MATH 1700 Homework Han-Bom Moon Homework 10 Solution Section 4.6 ∼ 4.7. • For every problem, explain your answer. It is not acceptable to write the answer only. 1. Let z1 = 3 + 7i and z2 = −2 + i. Compute z1 + z2 , z1 − z2 , z1 z2 , z1 , z1 , and |z1 |. z2 z1 + z2 = (3 + 7i) + (−2 + i) = (3 + (−2)) + (7 + 1)i = 1 + 8i z1 − z2 = (3 + 7i) − (−2 + i) = (3 − (−2)) + (7 − 1)i = 5 + 6i z1 z2 = (3 + 7i)(−2 + i) = (3 · (−2) − 7 · 1) + (3 · 1 + 7 · (−2))i = −13 − 11i z1 3 + 7i (3 + 7i)(−2 − i) (−6 + 7) + (3 · (−1) + 7 · (−2))i 1 17 = = = = − i 2 2 z2 −2 + i (−2 + i)(−2 − i) (−2) + 1 5 5 z1 = 3 + 7i = 3 − 7i p √ |z1 | = |3 + 7i| = 32 + 72 = 58 2. By using complex plane and algebraic manipulations, solve the following equations for z. (a) z 5 = 1. Let z = reiθ . Then z 5 = r5 ei5θ . 1 = |1| = |z 5 | = |z|5 = r5 ⇒ r = 1 ei5θ = 1 ⇒ cos(5θ) + sin(5θ)i = 1 ⇒ cos(5θ) = 1, sin(5θ) = 0 ⇒ 5θ = 2kπ for some integer k. θ = 0, Therefore 2π 4π 6π 8π , , , 5 5 5 5 2π 2π 4π 4π + sin i, cos + sin i, 5 5 5 5 6π 6π 8π 8π cos + sin i, cos + sin i. 5 5 5 5 z = 1, cos (b) z 2 − z + 1 = 0. By quadratic formula, p √ √ 1 ± (−1)2 − 4 · 1 · 1 3 1 ± −3 1 = = ± i z= 2 2 2 2 1 MATH 1700 Homework Han-Bom Moon 3. Find the polar coordinates. (a) 4i r= So p √ 02 + 42 = 16 = 4 π θ= 2 π (r, θ) = (4, ). 2 (b) −2 + 2i r= p √ √ (−2)2 + 22 = 8 = 2 2 θ= Therefore (c) √ 3 − i. 7π 4 √ 7π (r, θ) = (2 2, ). 4 q√ √ r = ( 3)2 + (−1)2 = 4 = 2 θ= 11π 6 So (r, θ) = (2, √ 1 3 4. Let z = + i. Compute z 2016 . 2 2 v u 2 u 1 + |z| = t 2 11π ). 6 √ !2 √ 3 = 1=1 2 So z = cos θ + sin θi. Because √ 1 3 cos θ = , sin θ = , 2 2 θ= π . Therefore 3 π π + sin i. 3 3 2016π 2016π = cos + sin i = cos 672π + sin 672πi = 1 3 3 z = cos π π 2016 z 2016 = cos + sin i 3 3 2 MATH 1700 Homework Han-Bom Moon 5. Find the (real or complex) eigenvalues of " # 1 2 . −1 3 Let A be the given matrix. " A − rI = 1−r 2 −1 3 − r # det(A − rI) = (1 − r)(3 − r) − 2 · (−1) = r2 − 4r + 5 p √ 4 ± (−4)2 − 4 · 1 · 5 4 ± −4 2 r − 4r + 5 = 0 ⇔ r = = =2±i 2 2 Therefore there are two complex eigenvalues, 2 + i and 2 − i. 6. Determine whether the origin is a sink or a source of xn+1 = Axn where " # 0 −2 ; (a) A = 1/6 −1 " # −r −2 A − rI = 1/6 −1 − r 1 1 det(A − rI) = (−r)(−1 − r) − (−2) · = r2 + r + 6 3 √ √ 1 −3 ± 32 − 4 · 3 · 1 1 3i 2 2 r + r + = 0 ⇔ 3r + 3r + 1 = 0 ⇔ r = =− ± 3 6 2 6 v u 2 √ !2 r u 1 3 1 1 t |r| = − + = = √ <1 2 6 3 3 Therefore the origin is a sink. " # 5 4 (b) A = . −1/5 1 " # 5−r 4 A − rI = −1/5 1 − r 29 1 det(A − rI) = (5 − r)(1 − r) − 4 · − = r2 − 6r + 5 5 p √ 30 ± (−30)2 − 4 · 5 · 29 29 320 2 2 r −6r+ = 0 ⇔ 5r −30r+29 = 0 ⇔ r = = 3± 5 10 10 √ √ 320 320 3+ > 1, 3 − ≈ 1.211 > 1. 10 10 Therefore the origin is a source. 3 MATH 1700 Homework Han-Bom Moon 7. Determine all real values of the constant t for which the origin is a sink for the system xn+1 = txn − 0.18yn yn+1 = 2xn + tyn . The transition matrix is " # t −0.18 A= . 2 t " # t − r −0.18 A − rI = 2 t−r det(A − rI) = (t − r)2 − (−0.18) · 2 = r2 − 2tr + t2 + 0.36 p 2t ± (−2t)2 − 4(t2 + 0.36) 2 2 r − 2tr + t + 0.36 = 0 ⇔ r = = t ± 0.6i 2 p |r| < 1 ⇔ t2 + 0.62 < 1 ⇔ t2 < 1 − 0.36 = 0.64 ⇔ −0.8 < t < 0.8 Therefore the origin is a sink if and only if −0.8 < t < 0.8. 8. Find the general form of the solution of xn+1 = 2xn − yn yn+1 = xn + yn , where x0 = y0 = 1000. The transition matrix is " A= " A − zI = 2 −1 1 1 # . 2 − z −1 1 1−z # det(A − zI) = (2 − z)(1 − z) − (−1) · 1 = z 2 − 3z + 3 p √ 3 ± (−3)2 − 4 · 3 3 ± 3i 2 z − 3z + 3 = 0 ⇔ z = = 2 2 v u 2 √ !2 u 3 √ 3 t r = |z| = + = 3 2 2 So if z = r cos θ + r sin θi, √ 3 1 , sin θ = . 2 2 cos θ = 4 MATH 1700 Homework Han-Bom Moon π . 6 The general solution of the linear system is Therefore θ = xn = rn cos(nθ)v + rn sin(nθ)w for some two vectors v and w. " # " # 1000 1000 = x0 = v ⇒ v = 1000 1000 " # # √ √ π 1000 π 1000 + 3 sin w =A = x1 = 3 cos 6 1000 6 1000 " # " # " # " # √ √ − 1000 3 3 1000 1000 −500 3 w= − = ⇒w= 1000 √ 2 2 1000 2000 500 3 " 1000 2000 # " Therefore the general solution is " # " 1000 # √ n √ n − √3 nπ nπ 1000 + 3 sin( ) . xn = 3 cos( ) 1000 √ 6 6 1000 3 5
© Copyright 2026 Paperzz