 14/anninkhof et al. [ 1997],the surfacedistributionof SF6at 3, 7, and 11 daysafter injectionrevealed that the tracerfield expandedin response to wind and tides (14/anninkhofet al., 1997,Figure1). Herewe presentthe corresponding surfacedistributions of temperature, salinity,and chlorophyll fluorescence fromthefinal survey(Figure2). The surfacefieldsarenot trulysynoptic sincethe survey(Figure 2a) required40 hoursto complete.Nevertheless, a weakgradientis consistent in the surfacetemperature, salinity,and fluorescence distributions at 84øW. Surfacetemperature increasedfrom 16.5øCat the easternedgeof the patch,near 83.7øW,to a maximumof 17.4øCat 84.2øW(Figure2a). The paredto thosein algal cultures,with a mean of 102:1. Particulateorganicphosphorus(POP) concentrations exhibited lessvariabilitythandid PON, rangingfrom 0.46-0.79 txmolL' •, with a meanweight-based ratioof POP:Chla of 3.1:1 (grams:grams).As discussedbelow, this POP:Chl a ratio is comparable to that in oligotrophicwaters. The molarratiosof particulate organiccarbon,nitrogen, andphosphorus in thetracerpatchdidnotcorrespond to Redfieldratios. Themeanmolarratioof POC:PON (moles:moles) was 3.36 + 1.6:1, about half the Redfield ratio of 6.6:1. Mo- lar ratiosof POC:PONwere5'1-6'1 on days5-7, otherwise theratios(3:1-5:1)werelowerthanthosein phytoplankton cultures.Molar ratios of PON:POP declined from a maximum of 100:1in thefirst2 daysof thestudy,to between 33:1and 76:1 duringthe lastweek. The meanmolarratioof PON:POP was76 + 34:1, considerably higherthanthe Redfieldratioof 16'1. Similarly,molarratiosof POC:POPwerehigherthan thermal gradientwas centeredbetween 84.0ø and 84.1øW, theRedfieldratioof 106:1,varyingfroma minimumof 163:1 where surfacetemperaturesincreasedfrom 16.8ø to 17.2øC. to a maximum of 224:1. The mean POC:POP ratio was 180 + 24:1. Salinityincreased from 35.0 at the easternedgeof the patch Verticalprofilesof properties fromtheCTD castsshowthe to 35.6 at thewestemmargin(Figure2b). A surfacegradient layerdeepened by - 5 rn duringthestudy.CTD stawas alsoevidentat 84.10øW,wheresalinityincreasedfrom surface 35.2 to 35.4. tion17wascompleted soonafterthetracerinjection and- 10 hours before the first productivity station (Table 1). Density Chlorophyllfluorescencevaried by less than twofold and SF6 tracer profiles from CTD 17 show that the mixed acrossthe width of the tracerpatch.The tracerpatch,as deextending to 15rn finedbythe5 partspertrillionbyvolume(pptv)SF6contour, layerwas10rndeep,withthepycnocline thedensity andtracerprofilesclearly extended from83.7øto 84.3øW(Figure2c). Stations for par- (Figure4a).Although ticulate,nutrient,andproductivity samples wereconcentratedshowstratification,dissolvedammoniaand nitrate concentraandbottom layers. Ammonia in thecenterof thepatch,wheremaximum chlorophyll a fluo- tionsweresimilarin thesurface from150to 300nmolkg'• between thesurface rescence valuescoincidedwith the weak surfacegradientin (NH3)varied (NO3)concentrations ranged from150 temperature andsalinity(Figure2c). Lowerfluorescence val- and25 m,whilenitrate 4b). Nitriteconcentrations, in conueswere foundto the eastand west(Figure2c). Surface to225nmolkg'• (Figure trast, increased with depth from-• 150 nmol kg '• at the surface samples for totalchlorophyll a (chlorophyll + phaeopigment) layer to 300 nmol kg '• at 25 m. indicatedthat total pigmentconcentrations rangedfrom a minimum of 0.5txgL'• along thewestern edgeofthesurvey The vertical pigmentdistributionsshow that maximum werealwaysin thebottomlayer. At CTD 17, to a maximum of 0.7 txgL4 nearthecenter. Thisrange of concentrations in the surfacelayerwere0.90 txg concentrations is comparable to the surfacepigmentconcen- chlorophylla concentrations L 'l, with corresponding phaeopigment concentrations of 1.10 trationsobserved in the tracerpatchduringthe lastweekof the study(Figure3a). ggL'• (Figure 4c).In thebottom layer,chlorophyll a concen- increased to 3.2txgL'l, withphaeopigment at6.0txg Chlorophyll a concentrations decreased in thesurface layer trations duringthefirstweekof theexperiment. Initialchlorophyll a C-1. A final productivitystationwas occupiedat CTD 73 2 concentrations varied from1.0to 1.5txgL-• atthetimeofthe tracer release,with corresponding phaeopigmentconcentra- weeksafter the tracerinjection(Table 1). Vertical profiles tionsat 1.5-2.0txgL'• (Figure 3a). Chlorophyll a: phaeopig-compiledfromdataat CTD stations73-75 wererepresentative observedduringthe lastweekof mentratioswere initially < 1 andthenincreasedto > 1 as sur- of the propertydistributions the experiment. By day 14 the mixed layerhad deepenedto face pigmentconcentrations declined. Five daysafter the in15 rn with maximum SF6 concentrations of 25 pptv in the jection,chlorophylla concentrations in the centerof the patch of SF6in the mixedlayer were0.5-1.0txgL'l, withphaeopigment concentrations at0.5- centerof the patch. Concentrations 1.5txgL'•. Oneweekaftertheinjection, thechlorophyll a and of CTD 73-75 were -• 20 pptv, indicatingthat the stations phaeopigment concentrations in the surfacelayerof the tracer were near the tracer patch center. In contrastto the initial profiles(e.g.,CTD 17), SF6waspresentin the bottomlayerat patch ranged from0.25to0.45txgL'•. 5 pptv(Figure4d). As seenin the first week of the study,disRatiosof particulateorganiccarbonto chlorophyll(Chl) a solved inorganic nitrogen concentrationswere variable (POC:Chla) andparticulateorganicnitrogento chlorophylla (PON:Chl a) suggestthat phytoplankton were a minor com- throughoutthe water column. At C•D 74 the NH3 concenranged from100to 250nmolkg'• withmaximum ponentof the particulatematterin surfacewaters. Particulate trations (Figure4e). Concentrations of NO2 organiccarbonconcentrations variedabouttwo-fold, from 8.3 levelsnearthe pycnocline to 17txrnol L'• (Figure Bb),withcorresponding weight-based in the surfacelayerhad decreased, althoughmaximumconratios of POC:Chl a (grams:grams)at 97:1-310:1. For the centrations were still in the bottomlayer. Nitrite concentra- 6584 a HITCHCOCK 3 ET AL.' PLANKTON PRODUCTION ON THE WEST FLORIDA SHELF , 20 m (Figure 5). Although in situ light intensi at 20 m were < 15% of surfacevalues,grossproductionratesfrom 20 mwere - 70%ofthose atthesurface. Gross production rates • i• - gmol02 ggChla-:h-:atthesurface, decreasing to0.2gmol 02 gg Chl a-• h'• at 20 m. Theseassimilation indices are _ Chla &t I II normalizedto chlorophylla yield assimilationindicesof 1 I 'I comparableto thosereportedfor planktoncomunitiesin the oligotrophiccentralNorth Pacific Ocean [Williamsand Purdie, 1991]. The meannet communityproductionrates(NCP) from 12-hourin situ incubationsduringthe photoperiodde- 1 b 20_ creased from2 gmol02 kg'• nearthesurface to • 1 •tmol02 kg4 at thebaseof theeuphotic zone.In general, theNCP & lO from the photoperiodincubationswere twice thosefrom 24hour(day-night)incubations (NCP•2versusNCP24,Figure5). .•,.z•,pOP(xlOO) ' At 20 m, grossproductionwas balancedby lossesto respiration, resultingin a mean 24-hour NCP rate of • 0 gmol C - POC .. 0 I I 10 I I I I 15 ' ' ' kg-1. ' 20 Days Figure 3. (a) Concentrations of chlorophyll(Chl) a and phaeopigment(Ph) in surfacelayerof the tracerpatch.(b) Molar concentrationsof particulateorganiccarbon(POC), particulateorganicnitrogen(PON), andparticulateorganicphosphorus (POP) in surfacewatersof the tracerpatch.Particulateorganicmatter A comparison of darkcommunityrespiration(DCR) rates from the 12- and 24-hourincubationsshowsthat respiration rates during the photoperiodwere approximatelytwofold higher than at night. The photoperiodrespirationrates (DCR•2) wereabout-1.4+ 0.5gmolO2kg'• 12h'•,withlittle variationwith depth(Figure5). At nightthe meanDCR was -0.8 + 0.4gmolO2kg-• 12h-1. Therateof lightrespiration (POM:POC,PON,POP)concentrations arein gg L-•, except (RL),estimatedfromthe differencebetweengrossproduction that the particulateorganicphosphorus concentrations havebeen increased 100-fold. andNCP:2,exceeded the maximumratesof darkrespiration. However, there was little variation in RL throughoutthe euphoticzone. Oxygenconsumptionrates were approxi- mately -2.5 gmolO2kg'• 12h'• throughout theupper 20 m betweenthe surfaceand 25 m. At both stationsthe > 12-gm sizefractionaccountedfor < 10% of total chlorophylla in the mixed layer,while the 5- to 12-gm size fractioncontainedat most 15% of total chlorophylla. At CTD 43, the > 12-•tm size fractionalso represented< 10% of total chlorophylla, and the 5- to 12-gm size fraction contained 13-16%. The highestproportionof the largersize fractionswas in the pycnocline. The < 5-gm size fraction, in contrast,represented 75-85% of the total chlorophylla biomassthroughoutthe water column at both stations. Thus the size fraction data in- dicatethat the phytoplanktoncommunitywas dominatedby picoplankton,or small nanoplankton,throughoutthe water column, with larger forms accountingfor a slightly higher proportionof pigment biomassin the pycnocline.Microscopicobservationsof whole water samplesconfirmedthat small, 1-gm diameter,unicellularphytoplankton were dominant in the mixed layer. Examinationof 4'-6-diamidino-2phenylindole(DAP)I-stainedsamplesfrom the mixed layer with an epifluorescent microscope revealedthatthe cellshad thetypicalorangeandred fluorescence signature of Synechococcus spp. 3.2. Community Productionand RespirationRates Sevenlightcastswerecompletedbetweendays4 and 14 to estimate vertical extinction coefficients Ka(m-:)in thetracer patch.Valuesfor Karangedfrom0.20to 0.15m': between days4 and8 andthendecreased to - 0.10m':fortheremainder of the study. The corresponding euphoticzone depths rangedfrom 20 m to the bottom.Sincethe depthof the euphotic zonewas> 20 m, theeuphoticzonealwaysextended belowthe mixedlayer. Mean grossproductionratesdecreasedfrom a maximumof 4.5gmol02kg':d-:atthesurface to 3.4gmol02 kg-• d'• at (Figure5). Carbon-basedrates of productionand respirationinte- gratedthroughthemixedlayerindicatethata largefractionof grossproductionwas consumedby respiration. Daily gross production based ontheH2•80method variedfrom65to 75 mmolC m'2,witha meanof 69mmolC m-2(G24 inFigure 6). Rates of NCP estimatedfrom the Winklet method, in contrast, were14.7-20.6 mmolC m'2 in thephotoperiod incubations (N•2),decreasing to 12.1to-0.9 mmolC m-2in the24 hour incubations(N24). Absoluteratesof dark communityrespiration were higherthan net communityproduction,at-25 + 7 mmolC m'2 duringthe 12-hour photoperiod and-40 + 4 mmolC m'2over24 hours. Thedifference in darkrespiration rates at 12 and 24 hours reflects the reduced rate of dark res- piration atnight,equivalent to-15 + 4 mmolC m-2. Theenhanceddarkrespirationobservedduringthe photoperiod was exceededby light respiration(compareRm2andRLin Figure 6). Thus the planktoncommunityin the tracerpatch was characterized by ratesof grossproductionthat were almost balancedby respiratorylosses,resultingin low ratesof daily net production. Ratiosof darkrespiration:net productionare usefulin assessingthe ability of phytoplantkon to meet the respiration demandsof the plankton community.The ratios of dark communityrespiration:netcommunity production(DCR12: NCP12)during the photoperiodvaried from a maximumof 2.25:1 on day 4 to a minimumof 0.9:1 on day 14. The mean ratioof DCR•2:NCP•2for the threeexperiments was 1.5'l, indicatingthatthe respirationdemandsof the planktoncommunity exceeded the net productionby phytoplankton. Whenthe corresponding respirationand net productionratesare compared from the 24-hour incubations, the mean ratio (DCR24:NCP24)declinedto < 0.2:1. The sum of the mean HITCHCOCK ET AL.' PLANKTON PRODUCTION ON THE WEST FLORIDA SHELF 6585 100 SF•2•tv) 300 400 0 -5 , . - -I0 _........'" I_ , , - -20 -25 25.0 25.5 26,0 0 100 200 øt 300 400 500 0 I i ! 1 2 4 6 8 10 0.g 1.0 D• (nmol kg'• ) Chl a (pg !-I) SF6 (pptv) 10 0 { 0 15 _ 20 i -5 E -10' o -15 -2O -25 i'" i 25.5 25.0 26.0 0 •' 'l 100 200 I I 300 400 DIN(rimkg'a) 500 0.0 0.2 0.4 0.6 Chla(lagl'l) Figure4. Verticalpropertyprofilesfromconductivity-temperature-depth (CTD) station17 for (a) ot (solidline) andSF6(dot),(b) ammonia (NH3),nitrite(NO2)andnitrate(NO3)concentrations, and(c) chlorophyll a (dots)and phaeopigment (triangles). (d-f) Corresponding properties fromCTD 74 and75. Nitrogendataare courtesy of K. FanningandR. Masserini,Universityof SouthFlorida.DIN, dissolved inorganicnitrogen. I RL • II R24 R12 N24 /.-• DCR24and NCP24from the Winkler potentiometric titrations I G24 N12 -5- is43mmolC m-224h'•. Thisestimate of gross production is 62%of thatderived fromtheH2•80incubations; thedifferenceis dueto light respiration. -10 - 4. Discussion -15 - -20 ' I -4 I -2 I I 0 I 2 I I I 4 Brnol O:time Our observationsindicatethat the FSLE studytook place duringthe transitionfrom a springbloom to a microheterotroph-dominated community.During this transition,high rates of planktonrespirationcontributedCO2 to the mixed layer. This interpretation is basedon the temporalpatternin chlorophyll a and phaeopigmentconcentrations,the particulate mattercomposition,and planktonproductionand respiration rates. Betweensummerandwinterthe surfacechlorophylla conFigure5. Production andrespiration ratesasa functionof depth centrationson the oligotrophicWest Florida Shelf are typi, from threeproductivitystations.The right half containsgross cally< 0.5 !.tgL-• [Vargoet al., 1987;Tomas, 1995]. In production ratesfrom•SOincubations (G24)andthenetcommu- spring,high pigmentconcentrations extendsouthfrom Cape San Blas with chlorophyll a concentrations on the middleto hour(N•:) and24-hour(N:4) incubations.The leR half contains et al., 1996]. Oceancolor darkcommunity respiration ratesfrom 12-hour(R•:) and24-hour outerShelf> 1.0!.tgL-• [Gilbes (R24)incubations and estimatesof light respirationrates(Rz). imageryfrom 1979 to 1986 showsthatthe featuresdevelopin Symbolscorrespond to mean_+2 standard deviations. Februaryto May. As the featurespropagatesouth,total chlo- nityproduction ratesfromWinklerpotentiometric analyses of 12- 6586 HITCHCOCK 80 ET AL.: PLANKTON PRODUCTION ON THE WEST FLORIDA SHELF 1995], the low initial ratiossuggestthat grazingpressuremay have contributedto the decreasein phytoplanktonbiomass observedduringthe first few daysof the study. In summer, chlorophylla concentrations exceed phaeopigmenton the WestFloridaShelf [Tomas,1994], sothe transitionfrom high chlorophylllevelsduringthe springbloomto "typical"summer conditions can occur within a week. The elementalcompositionof particulatematterindicates that a largefractionof organicmatterwas associated with the microbialfood web (in the senseof Rassoulzadegan [1993]), rather than phytoplankton. In phytoplankton cultures, POC:Chl a ratiosvary from minimumvaluesof- 20, under optimalgrowthconditions,to typicalvaluesof 100-150under conditionsof high light, low temperatures,or nutrientstress [e.g., Laws et al., 1985; Sakshaugand Holm-Hansen,1977; Kana and Glibert, 1987]. AlthoughPOC:Chl a ratioscanexceed300 underhigh light levels,the averageirradiancein the Day4 Day8 Day11 Day14 watercolumnduringFSLE was 35% of incidentsurfaceirra-80 diance. The POC:Chl a ratio in naturalphytoplanktonpopulationshasbeenestimatedfrom flow cytometricmethodsand Figure6. (top)Meangrossproductivity rates,ascarbon,from epifluorescence microscopy[Bucket al., 1996]. Thesemeth24-hour•gOincubations (G24)andnet community productivity ods have demonstrated that the phytoplankton POC:Chla rafrom 12-hour(N•2)and24-hour(N24)O2incubations for days4, 8, and14. No productivity ratesareavailablefor productivity 3 tio in the North Atlantic varies as a function of latitude, with (day11) sincethein situbottleswerelost. (bottom)Meandark ratios _>150 in oligotrophicwaters of the subtropicalgyre. community respiration ratesfrom 12-hour(Rt•2) and 24-hour Althoughthe inherentvariabilityin POC:Chl a ratioslimits (RD24) 02 incubations, withlightrespiration rates(RL).RLis esti- their applicationas estimatorsof autotrophiccarbonbiomass matedfrom the differencebetweengrossproductivity(G24)and [Banse,1977; Geideret al., 1997], averageratiosof POC:Chl 12-hournetcommunity productivity (N•2)rates. a on the West Florida Shelf (> 200) were higherthan ratios typicallyfound in phytoplankton and cyanobacteria cultures under nutrient-limited conditions. The POC:Chl a ratios in the tracerpatchare alsohigherthanthosereportedby Bucket rophylla (chlorophylla plus phaeopigment) concentrationsal. [1996] for the oligotrophicNorth Atlantic gyre. Thus a canreach3-8I.tgL-•. These relatively highpigment concen- largefractionof the nondetritalPOC in the tracerpatchwas microheterotrophs. trationscan persistfor a month,as verifiedby in situ sam- probablyassociated Ratiosof PON:Chl a supportthis conclusion.Batchculpling in 1992 and 1993 [Gilbeset al., 1996; Tomas,1995]. The surfacepigmentconcentrations observedin 1992 and tures of Skeletonemacostatum(Grev.) Cleve and Pavlova 1993 were similar to the total chlorophylla levels initially lutheri (Droop) Green exhibit PON:Chl a ratios of 8-20 in presentin the tracerpatch. Our observations in 1996 suggest logarithmicto stationaryphaseculturesunderN-, P-, or FeandHolm-Hansen,1977]. Thus that the postbloomtransitionof surfacepigmentconcentra- limitedconditions[Sakshaug tionsis rapid,with chlorophylla andphaeopigment decreas- averagePON:Chl a ratios _>100'1 in the tracer patchwere nearlyfive-fold higherthan thosein phytoplankton cultures. ingfrom> 1.5to< 0.5ggL'• inlessthanaweek. Althoughthe factorsthat triggerthe onsetof the spring Molar ratiosof POC:PONalsosuggestthatthe majorfraction pigmentmaximaon the West FloridaShelf havenot been of particulateorganic carbon and nitrogen was associated The averagePOC:PONratioof 3.1'1 conclusively identified,phytoplankton growthis likely en- with microheterotrophs. hancedby the input of allochthonous nutrients. There are was lessthan half the Redfieldratio (C:N = 6.6:1) andwithin severalpotentialnutrientsources,including(1) the riversof the rangeobservedin culturedmarinebacteria[Goldmanet the northwestFloridacoast,(2) the upwellingof dense,nutri- al., 1979], as well as heterotrophicorganismsin Georgia ent-rich subsurfacewater along the Shelf break, (3) Loop coastalwaters[Hopkinsonet al., 1989]. Detritalmaterial,in Currentintrusions,or (4) the advectionof nutrient-richMis- contrast,is relatively depletedof organicnitrogen [Banse, sissippiRiver water ontothe Shelf [Gilbeset al., 1996]. Al- 1974], with POC:PONratios> 30:1 [Sambrottoand Langthoughthe datesof initiationof the 1996 springbloomarenot don, 1994]. Compositionratios of POC:POPand PON:POPfurther known,changesin chlorophylla:phaeopigment ratiossuggest that a heterotrophic planktoncomzooplankton grazingmayhavecontributed to the reductionin supportan interpretation pigmentconcentrations.(There is little interferencefrom munitycontributedto a large proportionof the particulate chlorophyllb in the estimationof phaeopigment in this re- matterin the surfacelayer of the tracerpatch.Phosphorusdominatethe planktonbiomassin gion. Threeyearsof observations indicatethatchlorophyllb limited bacterioplankton concentrations are typically < 5% of chlorophylla on the the oligotrophicsurfacewatersof the SargassoSea, where WestFloridaShelf (G. Vargo, unpublisheddata, 1999).) On mean POC:POP ratios are- 260:1 [Comer et al., 1997]. In April 2, chlorophylla:phaeopigment ratiosin the tracerpatch thesewaters,PON:POPratiosvary from 24:1 to 75:1, similar rangedfrom0.6:1to 0.8:1;the ratioincreased to > 1 by April to the mean PON:POP ratio of 69'1 on the West Florida biomassin the surfacewatersof the 8. Sincephaeopigments are productsof microzooplankton Shelf. Bacterioplankton Gulf of Mexico is phosphorus-limited [Pomeroy and macro-zooplankton grazers [e.g., Buck and Newton, oligotrophic HITCHCOCK ET AL.: PLANKTON PRODUCTION ON THE WEST FLORIDA SHELF 6587 et al., 1995],although,to our knowledge,similarstudieshave ceeddarkrespirationat saturatinglight intensities[Grandeet not been conducted on the West Florida Shelf. While we lack al., 1989]. However, while the Mehler reaction consumes oxygenin the light reactionsof photosynthesis, carbonsubstratesare not oxidized. Thus light respirationmay have reducedgrossphotosynthesis ratesthroughthe consumptionof oxygenbut may have releasedrelativelylittle, if any, CO2 to bacterialdensitiesin the tracerpatch,or phosphorus dynamics for the planktoncommunity,we hypothesizethat a phosphorus-limitedbacterioplankton populationdominatedplankton biomassfollowingthe end of the springbloom [cf. Ducklow et al., 1986]. Ratiosof POP:Chl a in the tracerpatchalso suggestthat P availabilitylimited the biomassof the planktoncommunity. The mean ratio of POP:Chl a in the tracer patch (3.1:1) is similar to that in phytoplanktonculturesunder P-limiting conditions[e.g., Sakshaugand Holm-Hansen,1977, Table III]. In naturalplanktoncommunities,POP:Chla ratiostypicallyrangefrom a minimumof 1:1 in eutrophicwaters,where chlorophylla concentrations are high,to maximumvaluesof 5:1 in oligotrophicwaters,where phytoplankton biomassis relativelylow [Harris, 1986]. Thusthe elementalcomposition of particulatemattersuggests that at the terminationof the springbloomthe particulateorganicmatterwas predominantly associatedwith microheterotrophs; furthermore,the planktoncommunitybiomassmay havebeenlimitedby phosphorusavailability. The relative abundanceof POC, PON, and POP in the tracerpatchis similarto that observedin oceanic particulatematter as it sinks from the euphotic zone [Knauer et al., 1979; Bishop et al., 1980]. In the open sea, particulatematteris initially depletedof P, relativeto C and N, asorganicmatteris recycledbelowthe euphoticzone. Productionand respirationratesin the tracerpatchsupport the conclusion thatthe planktoncommunitybiomasswas predominantlyheterotrophic with a high proportionof grossproduction consumedby respiration.Although phytoplankton biomassdeclinedduring the study,the phytoplanktoncommunitywas activelyphotosynthesizing with grossproduction ratesand assimilationratiossimilarto thosereportedfor the oligotrophicNorth PacificGyre [Williamsand Purdie, 1991]. Ratios of DCR•2:NCPa2in the tracer patchwere high, at an averagevalueof 1.5:1. In phytoplankton culturesthe ratio of respiration:production is typically < 0.4:1 [Langdon,1993; Grandeet al., 1989], and in temperatecoastalplanktoncommunitiesthe ratio of DCR:NCP is low when primaryproduction ratesare high [Benderet al., 1987; Grandeet al., 1991]. On the West Florida Shelf, in contrast,dark respirationreducedgrosscarbonproductionby 90% (6 versus69 mmol C the surface waters. Irrespectiveof any potential effects of light respiration, darkcommunityrespirationrateswere morethan sufficientto accountfor the observedincreasein DIC in the tracer patch. Wanninkhofet al. [1997] attributed80% of the observed1 lamol kg-•d-• increase inDICtorespiration. Themeanrateof DCR24 was-40mmolC m-2d'•, equivalent toanincrease of 2 mmolC m-3d-• (- 2 lamolkg'ad-a)in the20 m mixedlayer. The CO2 contributionfrom dark respirationwould be reduced bythenetproduction of 6 mmolC m-2d'• (0.3lamol C m-3da),yielding a netincrease of- 1.7mmolC m'3d-a(1.7lamol DICkg-ad'a).Ourestimate of carbon contributed tothewater columnby the planktoncommunitywas thereforenearly70% higherthanthe observedincreasein DIC. Otherfactorscould accountfor the discrepancy,includingthe uncertaintybased on a small number of productionand respirationmeasurements. We also have not quantifiedany contributionto the DIC pool from the metabolismof dissolvedorganiccarbon releasedduring phytoplanktonexcretion[see Biddandaand Bennet, 1997a]. Although we cannot quantify these unknowns, we concludethat plankton community respiration was the primary source of the observedincreasein DIC within the tracerpatch. Bacterioplankton arethe primaryorganisms responsible for respirationin the sea [Williams, 1981; Cole et al., 1988], and as discussedabove,they may have dominatedplanktonbiomassin the tracer patch. Severalcarbonsourcespotentially sustainedbacterioplanktonrespirationon the West Florida Shelf. Rivefine dissolvedorganicmatter, principallyfrom the MississippiRiver, likely providesa largeflux of organic matter to the northern Gulf of Mexico. Since riverine nutrient sources maytriggerthe onsetof the springpigmentmaximum on the West Florida Shelf [Gilbeset al., 1996], riverinedissolvedorganicmatter(DOM) may alsoserveas a sourceof organicmatterto fuel bacterioplankton respiration. Phytoplanktonalsoprovidedan unknownquantityof organicmatter as theywere grazedby microheterotrophs. A third potensuchas Synechococcus spp., m-2d'l). Sincegross production wasan orderof magnitudetial sourceare photoautotrophs higher than net production,and photoautotrophs typically which release• 10% of their carbonproductionas dissolved have DCR < NCP, the respirationdata suggestas well that organicmatter[Biddandaand Bennet,1997a,b]. Thus sevmicroheterotrophs dominatedthe planktoncommunityme- eral sourcesof DOM on the West Florida Shelf can potentabolism. tially supportbacterioplankton respiration. In temperatecoastalecosystems, microbialrespiration rates In photoautotrophic organisms,light respirationreduces grossproductionthroughseveralmetabolicpathways.These reach a maximum 1-2 weeks after the termination of the include (1) photorespirationand associatedglycollate me- springbloom [Blightet al., 1995]. The lag betweenpeak tabolism;(2) the Mehler reaction,in which oxygenis pro- primaryproductivityandthe seasonalmaximumin microhetducedin photosystem II and consumedin photosystem I; and erotrophrespirationhasbeenattributedto the rate at which [Azam et al., (3) chlororespiration, in which NAD(P)H is oxidizedin chlo- DOM becomesavailableto bacterioplankton roplasts[Beardall and Raven, 1990]. In phytoplanktoncul- 1994; Blight et al., 1995]. Sherr and Sherr [1996] propose tures,light respiration(RL) typicallyequalsor exceeds,dark that the delay in primary productionand microheterotroph may be regulated respiration[Falkowski et al., 1985; Grande et al., 1989; respirationin temperatemarineecosystems seasonal changesin bacterialgrowthefficienKana, 1990], and in the tracerpatch,RLwas higherthan dark by temperature, changesin the availabilityof DOM to bacterespiration(Figure6). The dominantphotoautotrophs in the cies,or seasonal tracerpatchwere Synechococcus spp.,in which light respira- rioplankton. The rapid responseof the microheterotroph tion is primarilyassociatedwith the Mehler reaction[Kana, communityto a decline in phytoplanktonbiomasson the 1992]. In Synechococcus cultures,light respirationcan ex- West Florida Shelf could reflect, in part, the relativelywarm 6588 HITCHCOCK ET AL.: PLANKTON PRODUCTION ON THE WEST FLORIDA SHELF springtemperatures in this subtropicalenvironment.As de- scribedabove,therearealsoseveralsources of DOM in this Cole,J. J., S. Findlay,andM. L. Pace,Bacterialproduction in fresh andsaltwaterecosystems: A cross-system overview,Mar. Ecol. Prog.Set., 43, 1-10, 1988. Cooper,D. J.,A. J. Watson,andP. D. Nightingale, Largedecrease in ocean-surface CO2 fugacityin response to in situ iron fertiliza- region. If the couplingbetweenautotrophicproductionand mition, Nature, 383, 511-513, 1996. croheterotroph respiration is on the orderof a few daysat low latitudes,then subtropicaland tropical environmentsmight Comer,J. B., J. W. Ammerman,E. R. Peele,and E. Bentzen,Phosphorus-limitedbacterioplankton growth in the SargassoSea, rapidlychangefrom CO2sinksto sources.The timescalefor Aquat.Microb. Ecol., 13, 141-149, 1997. a transitionfrom sink to sourcemay be much shorterat low deBaar,H. J. W., J. T. M. deJong,D.C. E. Bakker,B. M. Lfscher, latitudesthan in temperateand borealwaters[seeRobinson C. Veth, U. Bathmannn, andV. Smetacek, Importance of iron for planktonbloomsand carbondioxidedrawdownin the Southern and Williams,1999]. We suggestthat futurestudieson subOcean,Nature, 373, 412-415, 1995. tropicaland tropicalcontinentalshelvesexaminethe role of DeGrandpre,M.D., T. R. Hammar,and C. D. Wirick, Short-term temperatureand DOM availabilityas factorsregulatingthe pCO2 and 02 dynamicsin Californiacoastalwaters,Deep Sea degreeof couplingbetweencommunityproductionandrespiRes.,Part II, 45, 1557-1575, 1998. ration in these environments. Ducklow, H. W., D. A. Purdie, P. J. LeB. Williams, and J. M. Da- vies, Bacterioplankton: a sink for carbonin a coastalmarine planktoncommunity, Science,232, 865-867, 1986. Acknowledgments. The authorsgratefully acknowledgeR. Wanninkhoffor the invitationto participatein the FloridaShelfLa- E1-Sayed,S. Z., Primaryproductivityand standingcrop of phytoplankton,in Chemistry,PrimaryProductivity,and BenthicAlgae grangianExperimentand for his comments on the manuscript.The of the Gulf of Mexico,editedby E1-Sayed, S. Z., et al., pp. 8-13, captainandcrewof theNOAA ShipBaldrigemadetheresearchposSet. Atlas Mar. Environ.,Folio 22, Am. Geogr.Soc.,New York, sibleby their cooperation in all phasesof the cruise.We especially 1972. thankMichaelBenderfor providingthe laboratoryfacilitiesfor the analysisof the grossO2productionsamplesandJosephOrchardofor Emerson,S. P., P. Quay,C. Stump,D. Wilbur, andM. Knox, 02, Ar, N2and222Rn in surface waters ofthesubarctic ocean: netbiologihis generous assistance in the analyses.The nitrogendatawereprocal 02 production, GlobalBiogeochem. Cycles,5, 49-69, 1991. videdby K. Fanningand R. Masseriniof the Universityof South Light-enhanced Florida. Three anonymousreviewers improved the manuscript Falkowski,P. G., Z. Dubinsky,andG. Santistefano, darkrespirationin phytoplankton, Verh.Int. Ver. Theor.Angew. throughtheir comments.This researchwas supported, in part, by a Lirnnol.,22, 2830-2833, 1985. grantfromthe Officeof Naval Research, N000149710131. Fanning,K. A., K. L. Carder,and P. R. Betzer,Sedimentresuspensionby coastalwaters:A potentialmechanismfor nutrientrecyReferences clingontheocean'smargins,DeepSeaRes.,29, 953-965, 1982. Frankignoulle, M., I. Bourge,C. Canon,and P. Dauby,Distribution Azam,F., D.C. Smith,G. F. Stewart, and/k.HagstrOm, Bacteria- of surfaceseawaterpartial CO2pressurein the EnglishChannel organicmattercouplingand its significancefor oceaniccarbon andin the SouthernBight of the North Sea,Cont.ShelfRes., 16, cycling,Microb. Ecol., 28,167-179, 1994. 381-395, 1996. Banse,K., On theinterpretation of datafor the carbonto nitrogenraGeesey,M., and P. Tester,Gymnodinium breve:Ubiquitousin Gulf tio of phytoplankton, Lirnnol.Oceanogr.,19, 695-699, 1974. of Mexico waters?,in ToxicPhytoplankton Bloomsin the Sea, Banse,K., Determiningthe carbon-to-chlorophyll ratio of natural editedby T. J. Smaydaand Y. Shimizu,pp. 251-255, Elsevier Sci., New York, 1993. phytoplankton, Mar. Biol. Berlin,41,199-212, 1977. Beardall,J., and J. A. Raven,Pathwaysandmechanisms of respira- Geider,R. J., H. L. MacIntyre,andT. M. Kana, Dynamicmodelof tion in microalgae. Mar. Microb.Food Webs,4, 7-30, 1990. phytoplankton growthandacclimation: Responses of thebalanced Bender, M. L., and K. D. Grande, Production,respiration,and growthrate andthe chlorophylla: Carbonratio to light, nutrientchemistryof 02 in the upperwatercolumn.GlobalBiogeochern. limitationandtemperature, Mar. Ecol. Prog. Set., 148, 187-200, 1997. Cycles,1, 49-59, 1987. Bender,M., et al., A comparison of four methodsfor planktonic Gilbes,F., C. Tomas,J. J. Walsh,andF. Mfiller-Karger,An episodic community production, Limnol.Oceanogr.,32, 1085-1098,1987. chlorophyll plumeontheWestFloridaShelf,Cont.ShelfRes.,16, 1201-1224, 1996. Biddanda,B., and R. Benner,Carbon,nitrogen,and carbohydrate fluxesduringthe productionof particulateanddissolvedorganic Goldman,J. C., J. J. McCarthy,andD. G. Peavey,Growthrateinflumatterby phytoplankton, Lirnnol.Oceanogr.,42, 506-518, 1997a. enceon the chemicalcompositionof phytoplankton in oceanic waters,Nature, 2 79, 210-215, 1979. Biddanda,B., and R. Benner,Major contributionfrom mesopelagic planktonto heterotrophic metabolismin the upperocean.Deep Grande,K. D., J. Man'a,C. Langdon,K. Heinemann,andM. Bender, Sea Res.,Part I, 44, 2069-2085, 1997b. Ratesof respiration in thelightmeasured in marinephytoplankton 18 Bishop,J. K. B., R. W. Collier, D. R. Kettens,and J. M. Edmond, usingan O isotope-labeling technique, ,I. Exp. Mar. Biol. Ecol., 129, 95-120, 1989. The chemistry,biology, and vertical flux of particulatematter fromthe upper1500mof the PanamaBasin,Deep Sea Res.,27, Grande,K., M. L. Bender,B. Irwin, and T. Platt, A comparison of 615-640, 1980. netandgrossratesof oxygenproduction as a functionof light inBlight, S. P., T. L. Bentley,D. Lefevre,C. Robinson,R. Rodrigues, tensityin somenaturalplanktonpopulations and in a SynechoJ. Rowlands,andP. J. LeB. Williams,Phasingof autotrophicand coccusculture,,I. PlanktonRes., 13, 1-16, 1991. heterotrophic planktonmetabolism in a temperatecoastalecosys- Harris, G. P., PhytoplanktonEcology: Structure, Function and tem, Mar. Ecol. Prog. Ser., 128, 61-75, 1995. Fluctuations, 384 pp., ChapmanandHall, New York, 1986. Buck,K. R., andJ. Newton,Fecalpelletflux in DabobBay duringa Holm-Hansen, O., and B. Riemann,Chlorophylla determination: diatom bloom: contribution of microzooplankton,Limnol. Improvements in methodology, Oikos,30, 438-447, 1978. Oceanogr.,40, 306-315, 1995. Hopkinson,C. S., Jr., B. Sherr,and W. J. Wiebe, Size fractionated Buck, K. R., F. P. Chavez,and L. Campbell,Basin-widedistribumetabolism of coastalmicrobialplankton,Mar. Ecol.Prog. Set., 51, 155-166, 1989. tionsof living carboncomponents andthe invertedtrophicpyramid in the central gyre of the North Atlantic Ocean, summer, Kana,T. M., Light-dependent oxygencyclingmeasuredby an oxy1993,Aquat.Microb. Ecol., 10, 283-298, 1996. gen-18isotopedilutiontechnique, Mar. Ecol.Prog.Set.,64, 293300, 1990. Chipman,D. W., J. Marra, and T. Takahashi,Primaryproductionat 47ø N and 20ø W in the North Atlantic Ocean:a comparison be- Kana, T. M., Relationshipbetweenphotosynthetic oxygencycling tweenthe •4Cincubation method andthemixedlayercarbon and carbonassimilationin Synechococcus WH7803 (Cyanobudget,DeepSeaRes.,Part II., 40, 151-169, 1993. phyta),,I. Phycol.,28, 304-308, 1992. Codispoti,L. A., G. E. Friederich,andD. W. Hood,Variabilityin the Kana,T. N., andP.M. Glibert,Effect of irradiances up to 2000 •tE inorganiccarbonsystemover the southeastern Bering Sea shelf m'2s'• onmarine Synechococcus WH7803, I, Growth, pigmentaduringspring1980 andspring-summer 1981, Cont.ShelfRes.,5, tion,andcell composition. DeepSeaRes.,34, 479-495, 1987. 133-160, 1986. Knauer,G. A., J. H. Martin,andK. W. Bruland,Fluxesof particulate HITCHCOCK ET AL.: PLANKTON PRODUCTION ON THE WEST FLORIDA SHELF 6589 carbon,nitrogen,and phosphorusin the upper water columnof Tomas,C., Influenceof MississippiRiverwateron the WestFlorida Shelf,in CoastalOceanographicEffectsof the 1993 Mississippi thenortheastPacific,Deep SeaRes.,26, 97-108, 1979. RiverFlooding,editedby M. J. Dowgiallo,specialNOAA report, Langdon,C. The significanceof respirationin productionmeasurepp. 60-64, Natl. OceanicandAtmos.Admin.,CoastalOceanOff., mentsbasedon oxygen,ICES Mar. Sci. Sytnp.,197, 69-78, 1993. SilverSpring,Md., 1994. Laws, E. A., Photosyntheticquotients,new production,and net communityproductionin the openocean,Deep SeaRes.,12, 143- Tomas,C., Coastalproductionand sportfishplanktondynamicson 167, 1991. theFloridaShelf,Fl. Mar. Res.Inst. Proj. F-65, Fl. Dep. of EnviLaws,E. A., D. R. Jones,K. L. Terry, andJ. A. Hirata, Modification ron.Prot.,36 pp., St. Petersburg, F1, 1995. in recentmodelsof phytoplanktongrowth:theoreticaldevelop- Vargo,G. A., K. L. Carder,W. Gregg,E. Shanley,C. Heil, K. A. ments and experimentalexaminationof predictions,J. Theor. Steidinger,andK. D. Haddad,The potentialcontribution of priBiol., 114, 323-341, 1985. maryproduction by redtidesto theWestFloridaShelfecosystem, Litnnol.Oceanogr.,32, 762-767, 1987. Marmorino,G. O., Variability of current,temperature,and bottom andbiologicalpropressureacrossthe West Florida continentalshelf, winter 1981- Wanninkhof,R., et al., Gasexchange,dispersion, ductivityon the West Florida Shelfi Resultsfrom a Lagrangian 1982,J. Geophys.Res.,88, 4439-4457, 1983. Mitchum, G. T., and A. J. Clarke, Evaluation of frictional, windtracerexperiment,Geophys.Res.Lett.,24, 1767-1770,1997. forced long-wavetheory on the West Florida shelf, d. Phys. Watson,A. J., C. Robinson,J. E. Robinson,P. J. LeB. Williams, and Oceanogr.,16, 1029-1037, 1986. M. J. R. Fasham,Spatialvariabilityin the sink for atmospheric carbondioxide in the North Atlantic, Nature. 350, 50-53, 1991. Pomeroy,L. R., J. E. Sheldon,W. M. Sheldon,and F. Peters,Limits Weisberg,R. H., B. D. Black,andH. Yang, Seasonal modulation of to growth and respirationof bacterioplanktonin the Gulf of thewestFloridacontinentalshelfcirculation,Geophys.Res.Lett., Mexico,Mar. Ecol. Prog. Ser., 117, 259-268, 1995. 23, 2247-2250, 1996. Rassoulzadegan, F., Protozoanpatternsin the Azam-Ammerman's bacteria-phytoplankton mutualism,in Trendsin Microbial Ecol- Williams, P. J. LeB., Microbial contribution to overall marine plankton metabolism: Direct measurementsof respiration, ogy,editedby R. GuerreroandC. Perdos-Alio,pp. 435-439, Span. Oceanol. Acta, 4, 359-364, 1981. Soc.for Microbiol., Barcelona,1993. Robertson,J. E., and A. J. Watson. A summer-timesink for atmos- Williams, P. J. LeB., and D. A. Purdie, In vitro and in situ derived ratesof grossproduction,net communityproductionandrespiraphericcarbondioxidein the SouthernOceanbetween88øW and tion of oxygenin the oligotrophicsubtropicalgyre of the North 80ø E, Deep Sea Res.,Part I, 42, 1081-1091, 1995. PacificOcean,Deep SeaRes.,38, 891-910, 1991. Robinson,C., andP. J. LeB. Williams,Planktonnet communityproductionanddarkrespirationin the ArabianSeaduringSeptember Wollast,R. Interactionsof carbonandnitrogencyclesin the coastal zone,in Interactionsof C, N, P and S Biogeochetnical Cyclesand 1994, Deep Sea Res.,Part II, 46, 745-765, 1999. Global Change,editedby R. Wollast, F. T. MacKenzie,and L. Sakshaug,E., and O. Holm-Hansen, Chemical compositionof Chou,pp. 195-210,Springer-Verlag, New York, 1993. Skeletonetna costatutn(Grev.) Cleve and Pavlova (Monochrysis) lutheri (Droop) Green as a functionof nitrate-,phosphate-,and Wroblewski, J. S., and J. J. O'Brien, A simulationof the mesoscale distributionof the lower marinetrophiclevelsoff west Florida. iron-limitedgrowth,d. Exp. Mar. Biol. Ecol., 29, 1 -34, 1977. Invest.Pesq.,37, 193-244, 1973. Sambrotto,R. N., and C. Langdon,Water columndynamicsof dissolvedinorganiccarbon(DIC), nitrogenand02 on GeorgesBank duringApril, 1990, Cont.ShelfRes.,14, 765-789, 1994. Sharp,J. H., Improvedanalysisfor "particulate"carbonandnitrogen, Litnnol.Oceanogr.,19, 984-989, 1974. M.-L. Dickson,GraduateSchoolof Oceanography, Universityof Sherr,E. B., and B. F. Sherr,Temporaloffset in oceanicproduction andrespirationprocesses impliedby seasonalchangesin atmos- RhodeIsland,SouthFerryRd., Narragansett,RI 02882-1197. G. L. Hitchcock,RosenstielSchoolof Marine and Atmospheric pheric oxygen:The role of heterotrophicmicrobes,Aquat. Microb. Ecol., 11, 91-100, 1996. Science,Universityof Miami, 4600 RickenbackerCauseway,Miami, Smith,S. V., and F. T. Mackenzie,The oceanas a net heterotrophic FL 33149-1098.(ghitchcock•rsmas.miami.edu) system: Implications from the carbon biogeochemicalcycle, G. A. Vargo,Departmentof Marine Science,Universityof South GlobalBiogeochetn.Cycles,1, 187-198, 1987. Florida, 140 7 AvenueS, St. Petersburg, FL 33701. Solorzano,L., and J. H. Sharp, Determinationof total dissolved phosphorus andparticulatephosphorus in naturalwaters,Litnnol. (ReceivedDecember3, 1998; revisedSeptember22, 1999; accepted Oceanogr.,25, 754-758, 1980. December23, 1999.)
© Copyright 2026 Paperzz