HOMEWORK 4 FOR MATH 2250 - MODEL SOLUTION • When you write your calculation of derivatives, please write the step “plugging your functions for differentiation rules”. I wrote the step in blue color. It guarantees partial score if your final answer is incorrect. • Do not copy others’ homework. Every problem will be worth two points. (1) Find the first and second derivatives. y = 4 − 2x − x−3 . dy = −2 − (−3)x−4 = −2 + 3x−4 . dx d2 y = 3(−4)x−5 = −12x−5 . dx2 (2) Find the derivative by (a) applying the Product Rule and (b) by multiplying the factors to produce a sum of simpler terms to differentiate. y = (2x + 3)(5x2 − 4x). (a) Applying the Product Rule dy = dx = = = d d (5x2 − 4x) + (5x2 − 4x) (2x + 3) dx dx 2 (2x + 3)(10x − 4) + (5x − 4x)2 20x2 − 8x + 30x − 12 + 10x2 − 8x 30x2 + 14x − 12. (2x + 3) (b) Multiplying the factors y = (2x + 3)(5x2 − 4x) = 10x3 − 8x2 + 15x2 − 12x = 10x3 + 7x2 − 12x. dy = 30x2 + 14x − 12. dx (3) Find the first and second derivatives of w = 3z 2 e2z . d 2z d d d (e ) = (ez · ez ) = ez ez + ez ez = ez · ez + ez · ez = 2e2z . dz dz dz dz dw d d = 3z 2 e2z + e2z (3z 2 ) = 3z 2 2e2z + e2z 6z = (6z 2 + 6z)e2z . dz dz dz Date: February 11, 2012. 1 2 HOMEWORK 4 FOR MATH 2250 - MODEL SOLUTION d2 w d 2z 2z d 2 (e ) + e (6z 2 + 6z) = (6z 2 + 6z)2e2z + e2z (12z + 6) = (6z + 6z) dz 2 dz dz = (12z 2 + 12z + 12z + 6)e2z = (12z 2 + 24z + 6)e2z . If you have some complicated parts (in this example, e2z ), it is a good idea to compute the derivative of it separately. (4) Suppose u and v are differentiable functions of x and that u(1) = 2, u0 (1) = 0, v(1) = 5, v 0 (1) = −1. Find the values of the following derivatives at x = 1. d (a) (uv). dx d d d (uv) = u v + v u. dx dx dx d (uv) = u(1)v 0 (1) + v(1)u0 (1) = 2 · (−1) + 5 · 0 = −2. dx x=1 d u . (b) dx v d d u − u dx v d u v dx = . 2 dx v v d u v(1)u0 (1) − u(1)v 0 (1) 5 · 0 − 2 · (−1) 2 = = = . dx v x=1 v(1)2 52 25 d v (c) . dx u d d v − v dx u d v u dx = . 2 dx u u u(1)v 0 (1) − v(1)u0 (1) 2 · (−1) − 5 · 0 −2 1 d v = = = = − . dx u x=1 u(1)2 22 4 2 d (d) (7v − 2u). dx d dv du (7v − 2u) =7 −2 = 7v 0 (1) − 2u0 (1) = 7 · (−1) − 2 · 0 = −7. dx dx x=1 dx x=1 x=1
© Copyright 2026 Paperzz