Table 3.1 Relative dating methods. Method Age range

Table 3.1
Relative dating methods.
Method
Age range
Materials needed
References
Clast seismic velocity
Obsidian hydration
Soils
Mineral weathering
Landform modification
1–100 ka
1–500 ka
1–500 ka
10 ka–1 Ma
10 ka–1 Ma
Boulders
Obsidian-bearing lavas
Soils
Boulders
—
Crook (1986), Gillespie (1982)
Pierce et al. (1976)
Harden (1982)
Colman and Dethier (1986)
Davis (1899), Cotton (1922)
Table 3.2
Absolute dating methods.
Method
Useful range
Materials needed
References
14
Radioisotopic
C
35 ka
Wood, shell
U–Th
10–350 ka
Thermoluminescence (TL)
Optically stimulated
luminescence (OSL)
30–300 ka
30–300 ka
Carbonate (corals,
speleothems)
Quartz or feldspar silt
Quartz silt
Libby (1955), Stuiver
(1970)
Ku (1976)
Cosmogenic
In situ 10Be, 26Al
0–4 Ma
Quartz
He, Ne
Cl
unlimited
0–4 Ma
Olivine, quartz
Chemical
Tephrochronology
0–several Ma
Volcanic ash
Westgate and Gorton
(1981), Sarna-Wojcicki
et al. (1991)
Fine sediments,
volcanic flows
Fine sediments
Cox et al. (1964)
Wood
Fritts (1976), Jacoby
et al. (1988), Yamaguchi
and Hoblitt (1995)
Buddemeier and Taylor
(2000)
36
Amino acid racemization
>700 ka
Secular variation
0–several Ma
Sclerochronology
Lal (1988), Nishiizumi
et al. (1991)
Cerling and Craig (1994)
Phillips et al. (1986)
0–300 ka, temperature
dependent
Paleomagnetic
Identification of reversals
Biological
Dendrochronology
Berger (1988)
Aitken (1998)
0–10 ka, depending upon
existence of a local master
chronology
0–1000 yr
Coral
Creer (1962, 1967),
Lund (1996)
Properties of commonly used cosmogenic radionuclides.
Nuclide
10
Be
14
C
26
Al
36
Cl
Production
rate, P0
(atoms/
gquartz yr)
4.6 ± 0.3
(quartz)
16.5 ± 0.5
(quartz)
31.1 ± 1.9
(quartz)
230
(Ca and K)
Half-life,
t1/2 (yr)
Decay
constant,
l (1/yr)
Mean life,
t (yr)
1.36 × 106
5.10 × 10−7
1.96 × 106
5.73 × 103
1.21 × 10−4
8.27 × 103
7.05 × 105
1.42 × 10−7
1.02 × 106
3.01 × 105
2.30 × 10−6
4.34 × 105