Table 3.1 Relative dating methods. Method Age range Materials needed References Clast seismic velocity Obsidian hydration Soils Mineral weathering Landform modification 1–100 ka 1–500 ka 1–500 ka 10 ka–1 Ma 10 ka–1 Ma Boulders Obsidian-bearing lavas Soils Boulders — Crook (1986), Gillespie (1982) Pierce et al. (1976) Harden (1982) Colman and Dethier (1986) Davis (1899), Cotton (1922) Table 3.2 Absolute dating methods. Method Useful range Materials needed References 14 Radioisotopic C 35 ka Wood, shell U–Th 10–350 ka Thermoluminescence (TL) Optically stimulated luminescence (OSL) 30–300 ka 30–300 ka Carbonate (corals, speleothems) Quartz or feldspar silt Quartz silt Libby (1955), Stuiver (1970) Ku (1976) Cosmogenic In situ 10Be, 26Al 0–4 Ma Quartz He, Ne Cl unlimited 0–4 Ma Olivine, quartz Chemical Tephrochronology 0–several Ma Volcanic ash Westgate and Gorton (1981), Sarna-Wojcicki et al. (1991) Fine sediments, volcanic flows Fine sediments Cox et al. (1964) Wood Fritts (1976), Jacoby et al. (1988), Yamaguchi and Hoblitt (1995) Buddemeier and Taylor (2000) 36 Amino acid racemization >700 ka Secular variation 0–several Ma Sclerochronology Lal (1988), Nishiizumi et al. (1991) Cerling and Craig (1994) Phillips et al. (1986) 0–300 ka, temperature dependent Paleomagnetic Identification of reversals Biological Dendrochronology Berger (1988) Aitken (1998) 0–10 ka, depending upon existence of a local master chronology 0–1000 yr Coral Creer (1962, 1967), Lund (1996) Properties of commonly used cosmogenic radionuclides. Nuclide 10 Be 14 C 26 Al 36 Cl Production rate, P0 (atoms/ gquartz yr) 4.6 ± 0.3 (quartz) 16.5 ± 0.5 (quartz) 31.1 ± 1.9 (quartz) 230 (Ca and K) Half-life, t1/2 (yr) Decay constant, l (1/yr) Mean life, t (yr) 1.36 × 106 5.10 × 10−7 1.96 × 106 5.73 × 103 1.21 × 10−4 8.27 × 103 7.05 × 105 1.42 × 10−7 1.02 × 106 3.01 × 105 2.30 × 10−6 4.34 × 105
© Copyright 2026 Paperzz