Tennessee State University College of Engineering Department of Mathematical Sciences Calculus I – Math 1910 – Final Exam Review 1. For the function f whose graph is shown, state the following. 6. Evaluate the limit: lim (9x2 + 10x + 8) x→5 (c) 283 (a) 275 (b) 233 7. If f and g are continuous functions with f (3) = 2 and lim [6f (x) − f (X)] = 2, find g(3) lim f (x) x→−4 x→3 (a) g(3) = 10 (b) g(3) = 2 (a) −9 (b) 1 (c) −∞ (d) 0 8. Sketch the graph of the function. f (x) = (e) ∞ x2 − 3x − 28 f (x) = 5 x−7 x−1 2. Consider the function f (x) = 3 3 . Use the results x −1 to guess the value of the limit lim f (x). x→1 (a) (b) (c) (d) 1.784405 1 0.033335 0.539356 (a) x−1 x2 (x + 7) (d) − 17 3. Determine the infinite limit lim x→0 (a) −∞ (b) ∞ (c) 71 (e) 0 4. Given that lim = −6 and lim g(x) = 8 x→9 x→9 Evaluate the limit: limx→9 (f (x) + g(x)) (a) 15 (c) 14 (b) 17 (d) 2 5. Given that, lim f (x) = −2 and lim g(x) = 5, x→2 (b) x→2 2f (x) x→2 g(x) − f (x) 4 (a) −3 4 (b) − 7 then lim (c) (c) g(3) = 14 4 3 Page 1 of 12 if x 6= 7 if x = 7 Review Package · Calculus I Department of Mathematical Sciences 12. Select the correct graph of the function f and evaluate lim f (x), if it exists. x→2 if x < 2 x 0 if x = 2 f (x) = −x + 4 if x > 2 (c) √ 55 + x 9. Use continuity to evaluate the limit. lim √ x→9 55 + x (a) 29 4 (a) 52 8 (c) ∞ (b) the limit does not exist 10. Find the slope of the tangent line to the parabola y = x2 + 6x at the point (9, 135) (a) 29 (c) 34 (b) 21 (d) 24 (b) 11. Use the graph of the given function f to determine lim f (x) at the indicated value of a, if it exists. x→a lim f (x) = −2 x→2 (c) (a) lim f (x) = 1 x→−2 (b) lim f (x) = −2 x→−2 (c) lim f (x) = 3 x→−2 (d) the limit does not exist Page 2 of 12 lim f (x) = 2 x→2 Review Package · Calculus I Department of Mathematical Sciences x6 − x3 + x − 4 18. Find the limit if it exists. lim x→∞ x7 + 2x4 + 4 1 (c) −∞ (a) − 6 (d) ∞ (b) −5 (d) (e) 0 19. Use the graph of the function f to find lim f (x), x→1− lim f (x) and lim f (x), if the limit exists. x→1+ x→1 lim f (x) = 0 x→2 13. Find the limit. lim (8 − 5x2 ) x→6 (a) −179 (b) −162 (c) −167 (d) −172 (e) the limit does not exist 14. Find the limit. lim (7s2 − 2)(6s + 1) s→0 (a) −7 (b) −8 (c) −2 (d) −4 15. Find the limit. lim x→7 1 (a) 17 1 (b) 9 17 (c) 9 (a) lim f (x) = 1; lim f (x) = 3; lim f (x) = 2 (e) the limit does not exist x→1− x→1+ x→1 (b) lim f (x) = 3; lim f (x) = 1; lim f (x) = 2 x→1− √ x→1+ x→1 (c) lim f (x) = 3; lim f (x) = 1; lim f (x) = DN E x2 + 32 2x + 3 x→1− x→1+ x→1 (d) lim f (x) = 1; lim f (x) = 3; lim f (x) = DN E 9 (d) 17 (e) the limit does not exist x→1− x→1+ x→1 20. Refer to the graph of the function lim f (x) x→0− x2 − 1 x→1 x − 1 16. Find the limit if it exists. lim (a) 11 (b) 3 (c) 2 (d) 6 (e) the limit does not exist 17. Find the limit if it exists. lim x→4 x3 (a) 1 24 (b) 0 x−4 − 2x2 − 8x (c) 24 (d) the limit does not exist Page 3 of 12 (a) 2 (c) 4 (b) 0 (d) DNE Review Package · Calculus I x2 − 25 21. Find the one-sided limit, if it exists. lim x→5− x − 5 (a) 2 (b) −5 (c) 10 (d) −4 (e) the limit does not exist 22. Continuity at a Point. A function f is continuous at the point x = a if the following conditions are satisfied. 1. f (a) is defined. 2. lim f (x) exists. x→a 3. lim f (x) = f (a) x→a Determine the values of x, if any, at which the function is discontinuous. At each point of discontinuity, state the condition(s) for continuity that are violated. 2x − 4 if x ≥ 1 f (x) = 3 if x > 1 Department of Mathematical Sciences 24. Determine all values of x at which the function is discontinuous. x2 − 4x f (x) = 2 x − 9x + 20 (a) 5 (c) 4 and 5 (b) −4 and −5 (d) 4 25. Find the derivative of the function by using the rules of differentiation. 2 9 5 f (t) = 4 − 3 + t t t (a) f ′ (t) = 3t3 (b) f ′ (t) = 3t3 + 2t5 + 8 8 8 27 (c) f ′ (t) = − 5 + 4 − 2 t t t 8 27 5 ′ (d) f (t) = − 5 + 4 − 2 t t t 2 26. Let f (x) = x3 + x2 − 12x + 9 Find f ′ (x) = 12 3 1 (a) x = 19 (c) x = −4, 14 (d) x = 14, 11 (b) x = −4, 3 27. Find the derivative of the function. f (x) = (x3 − 3)(x + 8) (a) f ′ (x) = 6x2 + 7x + 5 (b) f ′ (x) = 5x2 + 7 (c) f ′ (x) = 7x3 − 15x − 6 (d) f ′ (x) = 4x3 + 24x2 − 3 (a) x = 3; conditions 1, 2 28. Find the derivative of the function. f (x) = (b) x = 1; conditions 2, 3 (c) x = 3; conditions 1, 2 (d) x = 5; condition 2 (e) Continuous everywhere 23. Find the values of x for which the function is continu4 ous. f (x) = 4x − 1 (a) x ∈ (−∞, 5) ∪ (8, ∞) 1 x−5 (a) f ′ (x) = x − 5 (c) f ′ (x) = (x − 5)2 (b) f ′ (x) = − (d) f ′ (x) = − 1 (x − 5)2 1 x−5 29. Find the derivative of the function and evaluate f ′ (x) at the given value of x. f (x) = (3x − 5)(x2 + 5); x = 5 (a) f ′ (x) = 5x + 36; 17 (b) x ∈ (−∞, 4) ∪ (4, ∞) 1 1 (c) x ∈ (−∞, ) ∪ ( , ∞) 4 4 (d) x ∈ (−∞, ∞) (b) f ′ (x) = 38x2 − 5x; −36 (c) f ′ (x) = 9x2 − 10x + 15; 190 (d) f ′ (x) = 3x2 − 17; −38 Page 4 of 12 Review Package · Calculus I 30. Find the derivative of the function. f (x) = (3x − 4)3 (a) 3x(3x − 4)3 (b) 9(3x − 4)3 Department of Mathematical Sciences (b) = 14x(x2 + 2)6 , f ”(x) = 14(x2 + 2)5 (13x2 + 2) f ′ (x) (c) f ′ (x) = 14(x2 + 2)6 , f ”(x) = 3(x2 + 3)5 (13x + 2) (c) 9(3x − 4)2 (d) 3(3x − 4)2 (d) f ′ (x) = 3(x2 + 2)6 , f ”(x) = 7(x2 + 2)5 (5x2 + 2) (e) f ′ (x) = 6x(x2 + 2)5 , f ”(x) = 7(x2 + 2)5 (5x + 2) 31. Find the derivative of the function. 7 f (x) = (x2 − 3) 2 7 7 (a) x(x2 − 3) 2 2 5 7 2 (b) (x − 3) 2 2 (c) 7x(x2 (d) 5 7 (2x) 2 2 − 3) 37. Find the third derivative of the function. f (x) = 2x5 − 7x4 + 6x2 − 12x + 16 5 2 (a) f ′′′ (x) = 10x2 − 168x (b) f ′′′ (x) = 60x2 − 140x (c) f ′′′ (x) = 120x2 − 168x 32. Find the derivative of the function. 1 f (t) = √ 2t − 9 √ −1 (c) 2 2t − 9 (a) 3 (2t − 9) 2 −1 1 (b) (d) 3 1 2(2t − 9) 2 2(2t − 9) 2 (d) f ′′′ (x) = 2x2 − 7x (e) f ′′′ (x) = 80x2 − 7x 38. Find y4 x4 x4 (b) − 4 y (a) 33. Find the derivative of the function. f (x) = 6x2 (9 − 8x)4 (a) (−36x)(9 − 8x)3 (8x − 3) (c) 48x(9 − 8x)3 34. Find the derivative of the function. x−5 3 ) f (x) = ( x+4 3(x + 5)2 27(x − 5)4 (a) (c) − (x − 4)4 (x + 4)2 (d) 40. Differentiate: h(x) = (b) y = 11x + 15 x+2 x−8 10 (x − 8)2 10 (b) h′ (x) = (x − 8)2 (a) h′ (x) = − 27(x − 5)2 (x + 4)4 35. Find an equation of the tangent line to the graph of the function at the point (−1, 3). f (x) = (2 − x)(x2 − 2)2 (a) y = −11x + 14 (d) 5 (a) f ′ (x) = 15 + √ x ′ (b) f (x) = 15 + 20x (d) (−12x)(9 − 8x)3 (6x − 9) x−5 2 ) x+4 (c) − y4 x4 x4 y4 √ 39. Find the derivative of f (x) = 15x + 10 x (b) (−18x2 )(9 − 8x)2 (8x − 9) (b) 3( dy by implicit differentiation. x5 + y 5 = 9 dx √ (c) f ′ (x) = 15 + 5 x 10 (d) f ′ (x) = 15 + √ x 2 (x − 8)2 2 (d) h′ (x) = (x − 8)2 (c) h′ (x) = − 41. If f is a differentiable function, find the derivative of y = x7 f (x). d 7 (x f (x)) = 7x7 f (x) − x6 f ′ (x) dx d 7 (b) (x f (x)) = 6x6 f (x) + x7 f ′ (x) dx d 7 (x f (x)) = 7x6 f (x) + x7 f ′ (x) (c) dx d 7 (x f (x)) = 7x7 f (x) + x6 f ′ (x) (d) dx (a) (c) y = 11x + 14 (d) y = −11x + 15 36. Find the first and second derivatives of the function. f (x) = (x2 + 2)7 (a) f ′ (x) = 7(x2 + 2)6 , f ”(x) = 7(x2 + 2)5 (13x2 + 2) Page 5 of 12 Review Package · Calculus I Department of Mathematical Sciences (a) 30(5x + 7)5 + (6x2 + 8x − 7)10 (132x + 88) dg 42. Let g(x) = 2 sec x + tan x. Find dx dg dx dg (b) dx dg (c) dx dg (d) dx (a) (b) 30(5x + 7)5 (6x2 + 8x − 7)11 + (5x + 7)6 (6x2 + 8x − 7)10 (132x + 88) = 2 sec x tan x + 1 − tan2 x (c) 25(6x + 6)5 (8x3 + 11x − 7)11 + (5x + 7)6 (6x2 + 8x − 7)10 (120x + 80) 2 = 2 sec x tan x + sec x (d) 30(5x + 7)5 + (6x2 + 8x − 7)11 + (5x + 7)6 + (6x2 + 8x − 7)10 (132x + 88) = 2 sec x tan x + 1 + tan x = 2 sec x tan x + 1 − sec x sin x 1 + cos x dy 1 cos x − 1 1 cos x + 2 dy (c) = = (a) 2 dx (1 + cos x) dx (1 − cos x)2 1 cos x + 1 1 cos x − 1 dy dy = = (b) (d) dx (1 + cos x)2 dx (1 − cos x)2 43. Differentiate. y = 9x 44. Differentiate. y = sin x + cos x dy dx dy (b) dx dy (c) dx dy (d) dx (a) 9 sin x + cos x 9 = sin x + cos x 9 = sin x + cos x 9 = sin x + cos x = 45. Differentiate. y = 50. For the function f whose graph is given, state the limit. lim f (x) x→−3− cos x + sin x (sin x + cos x)2 cos x − sin x −x (sin x + cos x)2 cos x − sin x − 9x (sin x + cos x)2 cos x + sin x − 9x (sin x + cos x)2 dy = cos x − sin x dx dy = cos x + 2 sin x (d) dx (c) 46. Find an equation of the tangent line to the curve y = x8 cos x at the point (π, −π 8 ). (a) y = −15π 7 x + 9π 8 + (e) ∞ + 9x dy = cos x + sin x dx dy = 2 cos x + sin x (b) dx (b) y = (d) 3 (a) 3πft (b) 24πft (c) −∞ tanx − 2 sec x (a) −8π 7 x 49. A sperical balloon is being inflated. Find the rate of increase of the surface area S = 4πr2 with respect to the radius r when 4 = 3ft 7π 8 (d) y = −7π 7 x + (b) f ′ (x) = 12 − cot2 x (d) 3 lim (x7 − 3x6 ) 51. Find the limit. x→−∞ 11π 8 (c) f ′ (x) = 8 − cot2 x (c) −∞ (b) ∞ (c) y = −16π 7 x + 2π 8 47. If f (x) = 8x + cot x, find f ′ (x). (a) f ′ (x) = 13 − cot2 x (a) 4 (a) 0 (c) 3 (b) −∞ (d) ∞ 52. Find the most general anti-derivative of the function: 1 1 f (x) = 6x 5 − 8x 7 (d) f ′ (x) = 8 − csc2 x 48. Find the derivative of the following function: G(x) = (5x + 7)6 (6x2 + 8x − 7)11 6 8 6 8 4 6 (a) F (x) = 5x 5 − 7x 7 + C (b) F (x) = 6x 5 − 8x 7 + C (c) F (x) = 5x 5 − 7x 7 + C Page 6 of 12 Review Package · Calculus I 53. Find the most general anti-derivative of the function: f (x) = 6 cos x − 9 sin x (a) F (x) = 6 sin (x) − 9 cos (x) + C (b) F (x) = 6 sin (x) + 9 cos (x) + C (c) F (x) = −6 sin (x) + 9 cos (x) + C 54. Find g ′ (x) by evaluating the integral using Part 2 of the Fundamental Theorem and then differentiating. Z x (3 + cos (t))dt g(x) = Department of Mathematical Sciences 59. Z Evaluate the integral by making the given substitution: 12 dx (1 + 3x)3 1 1 (a) −2 (c) −2 +C 4 (1 + 3x) (1 + 3x)4 1 1 +C +C (d) −2 (b) 2 2 (1 + 3x) (1 + 3x)2 Z 60. Evaluate the indefinite integral: 4x(x2 + 2)4 dx 2 2 (x + 2)3 + C 5 2 (b) (x2 + 2)3 5 π dg(x) = 3x + sin (x) dx dg(x) = 3 + cos (x) (b) dx dg(x) (c) = − sin (x) dx Z 6 55. Evaluate the integral. (3 + 2y − y 2 )dy (a) 2 2 (x + 2)5 + C 5 Z 61. Evaluate the indefinite integral: cos6 x sin xdx 1 cos7 x + C 7 1 (b) sin6 x + C 7 1 (c) − sin7 x + C 7 1 (d) − cos7 x + C 7 Z 62. Evaluate the indefinite integral: sec8 x tan xdx (c) −90 (b) −18 56. Evaluate the integral. (d) −486 Z 7π 1 (a) − sec8 x + C 8 1 (b) tan8 x + C 8 cos θdθ 5π (c) −1 (a) 1 (b) 2 (d) 0 t4 4 t4 (b) 60t − 5t2 − 2t3 − 4 4 t (c) 60t − 5t2 + 2t3 + 4 4 t (d) 60t − 5t2 + 2t3 − 4 +C +C +C (a) removable (b) jump +C 58. Z Evaluate the integral by making the given substitution: p x2 x3 + 5dx 3 2 3 (x + 5) 2 + C 9 1 1 3 (b) (x + 5) 2 + C 9 (a) 1 csc8 x + C 8 1 (d) sec8 x + C 8 (c) 63. For x = −9, what type of discontinuous exists 57. Z Find the general indefinite integral. (6 − t)(10 + t2 )dt (a) 60t + 2t2 + 5t3 − (d) (a) 0 (a) 126 (c) (x2 + 2)5 + C (a) (c) infinite 64. Which of the given functions is discontinuous? 3 2 (c) − (x3 + 5) 2 + C 9 3 2 3 (d) (x + 5) 2 9 Page 7 of 12 (a) f (x) = 1 , x 6= 5 x−5 4, x=5 Review Package · Calculus I (b) 1 , x≥5 x − 2 f (x) = 1 , x<5 3 Department of Mathematical Sciences 71. If a ball is thrown vertically upward with a velocity of 216 ft/s, then its height after t seconds is s = 216t − 18t2 . What is the maximum height reached by the ball? 65. Use continuity to evaluate the limit. lim sin (x + 3 sin x) (a) 36 ft (b) 6 ft x→6π (d) −1 (a) 6π (b) ∞ (c) 1 72. Find the average rate of change of the area of a circle with respect to its radius r as r changes from 2 to 3. (e) 0 66. Find the points at which f is discontinuous. At which of these points is f continuous from the right, from the left, or neither? (x − 4)3 if x < 3 f (x) = (x + 7)3 if x ≥ 3 (a) 5π (b) 9π (a) dy = (5x − 4)dx (b) dy = (5x4 + 4)dx (b) x = −7, continuous from the left (c) x = 3, continuous from the right 67. Find a function g that agrees with f for x 6= 4 and is continuous on √ [0, ∞). 2− x f (x) = 4−x 1 1 (a) g(x) = (c) g(x) = 2+x 2−x 1 1 √ (d) g(x) = (b) g(x) = 2+ x 4−x (d) −3 (d) 32 x700 − 1 x→1 x − 1 (b) −3 (d) 60 3 ,0 7 3 (b) 3, , 0 7 (a) 64 (b) −126 12 7 6 (d) 3, , 0 7 (c) 3, (c) −128 (d) 4 77. Find the exact values of the numbers c that satisfy the conclusion of The Mean Value Theorem for the function f (x) = x3 − 4x for the interval [−4, 4]. √ (a) c = ±4 3 70. Evaluate lim (a) 700 (b) Does not exist (c) 0 (a) 69. If f (−3) = −3, f ′ (−3) = 4, g(−3) = 5 and g ′ (−3) = −4, find (f g)′ (−3). (b) 31 (a) 10 76. Find the absolute minumum values of y = 8x2 − 64x + 2 on the interval [0, 5]. (c) −6 (c) 27 (d) dy = (5x5 + 4)dx 75. Find the critical numbers of the function: 4 F (x) = x 5 (x − 3)2 68. If f (4) = 1, f ′ (4) = 2, g(4) = 3 and g ′ (4) = −5, find (f + g)′ (4). (a) 39 (c) dy = (x4 + 4)dx 74. Find the critical numbers of the function: y = 10x2 + 60x (d) x = 4, continuous from the right (b) −2 (c) 3π 73. Find the differential of the function. y = x5 + 4x (a) x = 3, continuous from the left (a) 7 (c) 648 ft √ 4 3 (b) c = − 3 (c) 1 Page 8 of 12 √ 4 3 (c) c = 3 √ 4 3 (d) c = ± 3 Review Package · Calculus I 78. Verify that the function satisfies the hypothesis of The Mean Value Theorem on the given interval. Then find all numbers c that satisfy the conclusion of The Mean Value Theorem. √ f (x) = 4 x, [0, 1] √ 3 1 3 (a) c = (c) c = 16 16 √ √ 3 16 16 (d) c = (b) c = 16 16 79. Verify that the function satisfies the hypothesis of The Mean Value Theorem on the given interval. Then find all numbers c that satisfy the conclusion of The Mean Value Theorem. x f (x) = , [0, 1] x+3 √ √ (a) c = 3 (c) c = 12 √ √ (b) c = −3 + 12 (d) c = −12 + 3 80. Find the intervals on which the following function f is increasing: f (x) = x3 − 108x + 10 (a) (−∞, −18), (18, ∞) (b) (−∞, 6) (c) (−6, 6) Department of Mathematical Sciences 84. Consider the following problem: A farmer with 850ft of fencing wants to enclose a rectangular area and then divide it into four pens with fencing parallel to one side of the rectangle. What is the largest possible total area of the four pens¿ (c) 18061.5ft2 (b) 18051.5ft2 (d) 18085.5ft2 85. Find the most general anti-derivative of the function: f (x) = 21x2 − 8x + 3 (a) F (x) = 35x5 − 16x4 + 3x + C (b) F (x) = 21x3 − 8x2 + 3x + C (c) F (x) = 7x3 − 4x2 + 3x + C 86. Find f : f ′ (x) = 12x + 36x2 (a) f (x) = 6x3 + 6x4 + Cx + D (b) f (x) = 2x3 + 3x4 + Cx + D (c) f (x) = 4x3 + 12x4 + Cx + D 87. Find f : f ′ (x) = 49 cos (7x) (a) f (x) = − cos (7x) + Cx + D (d) (−∞, −6), (6, ∞) (b) f (x) = y = 49 cos (x) + Cx + D (e) (−6, ∞) (c) f (x) = y = − cos (7x) + Cx2 + D 81. Find the inflection points of the following function: f (x) = −2x + 2 − 2 sin x 0 < x < 3π 88. Find f : f ′ (x) = 3 cos (x) + 10 sin (x) f (0) = 3 (a) f (x) = 3 sin (x) − 10 cos (x) + 13 (b) f (x) = 3 sin (x) + 10 cos (x) + 13 (c) f (x) = −3 sin (x) − 10 cos (x) + 3 (a) (π, −2π), (2π, −4π + 2) (b) (π, 2), (2π, −4π + 2) 89. A particle moves along a straight line with velocity function v(t) = 4 sin (t) − 9 cos (t) and its initial displacement is s(0) = 5 Find its position function. (c) (π, −2π), (2π, −4π) (d) (π, −2π + 2), (2π, −4π + 2) (a) s(t) = 4 − 4 cos (t) + 9 sin (t) 82. How many points of inflection are on the graph of the function: f (x) = 15x3 + 9x2 − 6x − 2 (a) 3 (c) 4 (b) 2 (d) 1 83. Find two positive numbers whose product is 144 and whose sum is a minumum. (a) 4, 36 (b) 2, 72 (a) 18062.5ft2 (b) s(t) = 5 − 4 cos (t) − 9 sin (t) (c) s(t) = 9 + 4 cos (t) − 9 sin (t) (d) s(t) = 9 − 4 cos (t) − 9 sin (t) 90. A stone is dropped from the upper observation deck (the Space Deck) of a tower, 360m above the ground. Find the distance of the stone above ground level at time t. (a) s(t) = 360 − 9.8t2 (c) 12, 12 (b) s(t) = 360 + 9.8t2 Page 9 of 12 (c) s(t) = 360 + 4.9t2 (d) s(t) = 360 − 4.9t2 Review Package · Calculus I 91. A stone was dropped off a cliff and hit the ground with a speed of 192ft/s. What is the height of the cliff? (a) 18421 ft (c) 1152 ft (b) 36864 ft (d) 576 ft (a) − 92. What constant acceleration is required to increase the speed of a car from 30 ft/s to 50 ft/s in 10 s? ft s2 ft (b) 2 2 s (a) 8 (c) 800 (d) 4 ft s2 ft s2 1 sin 5x + C 5 1 (b) sin x + C 5 1 (c) sin 5x 5 1 (d) − sin 5x + C 5 (a) (d) 2 x2 (b) 2 7 4 4 7 (c) 2x (a) (d) − 9 − x2 9 + x2 9 + 3x2 (b) (9 + x2 )2 2 x2 0 242 33 242 (d) 30 (c) (c) 9 − x2 (9 + x2 )2 (d) 9 + 3x2 9 + x2 dy by implicit differentiation. x3 − 3xy = 7 dx y y (a) (c) x − −x x x x x (b) −x (d) x − y y 100. Find dy by implicit differentiation. x3 y 3 − xy = 41 dx x y (a) − (c) y x x y (b) (d) − y x 101. Find 1 (c) − sin (8 − t3 ) + C 3 1 (d) − sin (8 − t3 ) + C 2 96. Z Evaluate the indefinite integral: 1 x2 (1 + 2x3 )4 dx 247 30 242 (b) 31 1 7 (a) 95. Z Evaluate the indefinite integral: t2 cos (8 − t3 )dt (a) (c) − dy by solving the given implicit 99. Find the derivative dx equation for y explicity in terms of x. x − x2 = 9 y 94. Z Evaluate the indefinite integral: 2 + 16x √ dx 6 + 2x + 8x2 √ (a) 6 + 2x + 8x2 + C √ (b) −2 6 + 2x + 8x2 + C √ (c) 3 6 + 2x + 8x2 + C √ (d) 2 6 + 2x + 8x2 + C 1 sin (8 − t3 ) + C 3 1 (b) sin (8 − t3 ) 3 (b) 1 7 dy by solving the given implicit 98. Find the derivative dx equation for y explicity in terms of x. xy = 2 93. Z Evaluate the integral by making the given substitution: cos 5xdx, u = 5x (a) Department of Mathematical Sciences dy 97. Find the derivative by solving the given implicit dx equation for y explicity in terms of x. x + 7y = 4 102. Find 1 1 dy by implicit differentiation. x 2 + y 2 = 6 dx 1 (a) − x2 1 y2 1 (c) x2 1 y2 1 (b) Page 10 of 12 y2 1 x2 1 (d) − y2 1 x2 Review Package · Calculus I dy 1 1 103. Find by implicit differentiation. 2 + 2 = 25 dx x y y3 x3 (c) − 3 (a) − 3 y x 3 x y3 (b) 3 (d) y x3 dy √ by implicit differentiation. xy = 3x + y 5 dx √ √ 3x xy − y 6x xy − y (a) (c) √ √ x − 5y 4 xy x − 5y 4 xy √ √ 3 xy − y 6 xy − y (b) (d) √ √ x − 5y 4 xy x − 10y 4 xy 104. Find 105. Find an equation of the tangent line to the graph of the function f defined by the given equation at the point (1, 3). x2 y 3 − y 2 + xy − 8 = 0 57 x+ 22 22 (b) y = − x + 57 (a) y = − 123 22 1 22 22 123 x+ 57 22 123 57 (d) y = x − 22 22 (c) y = − d2 y of the function defined 106. Find the second derivative dx2 implicity by the given equation. y 2 − xy = 7 2y(y + x) (2y − x)2 y−x (b) (2y − x)3 (a) 2y(y − x) (2y − x)3 y+x (d) (2y − x)2 (b) 11.7ft/sec (d) 12ft/sec 1 8 9 + t 8 − 8t 2 + C 9 1 64 9 + t 8 − 4t 2 + C 9 1 8 8 + t 9 − 8t 2 + C 9 1 64 9 + t 8 − 8t 2 + C 9 109. Find the indefinite integral. x7 − 1 = x5 − x−2 x2 1 1 (a) x5 + + C 5 x 1 6 1 (b) x + + C 6 x Z x7 − 1 dx x2 Hint: 1 6 1 x − +C 6 x 1 6 1 (d) x − + C 5 x Z 110. Find the indefinite integral: (4t + 3)(t − 4)dt 4 3 t − 3 4 (b) t3 − 3 (a) 13 2 t − 11t + C 2 15 2 t − 12t + C 2 1 3 (x − x2 + x)7 + C 7 (b) (x3 − x2 + x)7 + C (a) 107. The base of a 80-ft ladder leaning against a wall begins to slide away from the wall. At the instant of time when the base is 64 ft from the wall, the base is moving at the rate of 9 ft/sec. How fast is the top of the ladder sliding down the wall at that instant of time? (c) 13.6ft/sec 2 5 t2 5 2 5 (b) t 2 5 2 5 (c) t 2 5 2 5 (d) t 2 5 (a) (c) 4 3 t − 3 4 (d) t3 − 3 (c) 15 2 t − 11t + C 2 13 2 t − 12t + C 2 111. Z Find the indefinite integral. (3x2 − 2x + 1)(x3 − x2 + x)6 dx (c) (a) 7.8ft/sec Department of Mathematical Sciences Z 1 3 1 108. Find the indefinite integral. (t 2 + 8t 8 − 4t− )dt 2 112. Find the indefinite integral. 3 2 3 (t + 9) 2 + C 3 (b) (t3 + 9) + C (a) Last Version: November 18, 2013 Page 11 of 12 1 3 (x + x2 + x) + C 7 (d) x + C (c) Z 3t2 p t3 + 9dt 2 3 3 (t + 9) 3 + C 2 (d) t + C (c) Review Package · Calculus I Department of Mathematical Sciences Problem Answer Problem Answer Problem Answer Problem Answer Problem Answer 1 C 24 C 47 D 70 B 93 A 2 B 25 D 48 B 71 B 94 D 3 A 26 B 49 B 72 A 95 A 4 D 27 D 50 B 73 B 96 D 5 B 28 B 51 B 74 B 97 B 6 C 29 C 52 A 75 D 98 A 7 A 30 C 53 B 76 B 99 C 8 B 31 C 54 B 77 D 100 A 9 B 32 A 55 B 78 C 101 D 10 D 33 A 56 D 79 B 102 D 11 C 34 D 57 D 80 D 103 A 12 C 35 C 58 A 81 D 104 C 13 D 36 B 59 D 82 D 105 A 14 C 37 C 60 D 83 C 106 C 15 D 38 B 61 D 84 A 107 D 16 C 39 A 62 D 85 C 108 A 17 A 40 A 63 A 86 B 109 B 18 E 41 C 64 A 87 A 110 D 19 C 42 B 65 E 88 A 111 A 20 C 43 B 66 C 89 D 112 A 21 C 44 C 67 B 90 D 22 B 45 D 68 D 91 D 23 C 46 B 69 D 92 B Page 12 of 12
© Copyright 2026 Paperzz