5.3 Solving Trig. Equations 2 sin x - 1 = 0 2 sin x = 1 sin x = 1/2 X= ! + 2k! 6 5! X= + 2k! 6 1 2 2 1 sin x + 2 = - sin x 2 sin x = ! 2 sin x = ! 2 2 -1 -1 2 5! x= + 2k! 4 x= 7! + 2k! 4 2 3 tan2 x - 1 = 0 tan2 x = 1/3 1 tan x = ± 3 1 -1 ! + k! x= 6 5! x= + k! 6 ! 3 3 1 -1 cot x cos2 x = 2 cot x cot x cos2 x - 2 cot x = 0 cot x(cos2 x - 2) = 0 cot x = 0 ! x= + k! 2 1 0 -1 cos2 x - 2 = 0 cos x = ± 2 undefined Find all solutions of 2 sin2 x - sin x - 1 = 0 in 2 sin2 x - sin x - 1 = 0 (2sin x + 1)( sin x - 1) = 0 sin x = - 1/2 and sin x = 1 7! 11! ! x= ,x = ,x = 6 6 2 [0,2! ) Writing in terms of a single trigonometric function. 2 sin2 x + 3 cos x - 3 = 0 2(1 - cos2 x) + 3 cos x - 3 = 0 2 - 2 cos2 x + 3 cos x -3 = 0 1 1 0 = 2 cos2 x - 3 cos x + 1 0 = (2 cos x - 1)(cos x - 1) 2 1 cos x = , cos x = 1 2 General solutions: 1 2 ! 5! x = + 2k! , x = + 2k! , x = 2k! 3 3 Find all solutions of 2 cos 3t - 1 = 0 2 cos 3t - 1 = 0 cos 3t = 1/2 Where does cos t = 1/2 at? ! 5! + 2k! , + 2k! 3 3 ! 3t = + 2k! 3 ! 2k! t= 9 + 3 Now, set each of these = to 3t 5! 3t = + 2k! 3 5! 2k! t= + 9 3
© Copyright 2026 Paperzz