Introductions to Ceiling Introduction to the rounding and congruence functions General The rounding and congruence functions have a long history that is closely related to the history of number theory. Many calculations use rounding of the floating-point and rational numbers to the closest smaller or larger integers. J. Nemorarius (1237) was one of the first mathematicians to use the quotient of two numbers m and n in a modern sense, but the word quotient appeared for the first time around 1250 in the writings of Meister Gernadus. Special notations for rounding and congruence functions were introduced much later. C. F. Gauss (1801) suggested the symbol mod (k = m mod n) for the notation of the property that the ratio Hm - kL n is an integer. He observed that k and m are the congruent modulo n. The number n is called modulus. C. F. Gauss (1808) and J. Liouville (1838) widely used the floor and round functions in their investigations. They and other mathematicians used different and sometimes confusing notations for those functions. The modern notations of dzt and `zp for floor and ceiling functions, respectively, were suggested by K. E. Iverson (1962). The notation dzp for the rounding function was proposed by J. Hastad (1988). Definitions of the rounding and congruence functions The rounding and congruence functions include seven basic functions. They all deal with the separation of integer or fractional parts from real and complex numbers: the floor function (entire part function) dzt, the nearest integer function (round) dzp, the ceiling function (least integer) `zp, the integer part intHzL, the fractional part fracHzL, the modulo function (congruence) m mod n, and the integer part of the quotient (quotient or integer division) quotientHm, nL. The floor function (entire function) dzt can be considered as the basic function of this group. The other six functions can be uniquely defined through the floor function. Floor For real z, the floor function dzt is the greatest integer less than or equal to z. For arbitrary complex z, the function dzt can be described (or defined) by the following formulas: dxt n ; x Î R ß n Î Z ß n £ x < n + 1 dzt dReHzLt + ä dImHzLt. Examples: d3.2t 3, d3t 3, d-0.2t -1, d-2.3t -3, e 3 u 0, d-Πt -4, e-4 - e 2 u 2, e 2 u 3. 5 Round 7 2 5 3 äu -4 - 2 ä, http://functions.wolfram.com 2 For real z, the rounding function dzp is the integer closest to z (if z ¹ ± 2 , ± 2 , ¼). 1 3 For arbitrary z, the round function dzp can be described (or defined) by the following formulas: dxp n ; x Î R í n Î Z í x - n¤ < dzp dReHzLp + ä dImHzLp n+ n+ 1 2 1 2 n ; n 2 1 2 ÎZ n + 1 ; n+1 2 Î Z. Examples: d3.2p 3, d3p 3, d-0.2p 0, d-2.3p -2, e 3 q 1, d-Πp -3, e-4 2 e 2 q 4. äq -4 - 2 ä, e 2 q 2, 5 3 5 7 Ceiling For real z, the ceiling function `zp is the smallest integer greater than or equal to z. For arbitrary z, the function `zp can be described (or defined) by the following formulas: `xp n ; x Î R ß n Î Z ß n - 1 < x £ n `zp `ReHzLp + ä `ImHzLp. Examples: `3.2p 4, `3p 3, `-0.2p 0, `-2.3p -2, a 3 q 1, `-Πp -3, a-4 2 a 2 q 4. 5 3 äq -4 - ä, a 2 q 3, 7 Integer part For real z, the function integer part intHzL is the integer part of z. For arbitrary z, the function intHzL can be described (or defined) by the following formulas: intHxL n ; x Î R ì n Î Z ì 0 £ sgnHxL Hx - nL < 1 ì x ¹ 0 intHzL intHReHzLL + ä intHImHzLL. Examples: intH3.2L 3, intH-ΠL -3, intI-4 - 5 3 intH3L 3, intH-0.2L 0, äM -4 - ä, intI 2 M 2, intI 2 M 3. 5 intH-2.3L -2, intI 3 M 0, 2 7 Fractional part For real z, the function fractional part fracHzL is the fractional part of z. For arbitrary z, the function fracHzL can be described (or defined) by the following formulas: fracHxL x - n ; x Î R ì n Î Z ì 0 £ sgnHxL Hx - nL < 1 ì x ¹ 0 5 http://functions.wolfram.com 3 fracHzL fracHReHzLL + ä fracHImHzLL. fracH3.2L 0.2, Examples: fracH-ΠL 3 - Π, fracI-4 - 5 3 fracH3L 0, äM - 2ä , 3 fracH-0.2L -0.2, fracI 2 M 2 , fracI 2 M 2 . 5 1 7 fracH-2.3L -0.3, fracI 3 M 3 , 2 2 1 Mod For complex n and m, the mod function m mod n is the remainder of the division of m by n. The sign of m mod n for real m, n is always the same as the sign of n. The mod function m mod n can be described (or defined) by the following formula: m m mod n m - n n . The functional property m mod n n I n mod 1M n I n - e n uM makes the behavior of m mod n similar to the m behavior of e n u. m m m Examples: 5 mod 2 1, 8 mod 3 2, -5 mod 3 1, H7 ΠL mod 3 -21 + 7 Π, H27 - 3 äL mod 4 3 + ä, fracH-ΠL 3 - Π, H2.7 - 3 äL mod 5 2.7 + 2 ä. Quotient For complex n and m, the integer part of the quotient (quotient) function quotientHm, nL is the integer quotient of m and n. The quotient function quotientHm, nL can be described (or defined) by the following formula: quotientHm, nL Examples: m n . quotientH5, 2L 2, quotientH13, 3L 4, quotientH-4, 3L -2, quotientHΠ, 2L 1, quotientH27 - 3 ä, 5L 5 - ä, quotientH-Π, 2L -2, quotientH2.7 - 3 ä, 5L -ä. Connections within the group of rounding and congruence functions and with other function groups Representations through related functions The rounding and congruence functions dzt, dzp, `zp, intHzL, fracHzL, m mod n, and quotientHm, nL have numerous representations through related functions, which are shown in the following tables, where the symbol ΧA HaL means the characteristic function of a set A (having the value 1 when its argument a is an element of the specified set A, and a value of 0 otherwise): http://functions.wolfram.com 4 x ; x Î R Floor Hor Hm, nL ; m Î R ß n Î RL Round dxt fx - 2 r ; 1 Floor x+1 2 dxt fx - 2 r + 1 ; 1 Round dxp fx + dxp fx - 1 v 2 1 v 2 ; ; dxt fx 2 x-1 4 ÏZ 2 x-1 4 ÎZ dxp fx + 2 v - ΧZ J 1 Ceiling 1 r+ 2 x+1 2 ÎZ x+1 ΧZ J 2 N 2 x-1 N 4 `xp dxt + 1 ; x Ï Z `xp dxt ; x Î Z `xp dxt - ΘH ΧZ H xL - 1L + 1 `xp fx + 2 r ; 1 `xp fx + x+1 2 1 r-1 2 ; `xp fx + 2 r - ΧZ J 1 IntegerPart ÏZ intHxL dxt ; x > 0 Þ x Î Z intHxL dxt + 1 ; x < 0 ì x Ï Z intHxL dxt + 1 - sgnH ΧZ H xL + ΘHxLL ÏZ x+1 2 ÎZ x+1 N 2 intHxL fx - 2 r ; x ³ 0 í 1 intHxL fx - 2 r + 1 ; x < 0 ë Mod intHxL fx - 2 r + 1 + ΧZ J x+1 2 ÎZ x+1 N - sgnH ΧZ HxL + ΘHxLL 2 fracHxL x - dxt ; x > 0 Þ x Î Z fracHxL x - fx - 2 r ; x ³ 0 í 2 Ï Z fracHxL x - dxt - 1 ; x < 0 ì x Ï Z 1 x+1 fracHxL x - fx - 2 r -1 ; x < 0 ë 2 Î Z fracHxL x - dxt - 1 + sgnH ΧZ H xL + ΘHxLL 1 x+1 fracHxL x - fx - 2 r - 1 - ΧZ J 2 N + sgnH ΧZ HxL + ΘHxLL 1 m mod n m - n f n v m x+1 m mod n m - n f n - 2 r ; m 1 quotient Hm, nL f n v m m+n 2n m mod n m - n - n f n - 2 r ; m Quotient ÏZ 1 1 FractionalPart x+1 2 m mod n m - n J ΧZ J 1 m+n m N+fn 2n quotientHm, nL f n - 2 r ; m quotientHm, nL quotientHm, nL m fn m fn 1 - m+n 2n 1 r+1 2 1 r+ 2 ; ÏZ m+n 2n ÎZ - 2 rN 1 ÏZ m+n 2n ÎZ m+n ΧZ J 2 n N http://functions.wolfram.com 5 x ; x Î R Mod Hor Hm, nL ; m Î R ß n Î RL Floor Round Quotient dxt x - x mod 1 dxp x - fracJx + 1 1 N+ 2 2 dxp x - fracJx + 2 N 1 1 2 ; ; dxp x - Jx + 2 N mod 1 + 1 Ceiling IntegerPart FractionalPart Mod Quotient `xp x + -x mod 1 1 2 dxt quotientHx, 1L 2 x-1 4 ÏZ 2 x-1 4 ÎZ - ΧZ J 2 x-1 N 4 dxp quotientJx + 2 , 1N ; 1 2 x-1 4 dxp quotientJx + 2 , 1N - 1 ; 1 dxp quotientJx + 2 , 1N - ΧZ J 1 `xp -quotientH-x, 1L ÏZ 2 x-1 4 ÎZ 2 x-1 N 4 intHxL x - x mod 1 ; x > 0 Þ x Î Z intHxL quotientHx, 1L ; x > 0 Þ x Î Z intHxL x + 1 - x mod 1 ; x < 0 ì x Ï Z intHxL quotientHx, 1L + 1 ; x < 0 ì x Ï Z intHxL x + 1 - x mod 1 - sgnH ΧZ HxL + ΘHxLL intHxL quotientHx, 1L + 1 - sgnH ΧZ H xL + ΘHxLL fracHxL x mod 1 ; x > 0 Þ x Î Z fracHxL x mod 1 - 1 ; x < 0 ì x Ï Z fracHxL x mod 1 - 1 + sgnH ΧZ HxL + ΘHxLL quotient Hm, nL m-m mod n n fracHxL x - quotientHx, 1L ; x > 0 Þ x Î Z fracHxL x - quotientHx, 1L - 1 ; x < 0 ì x Ï Z fracHxL x - quotientHx, 1L - 1 + sgnH ΧZ H xL + ΘHxLL m mod n m - n quotient Hm, nL http://functions.wolfram.com z Hor Hm, nLL 6 Floor Round fz - Floor ä Round dzp fz + ä ΧZ J ΧZ J Ceiling IntegerPart dzt `zp + ΘH ΧZ H ReHzLL - 1L ä ΘH- ΧZ H ImHzLLL - 1 dzt -`-zp ImHzL+1 ΧZ J 2 N dzp bz - 2 ImHzL-1 N4 ä ΧZ J 2 ReHzL-1 N 4 `zp dzt - ΘH ΧZ H ReHzLL - 1L + ä ΘH- ΧZ H ImHzLLL + 1 `zp -d-zt int HzL dzt + 1 + ä - sgnH ΧZ HReHzLL + ΘHReHzLLL ä sgn H ΧZ HImHzLL + ΘHImHzLLL m mod n m - n f n v m `zp fz + ä ΧZ J 1+ä r 2 ImHzL+1 N 2 int HzL fz ΧZ J - ΧZ J ReHzL+1 N+ä 2 ΧZ J 1+ä r-1-ä2 ReHzL+1 ΧZ J 2 N - ä ImHzL+1 ΧZ J 2 N + sgnH ΧZ HReHzLL + ΘHReHzLLL + ä sgn H ΧZ HImHzLL + ΘHImHzLLL m mod n m + n Jf 1+ä 2 m - nrm ΧZ J 2 JReJ n N + 1NN m ä ΧZ J 2 JImJ n N + 1NNN 1 quotient Hm, nL f n v ImHzL+1 N2 sgnH ΧZ HReHzLL + ΘHReHzLLL ä sgn H ΧZ HImHzLL + ΘHImHzLLL frac HzL z - fz - m quotient Hm, nL f n m 1+ä r+ 2 ΧZ J 2 JReJ n N + 1NN + 1 m ä ΧZ J 2 JImJ n N + 1NN 1 z Hor Hm, nLL Floor Round Ceiling IntegerPart Mod dzt z - z mod 1 dzp 1+ä 2 +z-J 1+ä 2 `zp z + -z mod 1 + zN mod 1 - ä ΧZ J 2 ImHzL-1 N4 int HzL z + 1 + ä - z mod 1 - ä sgnH ΧZ HImHzLL + ΘHImHzLLL - sgn H ΧZ HReHzLL + ΘHReHzLLL m ΧZ J 2 ReHzL-1 N 4 FractionalPart frac HzL z mod 1 - 1 - ä + ä sgnH ΧZ HImHzLL + ΘHImHzLLL + sgnH ΧZ HReHzLL + ΘHReHzLLL Mod Quotient quotient Hm, nL m-m mod n n 1+ä r+ 2 ΧZ J 2 ImHzL+1 N 4 2 ReHzL+1 N+ 4 ReHzL+1 N2 1+ä r+1+ä+ 2 1 Quotient Ceiling ReHzL+1 ΧZ J 2 N + 1+ä v2 FractionalPart frac HzL z - dzt - 1 - ä + sgnH ΧZ HReHzLL + ΘHReHzLLL + ä sgn H ΧZ HImHzLL + ΘHImHzLLL Mod 1+ä r+ 2 intHzL `zp - sgnH ΧZ HReHzLL + ΘHReHzLLL + ä H-sgnH ΧZ HImHzLL + ΘHImHzLLL ΘH- ΧZ HImHzLLL + ΘH ΧZ HReHzLL - 1L + 1L fracHzL z - `zp + sgnH ΧZ HReHzLL + ΘHReHzLLL - ä H1 - sgnH ΧZ HImHzLL + ΘHImHzLLL - ΘH- ΧZ HImHzLLL + ΘH ΧZ HReHzLL - 1LL m mod n m + n - n b n r m n ΘJ ΧZ J ReJ n NN - 1N + n ä ΘJ- ΧZ J ImJ n m m m mod n m + n b- n r m quotient Hm, nL b n r + ΘJ ΧZ J ReJ n NN - 1N m m ä ΘJ- ΧZ J ImJ n NNN - 1 m quotientHm, nL -b- n r m Quotient dzt quotient Hz, 1L dzp quotientJz + 1+ä , 2 1N - ΧZ J `zp -quotient H-z, 1L 2 ReHzL-1 N-ä 4 ΧZ int HzL quotientHz, 1L + 1 + ä - ä sgnH ΧZ HImHzLL ΘHImHzLLL - sgn H ΧZ HReHzLL + ΘHReHzLLL frac HzL z - quotientHz, 1L - 1 - ä + ä sgnH ΧZ HIm sgnH ΧZ HReHzLL + ΘHReHzLLL m mod n m - n quotient Hm, nL The rounding and congruence functions dzt, `zp, intHzL, fracHzL, m mod n, and quotientHm, nL can also be represented through elementary functions by the following formulas: http://functions.wolfram.com dzt z + `zp z + 7 tan-1 Hcot HΠ zLL Π tan-1 HcotHΠ zLL Π + 2 1 2 tan-1 Hcot HΠ zLL intHzL z + fracHzL - 1 - m mod n Π n 2 - n Π quotient Hm, nL + sgnHΘHzLL - tan-1 cot m n + 1 Π ; z Î R ì z Ï Z - sgnHΘHzLL + Π tan-1 Hcot HΠ zLL ; z Î R ì z Ï Z Πm n tan-1 cot ; m n Πm n ; z Î R ì z Ï Z 1 2 1 2 ; z Î R ì z Ï Z ÎRí m ; m - 1 2 n n ÏZ ÎRí m n Ï Z. The best-known properties and formulas of the number theory functions Simple values at zero The rounding and congruence functions dzt, dzp, `zp, intHzL, and fracHzL have zero values at zero: d0t 0 d0p 0 `0p 0 intH0L 0 fracH0L 0. Specific values for specialized variables The values of five rounding and congruence functions dzt, dzp, `zp, intHzL, and fracHzL at some fixed points or for specialized variables and infinities are shown in the following table: http://functions.wolfram.com 8 dzt 0 1 -1 ä -ä dzp 0 1 -1 ä -ä `zp 0 1 -1 ä -ä intHzL 0 1 -1 ä -ä fracHzL 0 0 0 0 0 0 0 1 0 1 2 -2 -1 0 0 0 -2 ä 2 0 0 ä 0 ä 2 -2 -ä 0 0 0 -2 3 2 1 2 2 1 1 2 -2 -2 -2 -1 -1 -2 3ä 2 ä 2ä 2ä ä ä 2 -2 ä -2 ä -ä -ä -2 23 10 2 2 3 2 3 10 -3 -Π -3 -4 -3 -3 -3 -3 -3 -3 0 3-Π - 10 -3 -3 -2 -2 - 10 -3.4 -4 -3 -3 -3 -0, 4 23 10 2-3ä 2-3ä 3-2ä 2-2ä 3 10 ¥ -¥ ä¥ -ä ¥ ¥ ¥ -¥ ä¥ -ä ¥ ¥ ¥ -¥ ä¥ -ä ¥ ¥ ¥ -¥ ä¥ -ä ¥ ¥ fracH¥L Î H0, 1L frac H-¥L Î H-1, 0L frac Hä ¥L Î H0, äL frac H-ä ¥L Î H-ä, 0L L Î H0, 1L frac H¥ intHnL n intHä nL ä n fracHnL 0 fracHä nL 0 ¥ -¥ ä¥ -ä ¥ ¥ fracH¥L Î H0, 1L frac H-¥L Î H-1, 0L frac Hä ¥L Î H0, äL frac H-ä ¥L Î H-ä, 0L L Î H0, 1L frac H¥ z 0 1 -1 ä -ä 1 2 1 ä 3 - 3ä 2 27 -äã ¥ -¥ ä¥ -ä ¥ ¥ n ; n Î Z ä n ; n Î Z dnt n dä nt ä n dnp n dä np ä n `np n `ä np n 1 ä 1 ä 7 - Hã - 2 L ä x + ä y ; dx + ä yt dx + ä yp `x + ä yp int Hx + ä yL frac Hx + ä yL xÎRìyÎR dxt + ä dyt dxp + ä dyp `xp + ä `yp intHxL + ä int HyL fracHxL + ä frac HyL ¥ -¥ ä¥ -ä ¥ ¥ ¥ -¥ ä¥ -ä ¥ ¥ ¥ -¥ ä¥ -ä ¥ ¥ ¥ -¥ ä¥ -ä ¥ ¥ The values of mod function m mod n, and quotientHm, nL at some fixed points or for specialized variables are shown here: http://functions.wolfram.com 9 m\n 1 0 0 2 0 3 4 5 6 7 8 9 10 n 0 0 0 0 0 0 0 0 0 mod n 0 ; n ¹ 0 1 0 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 2 0 1 2 0 1 2 0 1 2 3 4 0 1 2 3 4 0 m m mod 1 0 ; mÎZ 2 3 0 1 2 3 0 1 2 2 3 4 5 0 1 2 3 4 2 3 4 5 6 0 1 2 3 2 3 4 5 6 7 0 1 2 2 3 4 5 6 7 8 0 1 1 mod n n + 1 ; -n Î N+ 1 mod n 1 ; n Î Z ß n > 1 2 mod n 2 ; n Î Z ß n > 2 3 mod n 3 ; n Î Z ß n > 3 4 mod n 4 ; n Î Z ß n > 4 5 mod n 5 ; n Î Z ì n > 5 6 mod n 6 ; n Î Z ß n > 6 7 mod n 7 ; n Î Z ß n > 7 8 mod n 8 ; n Î Z ß n > 8 9 mod n 9 ; n Î Z ß n > 9 10 mod n 10 ; n Î Z ß n > 10 2 3 4 5 6 7 8 9 0 n mod n 0 H2 nL mod n 0 m m\n 1 0 0 2 0 3 4 5 6 7 8 9 10 n 0 0 0 0 0 0 0 0 quotient H0, nL 0 ; n ¹ 0 1 1 0 0 0 0 0 0 0 0 0 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 1 1 2 2 3 3 4 4 5 0 1 1 1 2 2 2 3 3 0 0 0 1 1 1 1 1 2 m quotientHm, 1L m ; m Î Z 0 0 1 1 1 1 2 2 2 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 quotientH1, nL -1 ; n Î Z ß n < 0 quotientH1, nL 0 ; n Î Z ß n > 1 quotientH2, nL 0 ; n Î Z ß n > 2 quotientH3, nL 0 ; n Î Z ß n > 3 quotientH4, nL 0 ; n Î Z ß n > 4 quotientH5, nL 0 ; n Î Z ì n > 5 quotientH6, nL 0 ; n Î Z ß n > 6 quotientH7, nL 0 ; n Î Z ß n > 7 quotientH8, nL 0 ; n Î Z ß n > 8 quotientH9, nL 0 ; n Î Z ß n > 9 quotientH10, nL 0 ; n Î Z ß n > 10 quotient Hn, nL 1 quotient H2 n, nL 2 m m mod n m ; m Î N ß n Î Z ß m < n m mod n m - n ; m Î N+ ì n Î N+ ì n £ m < 2 n m mod n m - k n ; m Î N+ ì n Î N+ ì k Î N+ ì k n £ m < Hk + 1L n Hp - 1L! mod p p - 1 ; p Î P 2 p-1 mod p3 1 ; p Î P ì p > 3 p-1 B2 n ¤ mod 1 ∆ n+1 2 mod 1,0 + H-1Ln â 2 n+1 k=3 1 k ΧZ quotientHm, nL 0 ; m Î N ì n Î N+ ì m < n 2n k-1 ΧP HkL + 1 2 mod 1 http://functions.wolfram.com 10 quotientHm, nL 1 ; m Î N+ ì n Î N+ ì n £ m < 2 n quotientHm, nL k ; m Î N+ ì n Î N+ ì k Î N+ ì k n £ m < Hk + 1L n quotientHHp - 1L!, pL quotient Hp - 1L! + 1 - p 1 2 p-1 , p3 p-1 p3 p ; p Î P 2 p-1 - 1 ; p Î P ì p > 3. p-1 Analyticity All seven rounding and congruence functions (floor function dzt, round function dzp, ceiling function `zp, integer part intHzL, fractional part fracHzL, mod function m mod n, and the quotient function quotientHm, nL) are not analytical functions. They are defined for all complex values of their arguments z Î C and Hm, nL Î C2 . The functions dzt, dzp, `zp, and intHzL are piecewise constant functions and the functions fracHzL, m mod n, and quotientHm, nL are piecewise continuous functions. Periodicity The rounding and congruence functions dzt, dzp, `zp, intHzL, fracHzL, and quotientHm, nL are not periodic functions. m mod n is a periodic function with respect to m with period n: Hm + nL mod n m mod n Hm + k nL mod n m mod n ; k Î Z. Parity and symmetry Four rounding and congruence functions (round function dzp, integer part intHzL, fractional part fracHzL, and mod function m mod n) are odd functions. The quotient function quotientHm, nL is an even function: d-zp -dzp intH-zL -intHzL fracH-zL -frac HzL -m mod -n -Hm mod nL quotientH-m, -nL quotientHm, nL. The rounding and congruence functions dzt, dzp, `zp, intHzL, and fracHzL have the following mirror symmetry: dz t dzt - ä H1 - ΧZ HImHzLLL dz p dzp `z p `zp + ä H1 - ΧZ HImHzLLL intHz L intHzL fracHz L fracHzL. http://functions.wolfram.com 11 Sets of discontinuity The floor and ceiling functions dzt and `zp are piecewise constant functions with unit jumps on the lines ReHzL = k ê ImHzL = l ; k, l Î Z. The functions dzt (and `zp) are continuous from the right (from the left) on the intervals Hk - ä ¥, k + ä ¥L, k Î Z, and from above (from below) on the intervals Hä k - ¥, ä k + ¥L, k Î Z. The function dzp is a piecewise constant function with unit jumps on the lines ReHzL + The function dzp is continuous from the right on the intervals I2 k intervals I2 k + 1 2 - ä ¥, 2 k + 1 2 1 2 - ä ¥, 2 k - 1 2 1 2 = k ë ImHzL + 1 2 = l ; k, l Î Z. + ä ¥M, k Î Z, and from the left on the + ä ¥M, k Î Z. The function dzp is continuous from above on the intervals I-¥ + 2 ä k - 2 , ¥ + 2 ä k - 2 M, k Î Z, and from below on the intervals I-¥ + 2 ä k + 2 , ¥ + 2 ä k + 2 M, k Î Z. ä ä ä ä The function intHzL (and frac HzL) is a piecewise constant (continuous) function with unit jumps on the lines ReHzL = k ê ImHzL = l ; k, l Î Z, k ¹ 0, l ¹ 0. The functions intHzL and frac HzL are continuous from the right on the intervals Hk - ä ¥, k + ä ¥L, k Î N+ , and from the left on the intervals H-k - ä ¥, -k + ä ¥L, k Î N+ . The functions intHzL and frac HzL are continuous from above on the intervals H-¥ + ä k, ¥ + ä kL, k Î N+ , and from below on the intervals H-¥ - ä k, ¥ - ä kL, k Î N+ . The functions m mod n and quotient Hm, nL are piecewise continuous functions with jumps on the curves ReI n M = k ë ImI n M = l ; k, l Î Z. The functional properties m mod n n I n mod 1M n I n - e n uM and m m m m m quotientHm, nL quotientI n , 1M e n u make the behavior of that functions similar to the behavior of floor function e n u. m m m The previous described properties can be described in more detail by the formulas from the following table: http://functions.wolfram.com 12 z ±Ε Hor m ± ΕL ; Ε ® +0 Floor limΕ®+0 dz ± Εt dzt ReHzL Î Z Round Ceiling limΕ®+0 dz ± Εp dzp ; 1 4 limΕ®+0 dz ± ä Εt dzt - 1 4 limΕ®+0 dz ± ä Εp dzp ; ; 1±1 2 limΕ®+0 `z ± ä Εp `zp + ReHzL Î Z IntegerPart Quotient H2 ImHzL ± 1L Î Z H2 ImHzL ¡ 1L Î Z 1 4 1±1 2 ä ; ImHzL Î Z limΕ®+0 intHz ± ΕL intHzL ; ±ReHzL Î N+ limΕ®+0 intHz ± ΕL intHzL ± 1 ; ¡ReHzL Î N+ limΕ®+0 intHz ± ä ΕL intHzL ; ±ImHzL Î N+ limΕ®+0 intHz ± ä ΕL intHzL ± ä ; ¡ImHzL Î N+ limΕ®+0 Hm ± ΕL mod n m mod n + n limΕ®+0 Hm ± ä ΕL mod n m mod n + ä n FractionalPart limΕ®+0 fracHz ± ΕL fracHzL ; ±ReHzL Î N+ limΕ®+0 fracHz ± ΕL fracHzL ¡ 1 ; ¡ReHzL Î N+ Mod 1 4 limΕ®+0 dz ± ä Εp dzp ± ä ; ReH2 z ¡ 1L Î Z ä ; 1¡1 2 ImHzL Î Z H2 ReHzL ± 1L Î Z limΕ®+0 dz ± Εp dzp ± 1 ; limΕ®+0 `z ± Εp `zp + z ±ä Ε Hor m ± ä ΕL ; Ε ® +0 ; 1¡1 2 m ReJ n N Î Zín Î Rín >0 1¡1 2 limΕ®+0 fracHz ± ä ΕL fracHzL ; ±ImHzL Î N+ limΕ®+0 fracHz ± ä ΕL fracHzL ¡ ä ; ¡ImHzL Î N+ ; limΕ®+0 quotientHm ± Ε, nL quotientHm, nL ReJ n N Î Z í n Î R í n > 0 1¡1 2 ; m ImJ n N Î Zín Î Rín >0 1¡1 2 ; limΕ®+0 quotientHm ± ä Ε, nL quotientHm, nL - ä m ImJ n N Î Z í n Î R í n > 0 1¡1 2 ; m Series representations The rounding and congruence functions dzt, dzp, `zp, intHzL, fracHzL, m mod n, and quotientHm, nL have the following series representations: x Floor Round Ceiling IntegerPart dxt x - Quotient + Π Ú¥ k=1 1 dxp x + Π Ú¥ k=1 1 `xp x + 1 2 intHxL x + FractionalPart fracHxL Mod 1 2 + 1 Π 1 -Π 1 Π sinH2 Π k xL k H-1Lk sinH2 Π k xL k sinH2 Π k xL Ú¥ k=1 k sinH2 Π k xL Ú¥ k=1 k sinH2 Π k xL Ú¥ k=1 k m n ; x Î R ì x Ï Z ; x Î R í x + 1 2 ; x Î R ì x Ï Z - ΘHxL + + ΘHxL - 1 2 1 2 fnv m ÏZ ; x Î R ì x Ï Z ; x Î R ì x Ï Z m n f n + 2r m m bnr 1 m intJ n N m n m n + m n m fracJ n N 1 2n + 1 2 ; m Î Z í 2Πkm Πk 1 n-1 Úk=1 sinJ n N cotJ n N + 2 ; m Î Z í n-1 + 1 2n - 2Πkm Πk 1 N cotJ n N - 2 n Úk=1 sinJ 1 2 1 2n Úk=1 sinJ n-1 m 1 sgnJ n N + 2 n m 1 sgnJ n N - 2 n m mod n n 2 m mod n n 2 2Πkm Πk 1 N cotJ n N + 2 n - n Π - 1 2 1 Ú¥ k=1 k 2Πkm Πk n-1 Úk=1 sinJ n N cotJ n N 2Πkm Πk n-1 Úk=1 sinJ n N cotJ n N 2Πkm sinJ n N ; m n 2Πkm Πk n-1 Úk=1 sinJ n N cotJ n N quotientHm, nL m n quotientHm, nL m n + Π Ú¥ k=1 1 + 1 2n ; m Î 1 k sinJ Úk=1 sinJ n-1 ÎQí ; m m n Ï ; m Î Z í 2Πkm 1 N- 2 n ; m n Î 2Πkm Πk 1 N cotJ n N - 2 n Transformations and argument simplifications (arguments involving basic arithmetic operations) ; The values of rounding and congruence functions dzt, dzp, `zp, intHzL, and fracHzL at the points -z, ±ä z, z + n ; n Î Z can also be represented by the following formulas: http://functions.wolfram.com 13 dzt z -z äz -ä z z+n dzp d-zp - dzp dä zp ä dzp d-ä zp -ä dzp dz + n `zp intHzL d-zt -dzt ; ReHzL Î Z ß ImHzL Î Z dä zt ä dzt + ΧZ HImHzLL - 1 d-ä zt -ä dzt - ä H1 - ΧZ HReHzLLL dz + n d-zt -dzt - sgnH ReHzL¤L - ä sgnH ImHzL¤L ; dä zt d-ImHzLt + ä dReHzLt d-ä zt dImHzLt + ä d-ReHzLt ReHzL Ï Z ì ImHzL Ï Z d-zt -dzt + ΧZ HzL - 1 ; z Î R d-zt -dzt - ä H1 - ΧZ HImHzLLL sgnH ImHzL¤L H1 - ΧZ HReHzLLL sgnH ReHzL¤L ReH `-zp -`zp ; ReHzL Î Z ß ImHzL Î Z `ä zp ä `zp - ΧZ HImHzLL + 1 `-ä zp -ä `zp + ä H1 - ΧZ HReHzLLL `z + n `-zp -`zp + ä sgnH ImHzL¤L + sgnH ReHzL¤L ; `ä zp -dImHzLt + ä `ReHzLp `-ä zp `ImHzLp - ä dReHzLt ReHzL Ï Z ì ImHzL Ï Z `-zp -`zp + ä H1 - ΧZ HImHzLLL sgnH ImHzL¤L + H1 - ΧZ HReHzLLL sgnH ReHzL¤L int H-zL -int HzL frac HzL frac H-zL -frac HzL int Hä zL ä int HzL int H-ä zL -ä int HzL int Hn frac Hä zL ä frac HzL frac H-ä zL -ä frac HzL frac Hn The values of the functions m mod n and quotientHm, nL at the points H±m, -nL, H-m, nL, Hä m, ä nL, H±ä m, nL, Hm, ±ä nL, and I n , 1M have the following representations: m Hm, nL m mod n H-m, -nL H-mL mod H-nL -Hm mod nL Hm, -nL m mod -n m mod n + ΧZ J n N n - n ; m Î R ß n Î R m m ä n J1 - ΧZ JImJ n NNN sgn J¢ImJ n N¦N m m m n ÏZ -m mod n - ΧZ J n N n + n - m mod n ; m Î R ß n Î R m -m mod n -Hm mod nL + n J1 - ΧZ JReJ n NNN sgnJ¢ReJ n N¦N + m Hä m, ä nL ä n J1 - ΧZ JImJ n NNN sgnJ¢ImJ n N¦N Hä m, nL m Hä mL mod Hä nL ä Hm mod nL Hä mL mod n n - n m ΧZ JImJ n NN + ä Hm mod nL H-ä m, nL H-ä mL mod n -ä n J ΧZ JReJ n NN - 1N - ä Hm mod nL m Hm, ä nL m mod Hä nL m mod n + J ΧZ JReJ n NN - 1N n m Hm, -ä nL m mod H-ä nL m mod n + J ΧZ JImJ n NN - 1N ä n m J n , 1N m m n mod 1 m mod n n quotientHm, -nL -quotientHm, nL - J1 - ΧZ JReJ n NN m ä J1 - ΧZ JImJ n NNN sgnJ¢ImJ n N¦N m -m mod n n - m mod n ; m Î R í n Î R í m quotient Hm, -nL -quotientHm, nL + ΧZ J n N - 1 ; m m m mod -n m mod n - n J1 - ΧZ JReJ n NNN sgnJ¢ReJ n N¦N m H-m, nL quotientHm, nL quotient H-m, -nL quotient Hm, nL m m quotientH-m, nL ΧZ J n N - 1 - quotientHm, nL ; m Î m quotientH-m, nL -quotientHm, nL - J1 - ΧZ JReJ n N m ä J1 - ΧZ JImJ n NNN sgnJ¢ImJ n N¦N m m quotient Hä m, ä nL quotient Hm, nL quotient Hä m, nL ä quotientHm, nL + ΧZ JImJ n NN - 1 m quotient H-ä m, nL -ä quotientHm, nL + ä J ΧZ JReJ n N m quotient Hm, ä nL -ä quotientHm, nL + ä J ΧZ JReJ n NN m quotient Hm, -ä nL ΧZ JImJ n NN + ä quotientHm, nL - 1 m quotient J n , 1N quotient Hm, nL m Transformations and argument simplifications (arguments involving related functions) http://functions.wolfram.com 14 Compositions of rounding and congruence functions dzt, dzp, `zp, intHzL, fracHzL, m mod n, and quotientHm, nL with the rounding and congruence functions in many cases lead to very simple zero results: Floor ddztt dzt dz - dztt 0 Round ddzpt dzp Ceiling d`zpt `zp IntegerPart Round ddztp dzt d`zpp `zp dintHzLp int HzL Ceiling `dztp dzt ddzpp dzp dz - dzpp 0 `dzpp dzp `intHzLp int HzL IntegerPart int HdztL dzt int HdzpL dzp ``zpp `zp `z - `zpp 0 int H`zpL `zp frac H`zpL 0 frac HintHzLL 0 z Floor FractionalPart frac HdztL 0 dmt mod n dmt - n f Mod dmt mod 1 0 Quotient dn xt n `n xp n fracHdzpL 0 quotient Hdmt, nL dmt v n dmp mod n dmp - n f dmp mod 1 0 dmt f n v quotient Hdmp, nL quotientHdmt, 1L dmt dmp v n dintHzLt int HzL int HintHzLL intHzL intHz - intHzLL 0 `mp mod n `mp - n f `mp mod 1 0 dmp f n v quotient H`mp, nL quotientHdmp, 1L dmp `mp v n `mp f n v quotientH`mp, 1L `mp intHmL mod n intHmL - n intHmL mod 1 0 quotient HintHmL, nL f quotientHintHmL, 1L intHmL dxt ; x Î R ß n Î Z `xp ; x Î R ß n Î Z. Hm, nL Floor Round Mod dm mod nt Quotient m fm - n f n vv dquotientHm, nLt f n v m dm mod 1t 0 f n - quotientHm, nLv 0 m dm mod np fm - n f n vr dquotientHm, nLp f n v m m Ceiling `m mod np bm - n f n vr `quotientHm, nLp f n v IntegerPart intHm mod nL intJm - n f n vN m m m FractionalPart fracHm mod nL fracJm - n f n vN m Mod Hm mod nL mod n m mod n Hm mod nL mod n m - n f n v m Quotient quotient Hm mod n, nL f quotientHm mod 1, 1L 0 Addition formulas m mod n v n int HquotientHm, nLL f n v m frac HquotientHm, nLL 0 quotientHm, nL mod n f n v - n f n f n vv m 1 m quotientHm, 1L mod 1 0 quotient HquotientHm, nL, nL f n f n vv 1 quotientHquotientHm, 1L, 1L dmt intH n m The rounding and congruence functions dzt, dzp, `zp, intHzL, and fracHzL satisfy the following addition formulas: http://functions.wolfram.com 15 z+n z1 + z2 dz + nt dzt + n ; n Î Z Floor Round dz1 + z2 t dz1 + z2 - dz1 t - dz2 tt + dz1 t + dz2 t dz + np dzp + n ; n Î Z í ReHzL + 1 2 Ï Z í ImHzL + 1 2 ÏZ Ceiling `z + np `zp + n ; n Î Z `z1 + z2 p `z1 p + `z2 p + `z1 + z2 - `z1 p - `z2 pp IntegerPart intHz + nL intHzL + n - ΘHz + nL + ΘHzL ; n Î Z ì z Ï Z FractionalPart fracHz + nL fracHzL + ΘHz + nL - ΘHzL ; n Î Z ì z Ï Z Hm + k nL mod n m mod n ; k Î Z quotientHm + k n, nL quotientHm, nL + k ; k Î Z. Multiple arguments The rounding and congruence functions dzt, `zp, intHzL, fracHzL, m mod n, and quotientHm, nL have the following relations for multiple arguments: n z Ior k m M dn zt n dzt + Ún-1 k=0 k ΘJz mod 1 - n N J1 - ΘJz mod 1 k Floor Round Ceiling IntegerPart `n zp n `zp - Ún-1 k=0 k ΘJ- n - z mod 1 + 1N J1 - ΘJk k+1 NN n k+1 n ; n Î N ß z Î R - z mod 1 + 1NN ; n Î N ß z Î R int Hn zL intHzL n + n sgnH ΧZ H zL + ΘHzLL - sgnH ΧZ H n zL + ΘHzLL + n-1 Úk=0 k ΘJz mod 1 - n N J1 - ΘJz mod 1 - k+1 NN - n + 1 n ; n Î N ß z Î R n-1 Úk=0 k ΘJz mod 1 - n N J1 - ΘJz mod 1 - k+1 NN + n - 1 n ; n Î N ß z Î R k FractionalPart frac Hn zL fracHzL n - n sgnH ΧZ H zL + ΘHzLL + sgnH ΧZ H n zL + ΘHzLL k Hk mL mod n k Hm mod nL - n Úk-1 j=0 j ΘJ n - k - quotientHm, nLN J1 - ΘJ n m Mod j quotientHm, nLNN ; k Î N í Quotient m m n quotient Hk m, nL k quotientHm, nL + Úk-1 j=0 j JΘJ n mod 1 - k N J1 - ΘJ n mod 1 m j m Sums of the floor and ceiling functions dzt and dzp satisfy the following relations: dz1 t + dz2 t dz1 + z2 t - dz1 + z2 - dz1 t - dz2 tt n-1 k=0 km+x n â m-1 k=0 kn+x m ; x Î R ì n Î N+ ì m Î N+ `z1 p + `z2 p `z1 + z2 p - `z1 + z2 - `z1 p - `z2 pp â n-1 k=0 x-km n k â m-1 k=0 x-kn m - ÎR Sums of the direct function â j+1 ; x Î R ì n Î N+ ì m Î N+ . Identities All rounding and congruence functions satisfy numerous identities, for example: j+1 k NNN ; k Î N í m n ÎR http://functions.wolfram.com n + 3 n+ e n + n+2 6 1 2 + + 1 2 n+4 6 16 n n+3 g w+ ; n Î Z 2 6 n+ 1 4 + 1 2 ; n Î Z n + 1 u e 4 n + 2 u ; n Î Z Ha + cL mod n Hb + dL mod n ; a mod n b mod n ì c mod n d mod n ì a Î R ì b Î R ì c Î R ì d Î R ì n Î R. Complex characteristics Complex characteristics (real and imaginary parts ReHzL and ImHzL, absolute value z¤, argument ArgHzL, complex conjugate z, and signum sgnHzL) of the rounding and congruence functions can be represented in the forms shown in the following tables: z Re Im Abs Arg Floor Re HdztL dReHzLt Im HdztL dImHzLt dzt¤ dImHzLt2 + dReHzLt2 dzp¤ dReHzLp2 + dImHzLp2 Abs Arg Conjugate Sign IntegerPart Re HintHzLL int HReHzLL Im HintHzLL int HImHzLL `zp¤ `ImHzLp2 + `ReHzLp2 intHzL¤ 2 2 intHImHzLL + intHReHzLL Arg HdzpL tan-1 HdReHzLp, dImHzLpL Arg H`zpL Arg HintHzLL tan-1 H`ReHzLp, `ImHzLpL tan-1 HintHReHzLL, intHImHzLLL sgn HdztL sgn HdzpL sgn H`zpL dzt dzt¤ dzp dReHzLp - ä dImHzLp x + ä y ; Floor xÎRìyÎR Re Im Ceiling Re H`zpL `ReHzLp Im H`zpL `ImHzLp Arg HdztL tan-1 HdReHzLt, dImHzLtL Conjugate dzt dReHzLt - ä dImHzLt Sign Round ReHdzpL dReHzLp Im HdzpL dImHzLp Re Hdx + ä ytL dxt Im Hdx + ä ytL dyt dx + ä yt¤ dxt2 + dyt2 Arg Hdx + ä ytL tan-1 Hdxt, dytL dx + ä yt dxt - ä dyt sgn Hdx + ä ytL dx+ä yt dx+ä yt¤ dzp dzp¤ `zp `ReHzLp + ä `ImHzLp intHzL intHReHzLL - ä int HImHz sgn HintHzLL `zp `zp¤ intHzL intHzL¤ Round Ceiling IntegerPart ReHdx + ä ypL dxp Im Hdx + ä ypL dyp ReH`x + ä ypL `xp Im H`x + ä ypL `yp Re HintHx + ä yLL int Hx Im HintHx + ä yLL int Hy dx + ä yp¤ dxp2 + dyp2 Arg Hdx + ä ypL tan-1 Hdxp, dypL dx + ä yp dxp - ä dyq sgn H`x + ä ypL dxp+ä dyp dxp2 + dyp2 `x + ä yp¤ `xp2 + `yp2 Arg H`x + ä ypL tan-1 H`xp, `ypL `x + ä yp `xp - ä `yp sgn H`x + ä ypL `x+ä yp `x+ä yp¤ intHx + ä yL¤ 2 intHxL Arg HintHx + ä yLL tan-1 HintHxL, intHyLL intHx + ä yL intHxL - ä sgn HintHx + ä yLL int int 2 http://functions.wolfram.com Hm, nL Re Im Abs 17 Mod Re Hm mod nL ReHmL + f f ImHmL ImHnL+ReHmL ReHnL f ImHmL ReHnL-ImHnL ReHmL 2 ImHnL +ReHnL ImHmL ImHnL+ReHmL ReHnL v ReHnL ImHnL2 +ReHnL2 ImHnL2 +ReHnL2 2 2 ImHnL +ReHnL ImHmL ImHnL+ReHmL ReHnL 2 ImHnL +ReHnL Arg Hm mod nL tan JReHmL + f -1 f f ImHmL ImHnL+ReHmL ReHnL ImHnL2 +ReHnL2 ImHmL ReHnL-ImHnL ReHmL Conjugate m mod n ReHmL + f ImHnL2 +ReHnL2 ä JImHmL - f 2 ImHmL ImHnL+ReHmL ReHnL 2 2 ImHnL +ReHnL sgn Hm mod nL Jf ImHmL ReHnL-ImHnL ReHmL ä JImHmL - f ImHnL2 +ReHnL2 ImHnL2 +ReHnL2 2 v ImHnL - ImHmL ImHnL+ReHmL ReHnL ImHnL2 +ReHnL2 v ImHnL - f ImHmL ImHnL+ReHmL ReHnL 2 2 ImHnL +ReHnL v ImHnL - f v ReHnL - ImHnL +ReHnL ImHnL2 +ReHnL2 ImHmL ImHnL+ReHmL ReHnL ImHnL2 +ReHnL2 ImHmL ReHnL-ImHnL ReHmL ImHnL2 +ReHnL2 f v ReHnL + v ImHnL + ReHmL - f ImHnL +ReHnL 2 2 ImHnL +ReHnL ImHnL2 +ReHnL2 ImHmL ImHnL+ReHmL ReHnL ImHnL2 +ReHnL2 v-äf sgn HquotientHm, nLL v ReHnLNN ImHmL ImHnL+ReHmL ReHnL ImHmL ImHnL+ReHmL ReHnL quotientHm, nL v ReHnLN ImHnL2 +ReHnL2 sgnHm mod nL sgnHnL ; m Î R ß n Î R 2 v + ReHmL ReHnL+ImHmL ImHnL 2 tan-1 Jf v ImHnL - ImHmL ReHnL-ImHnL ReHmL ImHnL +ReHnL 2 v Arg HquotientHm, nLL m sgnHquotientHm, nLL sgnJ n v ReHnLN OO 2 Derivatives of the rounding and congruence functions dzt, dzp, `zp, intHzL, fracHzL, m mod n, and quotientHm, nL can be evaluated in the classical and distributional sense. In the last case, all variables should be real and results include the Dirac delta function. All rounding and congruence functions also have fractional derivatives. All these derivatives can be represented as shown in the following tables: Hin classical senseL ¶ ¶x Hin distributional sense for real xL Floor ¶dzt ¶z 0 ¶dxt ¶x Round ¶dzp ¶z 0 ¶dxp ¶x Ceiling ¶`zp ¶z 0 ¶`xp ¶x IntegerPart ¶intHzL ¶z FractionalPart ¶fracHxL ¶x 0 1 Ú¥ k=-¥ ∆Hx - kL Ú¥ k=-¥ ∆Jx - k + 2 N 1 Ú¥ k=-¥ ∆ Hx - kL ¶intHxL ¶x ¶fracHxL ¶x Ú¥ k=-¥ ∆k,0 ∆Hx - kL x - Ú¥ k=-¥ ∆k,0 ∆ Hx - kL ¶Α ¶zΑ Hin fractional senseL ¶Α dzt ¶zΑ ¶Α dzp ¶zΑ ¶Α `zp ¶zΑ ¶Α intHzL ¶zΑ ¶Α fracHzL ¶zΑ Im Im ä Differentiation ¶ ¶z v ImH 2 Jf ImHnL2 +ReHnL2 f ImHmL ImHnL+ReHmL ReHnL ImHmL ReHnL-ImHnL ReHmL K- KJImHmL - f v ImHnL - f v ReHnLN + 2 2 2 2 ImHmL ReHnL-ImHnL ReHmL ImHmL ReHnL-ImHnL ReHmL v quotientHm, nL¤ v ImHnL + 2 v ImHnL + ReHmL - f ImHmL ImHnL+ReHmL ReHnL ImHnL2 +ReHnL2 2 v ImHnL - f ImHnL2 +ReHnL2 f ImHnL +ReHnL ImHnL2 +ReHnL2 ImHmL ReHnL-ImHnL ReHmL ReHmL ReHnL+ImHmL ImHnL Im HquotientHm, nLL ImHmL ReHnL-ImHnL ReHmL ImHmL ReHnL-ImHnL ReHmL v ReHnLN f v ImHnL - v ReHnLN O v ReHnL, ImHmL - f Re HquotientHm, nLL v ImHnL - v ReHnLN + Jf 2 Quotient v ImHnL - ImHmL ImHnL+ReHmL ReHnL ImHmL ReHnL-ImHnL ReHmL ReHmL - f Sign ImHnL2 +ReHnL2 m mod n¤ - KJImHmL - f 2 f Arg v ReHnL Im Hm mod nL ImHmL - f ImHnL2 +ReHnL2 ImHmL ReHnL-ImHnL ReHmL dzt z-Α GH1-ΑL dzp z-Α GH1-ΑL `zp z-Α GH1-ΑL intHzL z-Α GH1-ΑL Α z1-Α GH2-ΑL + fracHzL z-Α GH1-ΑL 2 http://functions.wolfram.com 18 ¶ ¶m Hin classical senseL Mod Quotient ¶Hm mod nL ¶m 1 ¶quotientHm,nL ¶m 0 ¶ ¶n ¶ ¶m Hin classical senseL ¶Hm mod nL ¶n m -f n v ¶quotientHm,nL ¶n 0 ¶ ¶n Hin distributional sense for real m, nL Hin distributional sense for real m, nL ¶Hm mod nL m+ ¶m ¥ Úk=-¥ ∆Hm - k nL ¶Hm mod nL ¶n ¶quotientHm,nL ¶quotientHm,nL sgnHnL Ú¥ k=-¥ ∆Hm - k nL ¶m sgnHnL JintJ n N m m Ú¥ k=-¥ ∆k,0 ∆J n n2 m - ¶n sgnHmL m n2 - kNN ¶Α ¶mΑ Hin fractional senseL ¶Α Hm mod nL ¶mΑ Α m1-Α GH2-ΑL + Hm mod nL mGH1-ΑL ¶Α quotientHm,nL Ú¥ k=-¥ ∆k,0 ∆ J n - kN m ¶mΑ quotientHm,nL m-Α GH1-ΑL Indefinite integration Simple indefinite integrals of the rounding and congruence functions dzt, dzp, `zp, intHzL, fracHzL, m mod n, and quotientHm, nL have the following representations: Ù f HzL â z Floor Round Ceiling IntegerPart Ù dzt â z z dzt Ù dzp â z z dzp Ù `zp â z z `zp Ù intHzL â z z intHzL FractionalPart Ù fracHzL â z z fracHzL Mod Quotient z2 2 Ù z mod n â z z Hz mod nL Ù m mod z â z 1 2 z2 2 z Hm + m mod zL Ù quotientHz, nL â z z quotientHz, nL Ù quotientHm, zL â z z quotientHm, zL Definite integration Some definite integrals of the rounding and congruence functions dzt, dzp, `zp, intHzL, fracHzL, m mod n, and quotientHm, nL can be evaluated and are shown in the following table: http://functions.wolfram.com aÎR Floor 19 Ù0 f HtL â t ; n Î N Ù0 f HtL â t n Ù0 dtt â t n a Ù0 dtt â t n Hn-1L 2 a Α-1 f HtL â t Ù0 t a 1 2 H2 a - dat - 1L dat Α-1 Ù0 t dtt â t a 1 Α Hdat aΑ - ΖH-ΑL + ΖH-Α, d Round Ù0 dtp â t n2 2 Ù0 dtp â t 1 2 H2 a - dapL dar Α-1 Ù0 t dtp â t Ceiling Ù0 `tp â t n Hn+1L 2 Ù0 `tp â t 1 2 H2 a - `ap + 1L `ap Α-1 Ù0 t `tp â t IntegerPart Ù0 intHtL â t n n n a n Hn-1L 2 FractionalPart Ù0 fracHtL â t n Mod a n 2 ; n Î N Ù0 intHtL â t ; n Î N a 1 2 Ù0 fracHtL â t a H2 a - intHaL - 1L int HaL 1 2 IfracHaL - fracHaL + aM 2 1 2 IHa mod nL - n Ha mod nL + a nM 2 1 a+m-m mod a 2 J-ΨH1L J N m2 + a m + a Ù0 t mod n â t a Ù0 m mod t â t a a Hm mod aLN Quotient Ù0 quotientHt, nL â t a a 1 Α Jfa + 2 v aΑ 1 H1 - 2-Α L ΖH-ΑL + ΖJ- a `ap aΑ -ΖH-ΑL+ΖH-Α Α-1 Ù0 t intHtL â t a Α intHaL aΑ -ΖH-ΑL Α-1 Ù0 t fracHtL â t a Α aΑ+1 Α+1 - 1 Α Α-1 Ù0 t Ht mod nL â t a aΑ+1 Α+1 n - n quotientHa, nLL 1 Α - nΑ+1 ΖH-ΑL + nΑ+1 ReHΑL > -1 quotientHa, nL H2 a - HH ΖH-ΑL + ΖH-Α, a ReHΑL > -1 a Α-1 Ù0 t 1 2 Hm mod tL â t 1 Α2 +Α mΑ+1 Α ΖJΑ + 1, Α-1 Ù0 t quotientHt, nL â t a a Α-1 Ù0 t Jm a+m 1 Α Hquotient nΑ HΖH-Α, quotientHa, quotientHm, tL â t quotientHm,aL aΑ +mΑ ΖHΑ,quotientHm Α ReHΑL > 1 Integral transforms L All Fourier transforms of the rounding and congruence functions dzt, dzp, `zp, intHzL, fracHzL, m mod n, and quotientHm, nL can be evaluated in a distributional sense and include the Dirac delta function: http://functions.wolfram.com 20 Ft @ f HtLD HzL Floor Π 2 - ∆HzL + Ft @dtpD HzL Ft @`tpD HzL 2Π Ú¥ k=1 ä 2Π ä Π 2 ∆HzL + ∆H2 k Π-zL-∆H2 Π k+zL Ú¥ k=1 k Ú¥ k=1 ä ä 2Π z 2Π Π 2 ∆ HzL ä Fct @`tpD HzL Fst @dttD HzL 2 Π ∆ HzL ä -ä 2 Π ∆ HzL ¢ Π 2 1 k J∆J 2kΠ n Π 2 ä 2Π n 1 + zNN ∆ HzL ¢ - zN - ∆J 2Πk n ∆HzL + cotI 2 M - 1 1 Iz cotI 2 M - 2M + z 2 Π z2 1 Π 2 In z cotI Π 2 nz M2 1 cotI 2Π z nz M2 2Π 2Π Floor Round Ceiling IntegerPart Lt @dttD HzL 2Π Lt @dtpD HzL Lt @`tpD HzL 1 Hãz -1L z Mod Quotient 1 z2 Lt @t mod nD HzL 1 z2 z N ãz -1 J1 - Lt @quotientHt, nLD HzL ; ReHzL > 0 nz N ãn z -1 1 Hãn z -1L z z 1 ; ReHzL > 0 J1 - ; ReHzL < -1 ΖH-zL Mt @dtpD HzL - z JΖ J-z, 2 N + 2-z N ; ReHzL < -1 ; ReHzL > 0 ãz Hãz -1L z FractionalPart Lt @fracHtLD HzL Mt @dttD HzL - ; ReHzL > 0 Hãz -1L z ãz2 Lt @intHtLD HzL Mt @ f HtLD HzL ; ReHzL > 0 1 Hãz -1L z 3 Mt @intHtLD HzL Lt @fracHtLD HzL 1 z2 ; ReHn zL > 0 Mt @t mod nD HzL ; ReHzL < -1 ΖH-zL J1 z z N ãz -1 ; -1 < ReHzL < 0 nz+1 ΖH-zL Mt @m mod tD HzL - z mz+1 ; ReHzL > 0 ΖHz+1L ; ReHn zL > 0 Mt @quotientHt, nLD HzL - z+1 Mt @quotientHm, tLD HzL nz mz ΖH-zL z ΖHzL z ; -1 < ReHzL < 0 ; ReHzL < -1 ; ReHzL > 1 Ú¥ k= Fst @quotientH Laplace and Mellin integral transforms of the rounding and congruence functions dzt, dzp, `zp, intHzL, fracHzL, m mod n, and quotientHm, nL can be evaluated in the classical sense: Lt @ f HtLD HzL Ú¥ k= Fst @t mod nD 1 ∆HzL Ú¥ k= Fst @fracHtLD Hz n n ∆HzL Fct @quotientHt, nLD HzL - + zNN 2Π 1 ∆HzL 2 Π z2 Ú¥ k= Fst @intHtLD HzL ∆HzL 2M + Π 2 Fst @`tpD HzL 2Π z 2Π z Fct @t mod nD HzL ∆HzL 2Πk - zN - ∆J n cot I 2 M z 2Π z Fct @fracHtLD HzL - 2kΠ J∆J n 1 ∆HzL - 1 2Π z Π 2 Π 2 Ú¥ k= Fst @dtpD HzL z ¢ ∆H2 k Π-zL-∆H2 Π k+zL k 1 Ú¥ k=1 k Ú¥ k=1 Fst @ f HtLD HzL 2Π csc I 2 M 1 2Π z Fct @intHtLD HzL - ∆H2 k Π-zL-∆H2 Π k+zL k Ft @quotientHt, nLD HzL 2Π Fct @dtpD HzL - - + Ft @t mod nD HzL n än Quotient Ú¥ k=1 -ä 2Π z FractionalPart Ft @fracHtLD HzL 2Π H-1Lk H∆H2 k Π-zL-∆H2 Π k+zLL k ¢ Ft @intHtLD HzL - 2Π Mod Fct @dttD HzL - - z cotI 2 M - 1 1 2 Π ∆ HzL ä IntegerPart Fct @ f HtLD HzL ¢ ä Ceiling 2Π 2 Π ∆ HzL ä Round ∆H2 k Π-zL-∆H2 Π k+zL Ú¥ k=1 k ä Ú¥ k= http://functions.wolfram.com 21 Summation Sometimes finite and infinite sums including rounding and congruence functions have rather simple representations, for example: â y k=0 â p-1 k=1 â n-1 k=1 k y + x dx y + H`yp - yL dx + 1tt ; x Î R ì y Î R ì y > 0 kq p k n p-1 p-1 l=1 k=1 p-1 â 2 k=1 p â xk=0 n-1 k=0 â ¥ n=1 Hp - 1L Hq - 1L ; p Î N+ ì q Î N+ ì gcdHp, qL 1 - n kl km 1 2 k=1 k y q n 1 4 k k 2 1 4n â cot n-1 k=1 kΠ n mkΠ cot n ; m Î N+ ì n Î N+ ì gcdHm, nL 1 Hp - 1L Hq - 1L ; p Î N+ ì q Î N+ ì gcdHp, qL 1 n-m- pm n-m 2 n n 1 `x y - `x - 1p Hy + `-ypLp ; x Î R ì y Î R ì 0 < x < 1 ì 0 < y < 1 p m fmv pk - Hp - 2L ; p Î P 2 2 +â mk - n 2 p-1 p 1 q-1 qk y â 2 k - ââ 1 k Hk - 1L Hkm - 1L pm ; n Î N+ ì m Î N+ ì p Î N+ 1 n p m ; k Î N+ ì m Î N+ . Zeros Zeros of rounding and congruence functions are given as follows: dzt 0 ; 0 £ ReHzL < 1 ß 0 £ ImHzL < 1 dzp 0 ; - 1 2 £ ReHzL £ 1 2 í- 1 2 £ ImHzL £ `zp 0 ; -1 < ReHzL £ 0 ß -1 < ImHzL £ 0 1 2 intHzL 0 ; ReHzL¤ < 1 ß ImHzL¤ < 1 fracHzL 0 ; ReHzL Î Z Þ ImHzL Î Z m mod n 0 ; m 0 ß n ¹ 0 quotientHm, nL 0 ; 0 £ Re m n < 1 í 0 £ Im m n < 1. http://functions.wolfram.com Applications of the rounding and congruence functions All rounding and congruence functions are used throughout mathematics, the exact sciences, and engineering. 22 http://functions.wolfram.com Copyright This document was downloaded from functions.wolfram.com, a comprehensive online compendium of formulas involving the special functions of mathematics. For a key to the notations used here, see http://functions.wolfram.com/Notations/. Please cite this document by referring to the functions.wolfram.com page from which it was downloaded, for example: http://functions.wolfram.com/Constants/E/ To refer to a particular formula, cite functions.wolfram.com followed by the citation number. e.g.: http://functions.wolfram.com/01.03.03.0001.01 This document is currently in a preliminary form. If you have comments or suggestions, please email [email protected]. © 2001-2008, Wolfram Research, Inc. 23
© Copyright 2026 Paperzz