1021 Variations in echosounder – transducer performance with water temperature David A. Demer and Josiah S. Renfree Demer, D. A., and Renfree, J. S. 2008. Variations in echosounder– transducer performance with water temperature. – ICES Journal of Marine Science, 65: 1021 – 1035. Electro-acoustic transducers are central components of multifrequency echosounders used in remote-target identification and acoustic surveys for fish and zooplankton. Appreciable changes in echosounder system gains can result from shifts in transducer frequency responses with water temperature. Because it is standard practice to calibrate echosounder systems for fisheries surveys in one environment and apply the resulting gains to interpret data collected over the range of sea temperatures encountered during a survey, the results may be biased. Such biases may be different for estimates derived from each echosounder frequency. In moving to quantify and mitigate these effects, the performances have been measured for ten commonly used survey transducers in water temperatures ranging from 18C to 188C, using three techniques. Results show that the transducer impedances all change with temperature, potentially changing the signal-to-noise ratio from 5 to .20 dB. The resonance frequencies and quality factors also change with temperature, ranging from 0.2% to 2.8% and 2.5% to .130%, respectively. Corresponding directly to changes in the echosounder gains, the transmitting-current and receiver-voltage responses changed 1 dB or less with temperature, except for the Simrad ES120-7, which showed a 2 dB increase. Generally, the magnitudes of frequency-dependent biases in echosounder-system gains depend primarily on the temperature-dependent performances of the survey transducers, the range of temperatures encountered, and whether the operational frequencies are less or greater than the resonance frequency. Keywords: impedance, quality factor, resonance frequency, temperature, transducer. Received 2 October 2007; accepted 6 February 2008; advance access publication 25 April 2008. D. A. Demer and J. S. Renfree: Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA. Correspondence to D. A. Demer: tel: þ1 858 546 5603; fax: þ1 858 546 5656; e-mail: [email protected]. Introduction Scientific echosounders used for fisheries-resource surveys generally use resonant transducers and transmit and receive near their resonance frequencies. Their construction from multiple materials such as piezo-electric ceramics, polyurethanes, and metals makes them likely to change performance characteristics with changes in temperature and pressure (Blue, 1984). Many researchers have characterized the performances of standard hydrophones against temperature and pressure (e.g. Van Buren et al., 1999; Beamiss et al., 2002; Ablitt et al., 2006), and have highlighted the need to account for these influences when making measurements in dynamic environmental conditions. In fisheries applications, however, the echosounder systems are typically calibrated in a static environment, then used to acquire data over the range of water temperatures encountered during a survey. The reasons for this are practical: standard sphere calibrations (Foote et al., 1987) consume expensive ship-time and are best conducted in sheltered areas before and after each survey; and the performances of commercial echosounder transducers have not, in general, been characterized against temperature. Moreover, the range of water temperatures encountered during a survey may not be significantly different from that during the calibration. In areas such as the Arctic or Southern Oceans, however, the range of temperature can be large, and compensation for the temperature-dependence of system calibrations may be warranted. For a 120 kHz echosounder transducer made up of 76 piezoceramic elements and a polyurethane window (Simrad model ES120-7), Demer and Hewitt (1993) showed that an appreciable change in on-axis system gain (g0; dimensionless) results from a shift in seawater temperature. Researchers from the British Antarctic Survey and the Alaska Fisheries Science Center have confirmed this phenomenon for other echosounder transducers and frequencies (Brierley et al., 1998; N. Williamson, pers. comm., respectively). Therefore, because the material, electrical, and hence acoustic properties of transducers are dependent on water temperature, data collected without taking these changes into consideration may be biased. Here, the changes in ten commonly used echosounder transducers are characterized precisely, and a method is proposed to account for these changes and therefore to minimize this component of uncertainty in acoustic surveys of aquatic life. Note that all symbols used herein, their descriptions and their units are listed in the Appendix, for ease of reference. Transducer materials and performance Many Simrad transducers are made from PZT4 or PZT8 ceramics and with PRC or Durotong window material (H. Bodholt, Simrad, pers. comm.), effectively creating a coupled resonance system. The properties of these materials vary with acoustic frequency f (kHz) and temperature T (8C; Blue, 1984). Simrad– Kongsberg also uses # US Government/Department of Commerce/National Oceanic and Atmospheric Administration/National Marine Fisheries Service 2008 1022 D. A. Demer and J. S. Renfree polyurethane (Durotong) in the fabrication of their EM series multibeam transducers and reports a relationship between its sound speed c (m s21) and T (Kongsberg, 2006), indicating a change in c of 5.1% when T declines from 178C to 18C. For a similar polyurethane rubber (DeSoto PR1547) and change in T from 17.28C to 3.98C, c changes by 6.1%, and possibly more importantly, the absorption coefficient changes 57.9% at f = 70 kHz (Mott et al., 2002). In addition to changes in the properties of the transducer materials with T, the transmitting current response (S0; mPa A21 at 1 m), the receiver free-field voltage response (M0; V mPa21), and the mechanical resonance frequency ( fr; kHz) can vary with temperature (Blue, 1984; Van Buren et al., 1999). These changes can be characterized using a self-reciprocity calibration (Carstensen, 1947), where a transducer projects a pulse of sound at a near-perfect reflector (e.g. an air–water interface; Patterson, 1967). Both S0 and M0 can be determined from separate measurements of the transmitter current (It, A), and the open-circuit voltage (Vr, V), through the received reflected sound: S0 ¼ Vr 2r J It Sabin (1956) showed that Equations (1) and (2) can be solved with measurements of J, r, and the reflectional impedance: Vr jZref j ¼ ¼ Z 0 Z ; It where Z is measured using Equation (3) during transmission into a free-field, and Z0 is measured when the transmitted signal overlaps with that from a total reflection (e.g. using a self-reciprocity calibration configuration, during the superposition of a transmitted pulse and its echo from an air– water interface). The subtraction in Equation (6) is a vector difference, and k designates an amplitude operator for the complex argument. Echosounder performance Principal measurements of echosounders are the backscattering cross-sectional area of an individual target (s; m2): s¼ 1=2 ; ð1Þ sv ¼ Vr 2rJ It 1=2 ; ð2Þ where r (m) is the range from the transducer to the air–water interface, J ¼ (2l/rc)(10212) (W mPa22) the reciprocity parameter at 1 m, l (m) the wavelength of sound, and rc (kg m22 s21) the characteristic impedance of water, the product of its density r (kg m23) and c (Rosen et al., 1992, p. 377). Both Equations (1) and (2) contain the ratio of V and I, which has units of electrical impedance (Z; V). Both Z and the electrical admittance (Y; S) are derived from measurements of voltage (V; V) and current (I; A): V Z ¼ ¼ R þ jX; I Pr 64p3 r 4 10ar=5 ; Pt g02 l2 ð7Þ and the volume-backscattering coefficient (sv; m – 1): and M0 ¼ ð6Þ Pr 32p2 r 2 10ar=5 ; Pt g02 r02 l2 ctc ð8Þ which is the backscattering area (m2) per unit volume of seawater (m3), following Simrad (1993), but with a correction to the a term, Pt is the transmitted electrical power (W), Pr the received electrical power (W), g0 the on-axis system gain (dimensionless), r0 the reference range (1 m), and c the equivalent two-way solid beam-angle (sr). Both Pt and Pr are functions of the transmitted voltage Vt, received voltage Vr, and the impedance: Pt ¼ Vt2 ; ZðTÞ ð9Þ Pr ¼ Vr2 : ZðTÞ ð10Þ and ð3Þ If impedance depends on temperature Z(T ), so does power P(T), and changes in Z(T ) correspond to changes in P(T): Y¼ I ¼ G þ jB; V where R is the resistance (V), X the reactance (V), G the conducp tance (mS), B the susceptance (S), and j = 21. G is maximum (Gmax) at fr (Wilson, 1988). The quality factor Q (unitless) is a measure of the width of the resonance peak relative to its maximum: Q¼ fr ; f2 f1 dPðTÞ d V2 V 2 dZðTÞ ¼ ; ¼ dT dT ZðTÞ ZðTÞ2 dT ð4Þ ð5Þ where f2 and f1 are the closest frequencies above and below fr where p G( f1) ¼ G( f2) ¼ Gmax/ 2. ð11Þ or DPðTÞ ¼ V 2 ZðTÞ ZðT0 Þ ; ZðTÞ2 ð12Þ where T0 is a reference temperature. Assuming the transmitter and receiver impedances are equivalent (Simrad– Kongsberg, 2003) and the transducer is reciprocal, the changes in Pt and Pr are equal, and their effects are cancelled in the quotients defining s and sv [see Equations (7) and (8)]. However, if Z(T) and hence Pt change, and both Vt and the ambient acoustic noise remain constant against T (assuming a constant-voltage transmit amplifier 1023 Variations in echosounder–transducer performance with water temperature Table 1. Electrical characteristics for ten commonly used Simrad transducers. Simrad model Nominal Measured in this experiment h (%) fEK500 (kHz) jZj (V) u (88 ) fEK60 (kHz) jZj (V) u (88 ) fr (kHz) Q h (%) jZj (V) u (88 ) ES18 11–20 +30 60 + 20 17.986 13.5 6.79 18.000 13.4 5.30 18.057 27.9 77 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . ES38-B 11–20 +30 60+20 37.878 13.6 29.59 38.000 15.5 26.04 36.817 24.0 – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . ES38-12 11–20 +30 70 + 20 37.878 13.6 5.86 38.000 14.9 6.45 36.947 12.3 68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . ES70-7C 19 – 75 70.422 20.9 27.78 70.000 20.6 26.30 67.347 4.8 75 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . ES120-7 11-20 +30 70 + 20 119.047 20.0 13.20 120.000 20.2 7.57 120.120 9.2 – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . ES120-7C 19 – 75 119.047 17.6 214.79 120.000 18.0 215.54 111.767 3.4 74 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . ES200-7C 19 – 75 200.000 23.0 26.59 200.000 23.0 26.59 178.899 11.6 73 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . ES200-28E 45–80 +30 70 + 20 200.000 46.2 31.59 200.000 46.2 31.59 221.729 19.8 – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . Combi D-50 75 – 50 49.020 88.0 19.33 50.000 79.7 22.82 52.345 6.8 – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . Combi D-200 75 – 60 200.000 84.3 28.13 200.000 84.3 –8.13 203.820 10.4 – Summarized are the nominal transducer-impedance values (jZj, and phase u), and those measured during this experiment at the operational frequency of the Simrad EK500 and EK60 echosounders fEK500 and fEK60, respectively, at a temperature of 178C; and the resonant frequencies fr, quality factors Q, and efficiencies (h) at 178C. Measurements were made with 10 m of cable factory-attached to each transducer, and a connector set (Amphenol 97-3106A-24-19P and 97-3102A-24-19S). The four quadrants of the split-beam transducers were connected in parallel, except for the ES120-7, which had only three quadrants connected in parallel: a connection to quadrant IV was broken. and thermal noise is not dominant (Urick, 1983)), the signal-to-noise ratio will change with T (snr(T ); dimensionless): dsnrðTÞ d Pr ðTÞ d CðTÞ CðTÞ dZðTÞ ¼ ; ¼ dT dT Pn dT ZðTÞ Pn ZðTÞ2 dT ð13Þ where Pr(T ) = C(T )/Z(T ) is determined from a combination of either Equation (7) or (8) and Equation (9), Pn is noise power, and C(T) is substituted for all non-Z(T ) parameters. The Simrad EK60 transmit voltage is designed to be constant for small changes in Z(T ). However, the transmitter is current-limited, and the output impedance and Vt will change for large changes in Z(T ), e.g. from 80 to 40 V (L. Andersen, Simrad, pers. comm.). The characteristics of the current-limiter are the same for all transmit powers, but different for each frequency. The receiver impedance is constant (A. Johansen, Simrad, pers. comm.). Note that changes in the transducer impedance, and efficiency and directivity, have equivalent effects on the reception of the volume-scatter signal and the incoherently additive acoustic noise. To evaluate the effects of D Z(T ) on D snr(T ), let dC(T)/dT = 0: DsnrðTÞ ¼ CðTÞ ZðTÞ ZðT0 Þ : Pn ZðTÞ2 ð14Þ Therefore, changes in SNR(T) = 10 log(snr(T )) are proportional to changes in the transducer impedance divided by the square of the impedance. Changes in SNR(T ) will change the effective precisions (Demer et al., 1999), biases, and maximum detection ranges of the echosounder measurements (Demer, 2004). The accuracy of s and sv will be affected by changes in g0(T )22 [see Equations (7) and (8)]. The on-axis system gain is proportional to both M0 and S0, and is defined (Simrad – Kongsberg, 2003) as the product of the temperature-dependent, transducer directivity [d(T ); unitless], and electro-acoustic transducer efficiency [(h(T ); unitless]: g0 ðTÞ ¼ dðTÞhðTÞ: ð15Þ A change in the d(T ) through a change in T is approximately equal to the change in sound speed (e.g. 4.0% or 0.17 dB for a 168C change in T ), because the effective aperture is proportional to l (see Foote, 1991). Changes in h(T) can be more appreciable (Blue, 1984). The self-reciprocity technique can also yield accurate measurements of h from the reciprocity-voltage ratio, the Thevenin-equivalent resistance, and the transducer-directivity index (Widener, 1980). Therefore, taking account of changes in Z(T) and d(T ), changes in h(T) should mimic changes observed in M0(T ) and S0(T ). It is desirable, however, to have explicit and independent estimates of h(T ). At the transducer-resonance frequency, h(T ) can be determined from measurements of Y(T) made with the transducer loaded and unloaded (Wilson, 1988): h¼ DW ðDA DW Þ ; DA ðGmin þ DW Þ ð16Þ where DA and DW are the widths of the unloaded (in air) and loaded (in water) admittance circles (G vs. B as a function of f ), respectively; and Gmin is the minimum conductance in the admittance circle. Formulation (16) assumes that the difference in resistance in the motional impedance is attributable to acoustic radiation into air vs. water, and that the losses (e.g. lossy resistances in the transducer-equivalent circuit) are the same in both measurement conditions. However, different losses may arise from, for example, the heating of the transducer. Although this method can be prone to error for some transducers, it is included here for completeness. Multifrequency target identification Fish-number densities (fish m22 of sea surface) are estimated acoustically by apportioning sv (m2 backscatter m23 seawater) to the various sound-scatterers contributing to the reverberation, integrating that from the targeted type, resulting in units of m2 backscatter m22 of sea surface, and dividing by the representative s (m2 fish21). Generally, the largest sources of error in this process 1024 D. A. Demer and J. S. Renfree Stanton et al. (1996). To be useful, the models must be validated with measurements. To elucidate these spectra independent of animal density, the sv measured at multiple frequencies can be normalized to that at a reference frequency, typically 38 kHz (Korneliussen and Ona, 2002). Probabilistic comparisons between the shapes of the measured spectra and those predicted by the models may identify the targets (Demer, 1994). However, the effectiveness of these methods for remote-target identification depends on both the accuracies of the scattering spectra predictions and the accuracies and precisions of the measurements at each f. Moreover, if changes in SNR(T ) are different from each frequency, the detection ranges at each frequency will be dependent on water temperature. One aim of this study is to reduce uncertainty in measurements of scattering spectra and the acoustic identification of targets. Figure 1. An array of ten commonly used Simrad transducers being lowered into Deep Tank. From left to right and top to bottom the transducers are the Simrad ES120-7, ES38-12, 200-28E, ES18, ES38-B, ES120-7C, ES200-7C, ES70-7C, Combi D-50, and Combi D-200. are associated with identifying backscatter from the target, and estimating its s (Furusawa, 1991; Demer, 2004; Simmonds and MacLennan, 2005). As the echo from an object depends on l and its material properties, size (L), shape, and orientation, the sound-scattering spectra can be used to measure some of its biophysical characteristics (Holliday, 1977). For example, animal sizes can be acoustically estimated by solving one or more scattering models with multifrequency measurements of sv (Greenlaw and Johnson, 1983). The effectiveness of the inversion technique depends on the accuracy of both the model(s) and the measurements. Because of the challenges in studying complex aquatic ecosystems, a large number of models, both physics-based and empirical, have been developed to predict the frequencydependent backscatter from a variety of targeted species, e.g. Methods The performance characteristics of ten commonly used survey transducers (Table 1) were measured with T ranging from 18C to 188C. All are split-beam, except for the single-beam ES200-28E and the Combi D-50 and Combi D-200. Measurements of the split-beam transducers were made with the four quadrants in parallel. Three of the transducers (ES70-7C, ES120-7C, and ES200-7C) are made from composite materials, of which the details are unavailable from the manufacturer. Three experiments were conducted: (i) Z(T ), fr(T ), and Q(T ) were determined from measurements of V(T) and I(T ), using Equations (3) and (4); the corresponding Dsnr(T ) were estimated from changes in Z(T) [using Equation (14)]; (ii) M0(T ) and S0(T) were measured from the vector differences in Z(T ) and Zref(T ), using Equations (1), (2), and (6); and (iii) h(T ) were estimated from measurements of Y(T) when the transducer was loaded and unloaded, using Equation (16). Figure 2. Measurement instrumentation and wiring. The main instrumentation included an arbitrary waveform generator (Hewlett Packard HP33120A), a current probe (Pearson Electronics, Model 410), a digital storage oscilloscope (Agilent 54624A), a custom multiplexer, and a laptop computer. Variations in echosounder–transducer performance with water temperature 1025 Tablep 2. Coefficients for third-order polynomial fits to the impedance (Z; V) plotted vs. temperature (T) for ten Simrad transducers ( j = 21). Simrad model Z = AT 3 + BT 2 + CT + D A B C D 20.0008 + 0.0011j 0.0138 –0.0379j 0.0479 + 0.2361j 12.6586 + 0.3103j f. .EK500 . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.0008 + 0.0011j 0.0126 –0.0374j 0.0561 + 0.2297j 12.5330 + 0.6727j f. . EK60 . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.0005 + 0.0003j 0.0049 –0.0116j 0.1033 + 0.0681j 12.3600 + 1.3278j f r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0001– 0.0000j 0.0010 + 0.0004j 0.0525 + 0.0745j 11.8484 + 1.1061j ES38-B fEK500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0000– 0.0001j 0.0029 + 0.0009j 0.0519 + 0.0567j 13.5995 + 0.8389j f. . EK60 . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.0001– 0.0002j 0.0025 –0.0059j 20.0436 + 0.0942j 6.3874 –2.7853j f r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0007 + 0.0000j 20.0174 + 0.0036j 20.0143 + 0.0108j 15.1850 –2.7242j ES38-12 f. .EK500 . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0008– 0.0001j 20.0186+0.0070j 20.0049–0.0033j 16.3856 –3.0476j f. . EK60 . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.0049– 0.0047j 0.1057 + 0.1151j – 0.5039–0.6108j 10.7026 –4.7634j f r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.0003 + 0.0000j 0.0059 + 0.0015j 20.1658–0.0547j 23.1687 + 3.3368j ES70-7C f. .EK500 . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.0003 + 0.0001j 0.0055 –0.0012j 20.1527–0.0348j 22.8979 + 2.7594j f. . EK60 . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.0003 + 0.0014j 0.0057 –0.0426j 20.1642 + 0.3437j 22.0256 –1.9985j f r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ES120-7 fEK500 0.0002 + 0.0005j 20.0130 –0.0219j 0.4049 + 0.0724j 15.2558 –1.6158j . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0003 + 0.0002j 20.0157 –0.0111j 0.3691–0.1004j 16.9575 + 1.4755j f. . EK60 . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0009 + 0.0028j 20.0165 –0.0592j 0.3375 + 0.1755j 14.6381 –3.0457j f r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.0004– 0.0006j 0.0106 + 0.0197j 20.0166–0.2538j 16.3358 + 6.2809j ES120-7C f. .EK500 . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.0004– 0.0006j 0.0088 + 0.0198j – 0.0057–0.2720j 16.7465+6.8770j f. . EK60 . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.0004– 0.0005j 0.0126 + 0.0144j 20.0670–0.1244j 14.9444 + 0.0020j fr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.0002 + 0.0002j 0.0024 –0.0021j 20.1594–0.1379j 25.7382 + 4.6383j ES200-7C f. .EK500 . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.0002 + 0.0002j 0.0024 –0.0021j 20.1594–0.1379j 25.7382 + 4.6383j fEK60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0004 + 0.0006j 20.0092 –0.0133j 0.0836 + 0.0566j 8.1946 –2.5116j f r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.0002 + 0.0004j 0.0014 –0.0066j 0.2103–0.0397j 36.2900 –23.7616j ES200-28E f. .EK500 . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.0002 + 0.0004j 0.0014 –0.0066j 0.2103–0.0397j 36.2900 –23.7616j f. . EK60 . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.0002 + 0.0002j 0.0058 –0.0023j 20.0335–0.0263j 12.0943 + 0.4901j f r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.0019 + 0.0020j 0.0323 –0.0464j 21.2822–0.5660j 104.9815 –15.8744j Combi D-50 f. .EK500 . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . fEK60 0.0005– 0.0032j 0.0037 + 0.1086j 21.4286–1.2456j 94.6220 –25.3273j . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.0034– 0.0008j 0.0812 –0.0030j 20.6151 + 0.3777j 62.9419 –25.4864j f r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0047– 0.0014j 20.1302 + 0.0528j 1.3645–1.4487j 74.9270 + 28.7277j Combi D-200 f. .EK500 . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0047– 0.0014j 20.1302 + 0.0528j 1.3645–1.4487j 74.9270 + 28.7277j f. . EK60 . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0110– 0.0036j 20.2750 –0.1057j 1.1218 + 3.3855j 72.8872 + 4.5647j fr ES18 Least-squares fits were made to the data at the operational frequencies of the Simrad EK500 and EK60 echosounders ( fEK500 and fEK60) and the transducer resonance frequencies ( fr). Measurements were made with 10 m of cable factory attached to each transducer, and a connector set (Amphenol 97-3106A-24-19P and 97-3102A-24-19S). The four quadrants of the split-beam transducers were connected in parallel, except for the ES120-7, which had only three quadrants connected in parallel: a connection to quadrant IV was broken. Estimating Z(T ), fr(T ), and Q(T) Measurements of V(T ) and I(T ) were made of each transducer mounted inside a large insulated tank (Deep Tank, Hydraulics Lab, Scripps Institution of Oceanography). The tank is 10 m deep and 3 m diameter, and contains filtered seawater that was chilled from the local ocean T (178C in May and June) to 18C. The transducers and a CTD (Seabird SBE 19+) were mounted on a 12-mm thick aluminium plate (Figure 1). A surfactant was applied to the transducer faces to shed bubbles. The transducer array was suspended inside the tank by a four-point harness attached to the corners of the array and to a gantry crane. The faces of the transducers were thus positioned at a depth of 1.1 m, orientated with their acoustic beams directed down. Measurements of water T, salinity (s; dimensionless), r, pressure (p; dbar), and c were recorded at the depth of the transducers using the CTD. Additionally, T was monitored with a chain of temperature loggers (Onset HoboTemps) at five depths (0.1, 1.7, 3.3, 6.5, and 8.1 m), and a thermocouple profiler. A vertically mixing pump was used to maintain a uniform water temperature between 0.5 and 10 m. Data acquisition was with a digital storage oscilloscope (Agilent 54624A), an arbitrary waveform generator (Hewlett Packard 33120A), a current probe (Pearson 410), and a custom multiplexer (Figure 2). A laptop computer (Sony Vaio) and custom program (The Mathworks Matlab) were used to configure the instruments, to automate their functions, and to record the data, and a multiplexer to connect sequentially each transducer to the measurement apparatus. The excitation signal was a 2-ms broad-bandwidth chirp (Vp-p = 10 V). The frequency bandwidth was fEK60 + 20%, where fEK60 is the operational frequency of the Simrad EK60 echosounder for that transducer model (Table 1). The V and I signals were recorded by the oscilloscope (2000 samples each), converted to analytical signals using the Hilbert transform, digitally filtered 1026 D. A. Demer and J. S. Renfree Figure 3. Magnitude of impedance (jZj; V) with temperature (T; 8C) for the ten transducers. Measurements (dots) are plotted at the operational frequencies of the EK60 ( fEK60; kHz; black), and EK500 ( fEK500; kHz; dark grey) echosounders, and the transducer resonance frequency ( fr; kHz; light grey), and each dataset was fitted with third-order polynomials (lines; see Table 2). into 400 narrow-frequency bands, and used in Equations (3) and (4) to estimate Z and Y at f and T. These measurements were made three times for each transducer before proceeding to the next in the multiplexer sequence. Each electrical measurement was temporally matched with CTD measurements of T, s, p, r, and c. This process was continually repeated while T in the tank warmed from 18C to 178C. The Z(T) were modelled by third-order polynomials using the method of least-squares: ZðTÞ ¼ AZ T 3 þ BZ T 2 þ CZ T þ DZ ðVÞ; ð17Þ and changes in snr(T ) for each transducer were estimated from changes in Z(T ), using Equation (14). Estimating M0(T) and S0(T) For the second set of tank experiments, the transducer faces were orientated with their acoustic beams perpendicular to the air– water interface (self-reciprocity configuration), at a range of 1.8 m (Table 1). The inverted transducer array was suspended inside the tank by adjustable lines attached to each of the four corners, and to a frame secured to the tank top. Accurate Variations in echosounder–transducer performance with water temperature 1027 Figure 4. Changes in transducer impedance divided by the square of the impedance [proportional to changes in the signal-to-noise ratio (snr); see Equation (14)], plotted against temperature (T; 8C) for the ten Simrad transducers. The y-axes are labelled with both linear and logarithmic scales because the SNR is alternatively considered in each domain. Measurements (dots) are plotted at the operational frequencies of the EK60 ( fEK60; kHz; black), and EK500 ( fEK500; kHz; dark grey) echosounders, and the transducer resonance frequency ( fr; kHz; light grey). Datasets were fitted with fifth-order polynomials (lines). alignment of the array was facilitated first by centring bubbles inside levels affixed to the plate at five locations, then by minimizing the electrical phase angles measured between the quadrants of the split-beam transducers (ES18, ES38-B, ES70-7C, ES120-7C, and ES200-7C). Ultimately, the acoustic beams were made perpendicular to the air– water interface +0.28 mechanical. Measurements of water T, s, r, p, and c were recorded by the CTD at the depth of the transducers (1.85 m). Additionally, T was measured with the temperature loggers at five depths between the transducers and the water surface (0.1, 0.5, 0.9, 1.3, and 1.7 m). The vertically mixing pump was employed to maintain a uniform T from depths between 0.2 and 10 m. This time, to minimize thermal transfer and ripples on the water surface, the top of the outdoor tank was completely covered with wood and plastic wrapping, leaving a gap of still air (0.3 m) between the water surface and the cover. The first of two excitation signals was a 2-ms broad-bandwidth, linearly-sweeping chirp (Vp-p = 10 V). To measure complete 1028 D. A. Demer and J. S. Renfree Figure 5. Resonance frequency ( fr; kHz) plotted against temperature (T; 8C) for the ten Simrad transducers. The measurements (dots) are fitted with fifth-order polynomials (solid) and bounded by 95% confidence intervals (+2 s.d.; dashed). admittance circles for the transducers with lowest Q, the frequency bandwidth for all was fEK60 + 50%. As in experiment (i), the V and I signals were recorded by the oscilloscope (2000 samples each), converted to analytical signals using the Hilbert transform, digitally filtered into 400 narrow-frequency bands, and used in Equations (3) and (4) to estimate Z and Y at f and T. These loaded admittance circles were used to estimate h(T ); see experiment (iii) below. After each of the 2-ms broad-bandwidth chirps, but before switching to the next transducer in the multiplexed array, a 4.0-ms CW pulse at fEK60 (see Table 1) was transmitted. This second excitation signal was used to measure Z during a free-field period of 1 –2 ms after beginning the transmission, and Z 0 during a period of 3 –4 ms when the transmitted signal overlapped with an echo from an air–water interface. The estimations of Zref(T ) and of M0(T ) and S0(T) were made from Equations (6), (1), and (2), respectively. This process was continually repeated while T in the tank warmed from 0.88C to 16.78C. Estimating h(T) The transducer array was repositioned a third time, in a temperature-controlled room. The array was placed on its side so that the transducer faces did not touch their surroundings. Measurements of air T were recorded by the CTD. Additionally, Variations in echosounder–transducer performance with water temperature 1029 Figure 6. Quality factor (Q; unitless) plotted against temperature (T; 8C) for the ten Simrad transducers. The measurements (dots) are fitted with fifth-order polynomials (solid) and bounded by 95% confidence intervals (+2 s.d.; dashed). T was monitored with an indoor and outdoor digital thermometer. Two fans inside the room maintained a well-mixed environment. The excitation signal was a 2-ms broad-bandwidth chirp (Vp-p = 1 V; and fEK60 + 50%). As in experiments (i) and (ii) above, the V and I signals were recorded by the oscilloscope (2000 samples each), converted to analytical signals using the Hilbert transform, digitally filtered into 400 narrow-frequency bands, and used in Equations (3) and (4) to estimate Z and Y at f and T. This process was repeated continually while T in the room cycled between 08C and 198C several times over a 4-day period. Each temperature cycle took 3 h. These unloaded admittance circles were used in conjunction with the loaded measurements [see experiment (ii)] to estimate h(T ) from measurements of DW, DA, and Gmin, using Equation (16). For the loaded state, the 400 point estimates of G( f ) and B( f ) at each T were smoothed with a low-pass filter and interpolated to 2000 points. The fr was then estimated as the frequency of maximum conductance within the frequency range fEK60 + 20%. The admittance circles for each transducer required a different frequency range, because some transducers have multiple conductance peaks and the variability in the measurements differed between transducers. To determine Gmin of the admittance circles, B( f,fr) were pairwise subtracted from B( f.fr), beginning at fr, and Gmin 1030 D. A. Demer and J. S. Renfree Figure 7. M0 (dB re V mPa21) and S0 (dB re mPa A21) plotted against temperature (T; 8C) at the EK60 operational frequency ( fEK60; kHz) for the ten Simrad transducers. The measurements (dots) are fitted with fifth-order polynomials (solid) and bounded by 95% confidence intervals (+2 s.d.; dashed). was evaluated at the frequencies where differences changed polarity (i.e. where the two functions crossed). DW and DA were estimated from G( fr) 2 Gmin, in the loaded and unloaded conditions. Results Estimating Z(T ), fr(T ), and Q(T) Measurements of transducer performance were made of ten commonly used survey transducers (Table 1). The magnitude of the impedance (jZj; V) was plotted against T from 1.58C to 17.28C at the operational frequencies of the Simrad EK500 and EK60 echosounders ( fEK500 and fEK60, respectively) and fr, and each dataseries was fitted with a third-order polynomial [Equation (17); Table 2; Figure 3]. jZj changes appreciably and smoothly with T for all ten transducers, but most pronounced for the ES70-7C, ES120-7, and the Combi D-50 transducers. When the operational frequency is away from resonance (notably for the ES38-B, ES38-12, ES120-7C, ES200-7C, 200-28E, Combi D-50, and Combi D-200), jZj were different at fEK500 and fEK60 vs. fr. Moreover, jZj did not systematically Variations in echosounder–transducer performance with water temperature 1031 Figure 8. Admittance circles [susceptance (B; mS) plotted against conductance (G; mS) as a function of frequency] ( fEK60 + 50%) for nine Simrad transducers listed in Table 1, at 178C. The measurements were fitted with fifth-order polynomials (lines); they were made with the transducer loaded (in water; solid) and unloaded (in air; dashed). Results for the Combi D-50 transducer are not shown because the fr was appreciably different when loaded and unloaded, and the admittance circles did not overlap. Note also that the unloaded admittance circle for the ES18 is malformed because the frequency resolution was too low, and that those for the ES38-B, ES120-7, 200-28E, and Combi D-200 transducers are very small. increase or decrease with T; five transducers increased, and five decreased, depending on whether the operational frequency was less than or greater than fr. Following Equations (12) and (14), the changes in SNR attributable to changes in Z(T) were evaluated at T0, and plotted at jZjmin=Z(T0), and plotted at fEK500, fEK60, and fr for each transducer (Figure 4). Changes in Z(T) can cause changes in SNR from 5 to .20 dB (ES120-7C and ES70-7C, respectively). Plots were made of fr(T ) for each of the ten transducers (Figure 5). Gaps in the data were caused by instability in the automated data acquisition (Matlab). Despite the gaps, the trends are reasonably clear (i.e. increasing with T for the ES18, ES38-12, ES70-7C, ES120-7, and Combi D-200; and decreasing with T for the ES38-B, ES120-7C, ES200-7C, 200-28E, and Combi D-50). The changes in fr(T ) range from 0.2% for the ES200-28E to 2.8% for the Combi D-50. The composite transducers (ES70-7C, 1032 D. A. Demer and J. S. Renfree Figure 9. Transducer efficiencies (h; %) at resonance frequency ( fr; kHz) plotted against temperature (T; 8C) for nine Simrad transducers. The measurements (dots) are fitted with fifth-order polynomials (solid) and bounded by 95% confidence intervals (dashed). The estimate of h(T ) for the ES18 may be slightly low, and those for the ES38-B, ES120-7, 200-28E, and Combi D-200 transducers are dubious. ES120-7C, and ES200-7C) showed changes in fr(T) of 0.3%, 0.4%, and 0.5%, respectively. The Combi D-50 and Combi D-200 transducers both exceeded 2%. Other than the two Combi D transducers, the ES120-7 exhibited the largest change in fr(T ). Plots were also made of Q(T ) (Figure 6). The results varied: Q decreased with T (ES18, ES120-7, ES120-7C, and ES200-7C); increased with T (ES38-B, ES70-7C, and 200-28E); and both decreased and increased with T (ES38-12, Combi D-50, and Combi D-200). Changes in Q(T ) ranged from 2.5% for the 200-28E to .130% for the ES120-7 and ES120-7C. Of the splitbeam transducers, the ES70-7C and ES38-B exhibited the smallest changes in Q(T ), 4% and 7%, respectively. Estimating M0(T) and S0(T) Estimates of M0(T ) and S0(T ) were plotted for fEK60 (Figure 7). Changes in these parameters with T should correspond directly to changes in g0. Generally, M0(T) and S0(T ) changed 1 dB or less, either decreasing or remaining fairly stable. A notable Variations in echosounder–transducer performance with water temperature exception was the ES120-7, which exhibited an increase of 2 dB in M0(T) and S0(T ). Estimating h(T) Admittance circles [susceptance (B; mS) plotted against conductance (G; mS) as a function of frequency] were plotted for nine of the ten transducers (Figure 8). Measurements were made with the transducers loaded (in water) and unloaded (in air). Because Simrad transducers are equipped with a window, effectively creating a coupled-resonance system, G( f ) exhibits two separate peaks when operating in air, and one broad peak in water. Also, for the Combi D-50, fr was appreciably different when loaded and unloaded, and the admittance circles did not overlap. The unloaded admittance circles for the ES18 were malformed because the frequency resolution was too low for a transducer with such a high Q. This meant that the DA had to be estimated from an estimated Gmax, which may be slightly less than the actual Gmax. Consequently, the h(T) estimated for the ES18 (Figure 9) is less precise than that for the other transducers, and possibly biased a little low. The unloaded admittance circles for the ES38B, ES120-7, 200-28E, and Combi D-200 transducers were also very small, so the resulting estimates of their h(T ) are of dubious accuracy. For a fixed Vp-p, Pt is higher for the unloaded than for the loaded transducers because of the decrease in Z. When an unloaded transducer is driven with high power, there is a risk that the ceramics stretch too much and break, or the sound window separates from the elements, or both such developments occur (L. N. Andersen, Simrad, pers. comm.). Following the in-air measurements, impedance measurements were made of the ES38-B, ES120-7, and 200-28E transducers in water, to confirm that the transducers had not been damaged. Discussion The variations in ES120-7 performance were pronounced relative to the other transducers tested. For example, M0 and S0 changed by 2 dB with T ranging from 18C to 178C. Such large variations in the performance of this transducer model with T inspired these investigations (Demer and Hewitt, 1993; Demer, 1994). Although most of the transducers we tested were more stable against T, even the newest materials and designs are susceptible to the problem. For example, the ES200-7C exhibited a 1-dB change in M0 and S0 with T ranging from 18C to 178C (Figure 7). Because the performance of each transducer is different against T, changes in SNR(T), and in M0(T) and S0(T) and hence g0(T ) are different for each frequency, and multiple-frequency methods for target identification can be compromised. Substantial changes in Q(T) were evident for all the transducers tested (Figure 6). These changes may be inconsequential for short pulses at a single frequency, but may become important when using these transducers for broad-bandwidth applications. Simrad has recently begun marketing new multibeam echosounders (ME70) and multibeam sonars (MS70) that use composite materials and a design similar to the ES70-7C. The Q of the ES70-7C changes 5% with changes in T from 18C to 178C. Employed as both a transmitter and receiver, the effects of the change could be doubled. Variations in the performances of echosounder transducers with temperature can be characterized precisely using the methods employed here. Each method provides additional insight into the transducer performance against T. Note, 1033 however, that the results of these experiments are probably only valid for the transducers tested, and should not be generalized to other transducers of the same models. Variations in transducer materials and manufacturing tolerances will probably yield variations in the temperature-dependence of transducer performance within any transducer model. Therefore, the results of these experiments should only be used to gauge the magnitudes of the potential errors associated with temperature-dependent transducer performance for these models. Ultimately of consequence are the performances of the echosounder-transducer pairs, which combine the characteristics of the transceivers with changes of Z, fr, Q, M0, S0, and h with T. Therefore, changes in g0(T) should be characterized for each echosounder–transducer pair. To do so, the self-reciprocity method could be used to ensure that these measurements are not dependent on the temperature-dependent performances of other hydrophones and/or projectors (Van Buren et al., 1999), or the temperature-dependent longitudinal and transverse sound speeds of materials comprising a standard sphere (Foote and MacLennan, 1984). The resulting characterizations of g0(T) could be coupled with continuous measurements of transducer temperatures actively to maintain the correct echosounder-system gains between pre- and post-survey calibrations using the standard sphere technique (Foote et al., 1987). Therefore, this source of uncertainty could be minimized in the processes of multifrequency target identification and biomass estimation. Conclusions To conclude and summarize, Z, fr, Q, M0, S0, and h were measured against T for the Simrad ES18, ES38-B, ES38-12, ES70-7C, ES120-7, ES120-7C, ES200-7C, ES200-28E, Combi D-50, and Combi D-200 transducers, i.e. all the transducers tested. All parameters changed appreciably over the measured range of potential operational temperatures (1–188C), but the directions of these changes were not consistent or monotonic. In general, the performances of the newer composite transducers were least sensitive to changes in T. Changes in Z with T can result in significant changes in SNR(T), potentially different for each transducer, which can result in frequency-dependent measurement biases and changes in maximum detection ranges. In fact, multifold changes in observation ranges can result, and differ with frequency (see Demer, 2004). The effectiveness of multifrequency algorithms for remotetarget classifications can therefore be compromised. Changes in the transducer performances with T may also affect calibrated echosounder gains with T. In fact, changes in M0(T ) and S0(T ) (Figure 7) should correspond directly to changes in g0, considering changes in c(T ). Therefore, g0(T ) should be characterized for each echosounder–transducer pair and used to adjust the on-axis system gains during surveys using measurements of transducer or seawater temperature. Moreover, changes in c(T ) need also be considered (see Foote, 1991, for details). By adopting temperature-dependent calibration procedures, this contribution to random and systematic survey error can be minimized. Acknowledgements We appreciate the help we received from Derek Needham, Mike Paterson, and Hannes Smit, STS, in designing and constructing the transducer-mounting plate, multiplexer, and junction box. Steve Sessions and Douglas Krause, AST, are thanked for assembling, transporting, and setting-up the large transducer array, 1034 and Charles Coughran and David Anglietti, SIO, for accommodating the experiments at Deep Tank. We are also very appreciative of the helpful discussions, guidance and review of this work by Charles Greenlaw and the constructive reviews of an early version of this paper that came from Håvard Nes, Lars Nonboe Andersen, and Frank Tichy, of Simrad. Roger Hewitt, Mike Soule, and Nicolas Colson are thanked for assisting with earlier investigations into transducer performance with temperature, and John Simmonds, Alex De Robertis, and three anonymous reviewers for their constructive comments on various drafts. Funding for the investigation was provided by the NMFS Advanced Sampling Technology Working Group. References Ablitt, J., Beamiss, G. A., Robinson, S. P., and Hayman, G. 2006. Hydrophone performance variation with water temperature and depth. Proceedings of Undersea Defence Technology, 2006, Hamburg, Germany, June 2006. Beamiss, G. A., Robinson, S. P., Hayman, G., and Esward, T. J. 2002. Determination of the variation in free-field hydrophone response with temperature and depth. Acta Acustica—Acustica, 88: 799– 802. Blue, J. E. 1984. Physical calibration. Rapports et Procès-Verbaux des Réunions du Conseil International pour l’Exploration de la Mer, 184: 19 – 24. Brierley, A. S., Goss, C., Watkins, J. L., and Woodroffe, P. 1998. Variations in echosounder calibration with temperature, and some possible implications for acoustic surveys of krill biomass. CCAMLR Science, 5: 273– 281. Carstensen, E. L. 1947. Self-reciprocity calibration of electroacoustic transducers. Journal of the Acoustical Society of America, 19: 961– 965. Demer, D. A. 1994. The accuracy and precision of echo-integration surveys of Antarctic krill. PhD thesis, University of California San Diego, Scripps Institution of Oceanography. 144 pp. Demer, D. A. 2004. An estimate of error for the CCAMLR. Deep-Sea Research II, 51: 1237– 1251. Demer, D. A., and Hewitt, R. P. 1993. Calibration of an acoustic echo-integration system in a deep tank, with gain comparisons over standard sphere material, water temperature and time. SC-CAMLR Selected Scientific Papers, 9: 127– 144. Demer, D. A., Soule, M. A., and Hewitt, R. P. 1999. A multi-frequency method for improved accuracy and precision of in situ targetstrength measurements. Journal of the Acoustical Society of America, 105: 2359– 2376. Foote, K. G. 1991. Acoustic sampling volume. Journal of the Acoustical Society of America, 90: 959 – 964. Foote, K. G., Knudsen, H. P., Vestnes, G., MacLennan, D. N., and Simmonds, E. J. 1987. Calibration of acoustic instruments for fish- D. A. Demer and J. S. Renfree density estimation: a practical guide. ICES Cooperative Research Report, 144. 81 pp. Foote, K. G., and MacLennan, D. N. 1984. Comparison of copper and tungsten carbide calibration spheres. Journal of the Acoustical Society of America, 75: 612– 616. Furusawa, M. 1991. Designing quantitative echosounders. Journal of the Acoustical Society of America, 90: 26 – 36. Greenlaw, C. F., and Johnson, R. K. 1983. Multiple-frequency acoustical estimation. Biological Oceanography, 2: 227 – 252. Holliday, D. V. 1977. Extracting bio-physical information from the acoustic signature of marine organisms. In Oceanic Sound-Scattering Prediction, pp. 619– 624. Ed. by N. R. Andersen, and B. J. Zahuranec. Plenum, New York. Kongsberg. 2006. Operator Manual, EM Series, Datagram Format. Horten, Norway. 89 pp. Korneliussen, R. J., and Ona, E. 2002. An operational system for processing and visualizing multi-frequency acoustic data. ICES Journal of Marine Science, 59: 293 – 313. Mott, P. H., Roland, C. M., and Corsaro, R. D. 2002. Acoustic and dynamic mechanical properties of a polyurethane rubber. Journal of the Acoustical Society of America, 111: 1782– 1790. Patterson, R. 1967. Using the ocean surface as a reflector for a selfreciprocity calibration of a transducer. Journal of the Acoustical Society of America, 42: 653– 655. Rosen, C. Z., Hiremath, B. V., and Newnham, R. E. 1992. Piezoelectricity. American Institute of Physics, New York. 537 pp. Sabin, G. A. 1956. Transducer calibration by impedance measurements. Journal of the Acoustical Society of America, 28: 705 – 710. Simrad. 1993. Simrad EK500 Scientific Echo Sounder Instruction Manual. Simrad Subsea A/S, Horten, Norway. 232 pp. Simrad – Kongsberg. 2003. Simrad EK60 Scientific Echo Sounder System. Simrad Subsea A/S, Horten, Norway 102 pp. Simmonds, E. J., and MacLennan, D. N. 2005. Fisheries Acoustics: Theory and Practice, 2nd edn. Blackwell Publishing, Oxford 437 pp. Stanton, T. K., Chu, D., and Wiebe, P. H. 1996. Acoustic-scattering characteristics of several zooplankton groups. ICES Journal of Marine Science, 53: 289 – 295. Urick, R. J. 1983. Principles of Underwater Sound, 3rd edn. McGraw-Hill, New York. 423 pp. Van Buren, A. L., Drake, R. M., and Paolero, A. E. 1999. Temperature dependence of the sensitivity of hydrophone standards used in international comparisons. Metrologia, 36: 281 – 285. Widener, M. W. 1980. The measurement of transducer efficiency using self-reciprocity techniques. Journal of the Acoustical Society of America, 67: 1058 –1060. Erratum: 68: 706. Wilson, O. B. 1988. Introduction to Theory and Design of Sonar Transducers. Peninsula Publishing, Los Altos, CA. 191 pp. Variations in echosounder–transducer performance with water temperature 1035 Continued Appendix Symbols and corresponding descriptions and units. Symbol Definition Unit B. . . . . . . . . . . . . . . . ..Susceptance S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c. . . . . . . . . . . . . . . . ..Speed of sound m s–1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d Transducer directivity Dimensionless . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Width of unloaded admittance circle S D A . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Width of loaded admittance circle S D w . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EK500 operational frequency kHz f. .EK500 . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EK60 operational frequency kHz f. .EK60 . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . frequency kHz f. .r. . . . . . . . . . . . . . ..Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G Conductance S . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . g. . 0. . . . . . . . . . . . . . ..On-axis system gain Dimensionless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum conductance (occurs at f ) S G max r . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Minimum conductance S G min . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . current A I. .t. . . . . . . . . . . . . . ..Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. . . . . . . . . . . . . . . . ..Reciprocity at 1 m W mPa22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p j. . . . . . . . . . . . . . . . ..Imaginary number ( 21) Dimensionless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receiver free-field voltage response V mPa21 M 0 . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. . . . . . . . . . . . . . . . ..Pressure dbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . power W P. . .n. . . . . . . . . . . . . ..Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . electrical power W P. . .r. . . . . . . . . . . . . ..Received . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . electrical power W P. . .t. . . . . . . . . . . . . ..Transmitted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q Quality factor Dimensionless . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r Range from transducer to air –water M interface . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R Resistance V . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symbol Definition Unit range of 1 m M r. .0. . . . . . . . . . . . . . ..Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s. . . . . . . . . . . . . . . . ..Salinity Dimensionless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. . . . . . . . . . . . . . . . ..Siemens S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . current response mPa A21 at 1 m S. . 0. . . . . . . . . . . . . . ..Transmitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . snr Signal-to-noise ratio Dimensionless . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SNR Signal-to-noise ratio dB (dimensionless) . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . coefficient m21 s. .v. . . . . . . . . . . . . . ..Volume-backscattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T Temperature 8C . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V Peak-to-peak voltage V p-p . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open-circuit voltage V V r . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X Reactance V . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y Electrical admittance S . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. . . . . . . . . . . . . . . . ..Electrical impedence V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z’ Total impedance V . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reflectional impedance V Z. . .ref . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a Absorption coefficient dB m21 . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . h Electro-acoustic transducer efficiency % (dimensionless) . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . u. . . . . . . . . . . . . . . . ..Phase 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l Wavelength of sound m . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r. . .c. . . . . . . . . . . . . ..Characteristic impedance of water kg m22 s21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r. . . . . . . . . . . . . . . . ..Water density kg m23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s Backscattering cross-sectional area m2 . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t. . . . . . . . . . . . . . . . ..Pulse length ms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C Equivalent two-way solid beam-angle sr Continued doi:10.1093/icesjms/fsn066
© Copyright 2026 Paperzz