2/19/2016 Are Oxygen Limitations an Under Recognized Regulator of Carbon Turnover in Upland Soils? Controls on C mineralization (oxidation) rates CO2 Marco Keiluweit plant carbon (I) Stanford University Tom Wanzek and Markus Kleber kmin MO Oregon State University microbial products Peter Nico Lawrence Berkeley National Lab preserved plant material Scott Fendorf mineralization rate CO2 Molecular structure Mineral-organic associations Physical separation recycling stored carbon Stanford University DOC + DIC Oxygen limitations? SSSA 2015, Minneapolis, MI, Nov 17, 2015 adapted from Gleixner et al. (2013) Ecological Research Modeling controls on C oxidation rates Guiding questions Uncertainties: anaerobic pore space impact on overall C oxidation rates metabolic constraints under anaerobic conditions 1. What is the extent of the anaerobic pore volume in upland soils? 2. How do anaerobic microsites impact microbial metabolism and C oxidation rates? 3. Are anaerobic conditions a major control on C turnover? e.g., CLM-BeTR: Tang et al. 2013; Riley et al. 2014 Guiding questions Quantifying the extent of the anaerobic pore volume 2 cm ‘Aggregate’ model Arah and Vinten (1995) EJSS 1. What is the extent of the anaerobic pore volume in upland soils? ¶Coxygen ¶t = Supply - Demand 2. How do anaerobic microsites impact microbial metabolism and C oxidation rates? 0% 3. Are anaerobic conditions a major control on C turnover? Sexstone et al. (1985) SSSAJ O2 concentration = 21% 1 2/19/2016 Quantifying the extent of the anaerobic pore volume Quantifying the extent of the anaerobic pore volume Field setting: Macro-pore structure: 10 cm 10 cm 20 cm 50 cm 100 cm Thomas Wanzek (OSU) Defining Functional Soil Metabolic Heterogeneity Thomas Wanzek (OSU) Defining Functional Soil Metabolic Heterogeneity Wed 2:30 – 4:30 Wed 2:30 – 4:30 Poster #326 = Pt redox probe 1 cm 5 cm Is ‘aggregate’ model applicable? Poster #326 Quantifying the extent of the anaerobic pore volume Quantifying the extent of anaerobic microsites Imaging anaerobic microsites: Bulk oxygen concentrations O2 saturation Mn2+ mg g-1 O2 sensitive film 120 250 µm incubations planar optode imaging oxygen saturation (%) 100 < 5% O2 saturation 80 60 40 WA-20 WA-100 AM-20 AM-100 20 0 0 10 20 30 time (days) Quantifying the extent of anaerobic microsites Fe reduction Fe2+ mg g-1 soil cores Mn reduction Quantifying the extent of anaerobic microsites clay-rich domains? O2 saturation = 89% 3D - Tomography fanoxic = 4% 120 120 100 250 µm 80 O2 saturation = 57% 60 fanoxic = 12% 40 WA-20 WA-100 AM-20 AM-100 20 0 0 10 20 time (days) 30 oxygen saturation (%) oxygen saturation (%) 100 C hotspots? 80 60 40 WA-20 WA-100 AM-20 AM-100 20 O2 saturation = 44% fanoxic = 12% 0 0 10 20 time (days) 30 pore space solids O2 saturation = 44% fanoxic = 12% 2 2/19/2016 Thermodynamic constraints on anaerobic carbon oxidation: FT Guiding questions RateC-oxidation = Rmax X Fk FT 1. What is the extent of anaerobic microsites in upland soils? A Thermodynamic Fdriving force, Ft t 1.0 2. How do anaerobic microsites impact microbial metabolism and C oxidation rates? 3. Are anaerobic microsites a major control on C turnover? 0.5 O2 - NO3 Mn(IV) Fe(III) SO24 1.0 0.0 -3 -2 -1 0 Jin and Bethke (2005) GCA LaRowe and Van Cappellen (2012) GCA 1 2 3 NOSC NOSC = Nominal oxidation B state of carbon = -((4C + H -3N – 2O + 5P – 2S)/C) + 4 Ft + preservation under anaerobic conditions Lipids 0.5 fatty acids alkanes Unsaturated sterols hydrocarbons O2 lignin Soil OM components NO3 carbohydrate protein Mn(IV) Fe(III) SO24 Simple amino acids amines Aromatic/S-containing Nucleic acids Condensed aromatics tannins 0.0 -3 -2 -3 succinate (C4H6O4 ) RateC-oxidation = Rmax X Fk FT A A 0.5 O2 NO 3 Mn(IV) Fe(III) SO24 1.0 0.0 -3 -2 -1 0 1 2 3 succinate (C4H6O4 ) - NO3 Mn(IV) Fe(III) SO24 1.0 0.0 -3 -2 -1 0 1 2 3 NOSC = Nominal oxidation B state of carbon = -((4C + H -3N – 2O + 5P – 2S)/C) + 4 Ft Ft + preservation under anaerobic conditions Lipids Unsaturated sterols hydrocarbons Soil OM components O2 O2 carbohydrate protein Condensed aromatics Mn(IV) Fe(III)2 1 SO24 tannins 0.0 -2 -1 -1 -2 0 +1 0 NOSC 1.0 0.0 NO3 Nucleic acids NOSC Thermodynamic constraints in anaerobic microsites -1 0 1 2 3 O2 lignin Mn(IV) Fe(III) SO24 +2 Unsaturated sterols hydrocarbons Soil OM components NO3 - Simple amino acids amines Aromatic/S-containing -3 fatty acids alkanes lignin -3 Lipids 0.5 fatty acids alkanes NO3 carbohydrate protein Mn(IV) Fe(III) SO24 Simple amino acids amines Aromatic/S-containing Nucleic acids Condensed aromatics tannins 0.0 3 -3 3 -2 -3 -2 -1 -1 0 0 NOSC +1 1 +2 2 3 3 NOSC Impact on microbial metabolism and C oxidation O2, pH, HSprofiling NOSC B 2 NOSC + preservation under anaerobic conditions 0.5 -2 3 +2 O2 3 NOSC = Nominal oxidation B state of carbon = -((4C + H -3N – 2O + 5P – 2S)/C) + 4 -3 1 0.5 NOSC 0.5 +1 0 1.0 Thermodynamic Fdriving force, Ft t Thermodynamic Fdriving force, Ft t 1.0 0 NOSC butyrate (C4H8O2) RateC-oxidation = Rmax X Fk FT 1.0 Thermodynamic Fdriving force, Ft t A -1 -1 -2 NOSC Thermodynamic constraints on anaerobic carbon oxidation: electron donor Thermodynamic constraints on anaerobic carbon oxidation: electron acceptor Ft lower oxidation rates in anaerobic anaerobicconditions microsites? + preservation under oxygenated water Lipids 0.5 fatty acids alkanes Unsaturated sterols hydrocarbons O2 lignin Soil OM components protein Nucleic acids Condensed aromatics tannins 0.0 -3 -3 -2 -2 -1 -1 0 0 NOSC +1 1 solid + solution phase analysis Mn(IV) Fe(III) SO24 Simple amino acids Aromatic/S-containing anaerobic NO3 carbohydrate amines CO2, CH4, DOC aerobic +2 2 3 3 NOSC Rule set adapted from: Canfield et al. (1993) Geochimica et Cosmochimica Acta 57, 3867–3883 Canfield et al. (1993) Marine Geology 113, 27-40 3 - O2 saturation (%) 0 0 50 00 aerobic respiration 0 Fine AerobicR - 41% AnaerobicR 5 10 3 10 100 00 505 00 Mn reduction denitrification denitrification aerobic respiration 2/19/2016 2+ 2+ Fe (mM) Mn (mM) (aq) (aq) 100 10 50 50 2+ Fe(aq) (mM) 100 100 0 4 5 coarse fine 6 100 0.00 Impact on microbial metabolism and0 C 50oxidation 2+ -1 Mn(HCl) (mg g soil) -1 C oxidation rate (mmol C d ) metabolic rates: density fractionation: change in TOC (%) AerobicR 100 Fe reduction 3 6 15 50 Mnreduction reduction Fe 2 coarse fine 5 Impact on microbial metabolism and C oxidation 0 2 4 - 32% 550 1 depth (cm) depth (cm) 1 Coarse 2+ Mn (mM) NO (mM) (aq) 3(aq) (mM)(%) O2NO saturation 3(aq) 100 -20 0 0.5 1.0 50 100 2+ 2+ -1-1 Fe (mg Mn (mggg soil) soil) (HCl) (HCl) 0.0 0.5 1.0 2+ -1 Fe(HCl) (mg g soil) TOC (%) change changeininPOC DOC(%) (%)change change in POC(%) (%) change in MaOC (%) change in DOC in MaOC -20 0 20 -40 0 0 50 40 -50 0 50 -40 40 -50 -50-50 0 0 5050 20 - 91 to 94% anaerobic 2 3 -1 0 0 1 1 aerobic -3 C oxidation rate (mmol C d cm ) 2 3 anaerobic Denitr. MnR FeR SulfR Methgen. Total 2 3 4 4 = 79 to 82% 5 5 6 6 0.0 Over 30 days: 1 depth (cm) 0 aerobic depth (cm) AnaerobicR 0.5 1.0 4 8 too to 12 to to to t o to Over 30 days: -1 C oxidation rate (mmol C d ) 1) Oxidation rates in anaerobic zone decrease by 90% 1) Oxidation rates in anaerobic zone decrease by 90% 2) Less oxidation of bioavailable C in anaerobic zone Impact on microbial metabolism and C oxidation Guiding questions change in oxidation state (%) C NEXAFS characterization: (COOH/C-ar) -50 0 50 1. What is the extend of anaerobic microsites? aerobic (0-0.5 cm) aerobic +250% +15% anaerobic +15% 2. How do they impact microbial metabolism and C oxidation rates? DOC POC MaOC 3. Are anaerobic microsites a major control on C turnover? anaerobic (4-6 cm) Over 30 days: to 1) Oxidation rates in anaerobic zone decrease by 90% 2) Less oxidation of bioavailable C in anaerobic zone 3) Accumulation of reduced C, especially in bioavailable pools Impact on C turnover in upland soils Impact on C turnover in upland soils Poorly-drained Well-drained Poorly-drained Redox potential E (mV) (mV) Redox potential (mV) Eh (mV) h 500 100 700 300 100 500 300 700 500 100 700 300 100 500 300 700 500 100 700 300 300 20 20 Depth (cm) Depth (cm) 100 45 70 10 10 20 20 45 20 20 45 45 45 45 70 70 70 70 70 100 100 100 100 100 100 130 130 500 700 Carbon stock (g Carbon kg-1) stock (g kg-1) 0 5 015 10 50 10 1 215 3 0 4 1 0 2 1 32 43 4 05 1 2 3 4 5 0 Depth (cm) 0 Depth (cm) Well-drained 40 80 120 160 0.0 40 80 120 160 0.4 0.0 0.6 0.2 0.0 0.4 0.2 0.6 0.4 0.0 0.6 0.2 0.0 0.4 0.2 0.6 0.4 0.0 0.6 0.2 0.2 Feo/Fed 0 3 6 9 012 3 0 6 3 9 612 9 012 3 0 6 3 9 612 9 012 3 C/N ratio 0.4 0.6 Feo/Fed C/N ratio 6 9 12 4 2/19/2016 Impact on C turnover in upland soils Impact on C turnover in upland soils density fractionation 0.4 FT-ICR-MS of subsoil extracts poorly-drained well-drained Particulate OC (POC) POC/MaOC Well-drained vs. mineral-associated OC (MaOC) Nominal oxidation state of carbon (NOSC) 0.2 methanol water Poorly-drained 0.0 20 Poorly-drained soil show: 100 -1.0 Poorly-drained soil show: depth (cm) 1) relative accumulation of particulate OC -0.5 0.0 0.5 1.0 NOSC 1) relative accumulation of particulate OC 2) shift towards lower NOSC Are oxygen limitations an under recognized regulator of C turnover in upland soils? Impact on C turnover in upland soils Well-drained Poorly-drained Lipids Anaerobic microsites … Lipids 1) exist even at moderate moisture contents (50% WFPS). Lipids = 38% A 1) reduce C oxidation rates by 90%, with Fe reduction as the most important respiratory pathway. Lipids = 49% A 1.0 1) greater relative abundance of particulate OC 1) constrain metabolism of bioavailable, reduced C compounds. 2) shift towards lower NOSC 3) greater relative abundance of lipids 0.5 O2 - NO3 Mn(IV) Fe(III) SO24 1.0 B 0.5 O2 - NO3 0.0 Thermodynamic constraints in anaerobic microsites -3 -2 -1 0 1 2 3 NOSC B Oxidation coupled to Fe + preservation under anaerobic conditions reduction NOT favorable Ft Ft Lipids Unsaturated sterols hydrocarbons O2 protein Mn(IV) Fe(III) SO24 Simple amino acids amines Aromatic/S-containing Nucleic acids Condensed aromatics tannins 0.0 -3 -2 -2 -1 -1 0 0 NOSC +1 1 +2 2 Unsaturated sterols hydrocarbons O2 lignin NO3 carbohydrate Oxidation coupled to Fe reduction favorable fatty acids alkanes lignin Soil OM components -3 Lipids 0.5 fatty acids alkanes NOSC anaerobic conditions: Oxidation is uninhibited + preservation under anaerobic conditions 0.5 Mn(IV) Fe(III) SO24 1.0 0.0 Thermodynamic constraints in anaerobic microsites -3 -2 -1 0 1 2 3 aerobic conditions: 1.0 Thermodynamic Fdriving force, Ft t Thermodynamic Fdriving force, Ft t Poorly-drained soil show: 3 3 NOSC NOSC = Nominal oxidation state of carbon = -((4C + H -3N – 2O + 5P – 2S)/C) + 4 Soil OM components NO3 carbohydrate protein Mn(IV) Fe(III) SO24 Simple amino acids amines Aromatic/S-containing Nucleic acids Condensed aromatics tannins 0.0 -3 -3 -2 -2 -1 -1 0 0 NOSC +1 1 +2 2 3 3 NOSC NOSC = Nominal oxidation state of carbon = -((4C + H -3N – 2O + 5P – 2S)/C) + 4 5 2/19/2016 Thank you for your attention! Acknowledgements Stanford: Kaitlyn Gee Amanda Denney Kristin Boye Guangchao Li Doug Turner EMSL: Malak Tfaily Canadian Light Source: Tom Regier Jay Dynes Earth Sciences Division Beamlines 1.4.3, 5.4, 5.3.2, 8.3.2, 10.3.2 and 11.0.2 at the Advanced Light Source Lawrence Berkeley Laboratory Directed Research and National Laboratory: DulaLawrence ParkinsonScholar (ALS, 8.3.2) Development Program, Marco Voltollini (ESD) Program Funding: Office of Biological and Environmental Science: This research by the Terrestrial Ecosystem Science (TES) program within the Climatewas andfunded Environmental Science Division Department of Energy (DOE) Office of Science's Office of Biological and Environmental Research (BER), under Contract No. DE-FG02-13ER65542. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-05CH11231. 6
© Copyright 2026 Paperzz