3) DIFFERENTIATION OF COMPOSITE FUNCTIONS, EQUATIONS OF TANGENT AND NORMAL APPLIED MATHEMATICS (FAPPZ) 1. Differentiation of composite functions Compute the first derivative f 0 (x) of the function y = f (x). Basic. 1) y = √ 1 − x2 2 4) y = (3x + 2x) 2) y = 5 √ 3 a + bx3 5) y = arctg 3) y = arcsin 2x 6) y = 5e−x 1 x 2 From examinations. 7) y = arctg2 1 x 8) y = ln 10) y = x arccos x − √ q x−1 x+1 9) y = arcsin 1−x 1+x √ √ 11) y = 4 4 x − 4 arctg 4 x 1 − x2 12) y = 1 + cos 2x 1 − cos 2x Advanced. 13) y = − √ arcsin x 2 + ln 1− x1−x x √ 2 2 +a +x 14) y = ln √xx2 +a 2 −x 15) y = 2 arctg x − ln(x2 + 1) x Compute the second derivative f 00 (x) of the function y = f (x). 16) y = 2x + 3 5x − 1 17) y = 1 − ln x 1 + ln x 18) y = 3 + e2x 5 − e2x Results. −x 1 − x2 1) √ 4) 5(3x2 + 2x)4 (6x + 2) 7) − 2) 2 arctg x1 1 + x2 10) arccos x 13) arcsin x x2 16) 170 (5x − 1)3 bx2 p 3 (a + bx3 )2 −1 5) 1 + x2 1 8) 2 x −1 1 √ 11) √ 4 x(1 + x) 2 14) √ 2 x + a2 2(3 + ln x) 17) x2 (1 + ln x)3 2 1 − 4x2 3) √ 6) − 10xe−x 9) √ 12) 15) 18) 2 −1 x(1 + x) cos x −2 3 sin x ln(x2 + 1) x2 32e2x (5 + e2x) (5 − e2x )3 2. Equations of tangent and normal Basic. 1) Find an equation of the tangent line to the graph of the function f : y = x2 − 3x + 1 at the point of its graph T = [2, yT ]. x+1 2) Find an equation of the normal line to the graph of the function f : y = at the x+3 point of its graph T = [−2, yT ]. c Petr Gurka (updated October 2, 2011). 1 2 DIFFERENTIATION, TANGENT, NORMAL From examinations. 3) Find equations of the tangent and the normal to the graph of the x function f : y = at the point of its graph T = [π, yT ]. 1 − cos x 4) Find equations of the tangent and the normal to the graph of the function f : y = 1+x at the point of its graph T = [0, yT ]. arccotg 1−x Advanced. 5) Find an equation of the tangent to the curve y = x2 − 1 so that the tangent is parallel with line p : 2x − y + 3 = 0. 6) Find an equation of the normal to the curve y = x2 so that the normal is parallel with line p : 2x − 6y + 5 = 0. 7) Find an equation of the tangent to the curve y = x2 so that the tangent is perpendicular to line p : 2x − 6y + 12 = 0. 1 parallel with x-axis? 8) In which point is the curve y = 2 x − 4x + 5 x+1 9) Find an equation of the normal to the curve y = ln xe2 +1 so that the normal is parallel with line p : 2x + 4y + 5 = 0. Results. 2) n : y = − 21 x − 2 1) t : y = x − 3 3) t : y = 21 x, n : y = −2x + 25 π 6) n : y = 13 x + 5) t : y = 2x − 2 7) t : y = −3x − 4) t : y = −x + π4 , 9 4 9) n : x + 2y + 1 + ln 4 = 0 8) A = [2, 1] 5 6 n:y =x+ π 4
© Copyright 2026 Paperzz