A Rational Expression is in simplified form if:

AA 8.4 & 8.5 Combined Notes
Name _____________________________________
Simplifying rational expressions usually requires two steps:
π‘Žπ‘
π‘Žπ‘
4π‘₯ + 12
2
π‘₯ βˆ’ 2π‘₯ βˆ’ 15
1.
Factor the numerator and denominator.
2.
Cancel out anything that is both in the numerator and denominator.
π‘₯ 2 βˆ’ 2π‘₯ βˆ’ 15
π‘₯2 βˆ’ 9
Multiplying Rational expressions:
1.
π‘Ž 𝑐
×
𝑏 𝑑
Factor numerators and denominators
2.
Multiply numerators and denominators
3.
Change signs as needed by factoring out β€œ-1”
4.
Divide out common factors
5.
Simplify completely
5π‘₯ 2
6π‘₯𝑦 3
×
6π‘₯𝑦 2 10π‘₯𝑦 3
3π‘₯ βˆ’ 3π‘₯ 2
π‘₯ 2 + π‘₯ βˆ’ 20
×
π‘₯ 2 + 4π‘₯ βˆ’ 5
3π‘₯
5π‘₯ 2 10π‘₯
÷ 3
𝑦2
𝑦
π‘₯2 + π‘₯ βˆ’ 6 π‘₯ + 3
÷
π‘₯2 + π‘₯
π‘₯
Divide Rational expressions:
π‘Ž 𝑐
÷
𝑏 𝑑
1.
Factor numerators and denominators and cancel
2.
Multiply by the reciprocal of the second fraction
Adding and subtracting rational expressions with common β€œlike” denominator
π‘Ž 𝑏
+
𝑐 𝑐
7 3π‘₯ 2
+
4π‘₯ 4π‘₯
π‘₯ 2 βˆ’ 3π‘₯
2
+ 2
2
π‘₯ +1 π‘₯ +1
π‘Ž 𝑏
βˆ’
𝑐 𝑐
2π‘₯
5
βˆ’
π‘₯+6 π‘₯+6
π‘₯2 + π‘₯ π‘₯ + 4
βˆ’
π‘₯+2 π‘₯+2
1.
Add the numerator and β€œkeep” the denominator
2.
Factor out and simply the answer
Adding and subtracting rational expressions with Uncommon β€œUnlike” denominator
π‘Ž 𝑏
+
𝑐 𝑑
7 3π‘₯ 2
+
4π‘₯
3
7
π‘₯
+ 2
2
9π‘₯
3π‘₯ + 3π‘₯
π‘Ž 𝑏
βˆ’
𝑐 𝑑
2π‘₯
5
βˆ’
π‘₯ + 5 6π‘₯
π‘₯+2
βˆ’2π‘₯ βˆ’ 1
βˆ’ 2
2π‘₯ βˆ’ 2 π‘₯ βˆ’ 4π‘₯ + 3
1.
Find the least common multiple LCM of each denominator LCD.
Hint: the simplest way is to multiply the denominators together but this may be the β€œmessiest” way.
FACTOR the denominators if you can this is the ___________________________
2.
Multiply by β€œsome form of 1” to every term to make the denominators the same
Examples:
Simplify the Rational Expression
18x
4x
1. 12
2. 36
18 x 2 16 x 3
2x
3.
3( x  1)
4. 6( x ο€­ 1)
2(3x  2)
5. (3 x  2)
3( x  4)( x ο€­ 2)
9( x ο€­ 2)
6.
(2 x  6)
4
7.
3x 2
(2 x 3  x 2 )
8.
(2 x 2  x)
(3x 2 ο€­ 2 x)
9.
x 2 ο€­ 3x  2
2
10. x  5 x ο€­ 6
x 2 ο€­ 2x ο€­ 3
2
11. x ο€­ 7 x  12
x 2 ο€­ 16
12. 3 x  12
( x ο€­ 3)
2
13. x ο€­ 5 x  6
x 3 ο€­ 27
3
2
14. x  3x  9 x
3x 2 ο€­ 3x ο€­ 6
x2 ο€­ 4
15.
Simplify
7x the Rational Expression
a. 21
ο€­ 5x
b. 10
2
c. 2 x  4
36 x 4
7
d. 42 x
5x
2
e. x  3 x
2x 2  x
4x
f.
x2 ο€­1
g. 6 x  6
4 x ο€­ 12
2
h. x ο€­ 9
x 2 ο€­ 3x ο€­ 10
2
i. x  5 x  6
xο€­2
3
j. x ο€­ 8
x 3 ο€­ x 2 ο€­ 12 x
x3 ο€­ 9x
k.
x 2 ο€­ 6x  8
(4 ο€­ x)
l.
x 3  3x 2 ο€­ 2 x ο€­ 6
x 3  27
m.
2 x 2 ο€­ 4 x ο€­ 30
2
n. 2 x  8 x  6
3x 2 ο€­ 9 x ο€­ 12
2
o. 2 x ο€­ 26 x  72
Examples: Multiply or Divide the Rational Expression
3x 10
8x 6
ο‚·
ο‚·
x
a. 6
b. 5 12 x
5 x 2 10 x 3
ο‚Έ
21
d. 7
1
3
ο‚Έ
2
c. 5 x 20 x
x4
6
ο‚·
2( x  4)
e. 3
xο€­3 x3
ο‚· 2
f. x  3 x ο€­ 9
xο€­3
4( x ο€­ 3)
ο‚Έ
g. 6(2 x  1) 3(2 x  1)
3
x 2  3x
ο‚Έ 2
h. 4 x ο€­ 8 x  x ο€­ 6
x 2 ο€­ 25 36
ο‚·
12
x5
i.
xο€­3
ο‚· (16 x 2  4 x  1)
3
j. 64 x ο€­ 1
x
9 x 2 ο€­ 25
ο‚· (3x ο€­ 5) ο‚Έ
x5
k. x  5
x 2  11x
x2 ο€­ 4
ο‚Έ (3x 2  6 x) ο‚·
xο€­2
x  11
l.
Exercises:
8 x 10 Multiply or Divide the7Rational
x 10 Expression
ο‚· 2
ο‚·
x
1. 10 x
2. 5
x3 x3
ο‚Έ
5
4. ο€­ 4
4 x 2 8x 3
ο‚Έ 5
3x
3. 9
x 2 ο€­ 25
3
ο‚·
12
x5
5.
x4
ο‚· (3x  3)
6. x  5 x  4
3x
9x
ο‚Έ
7. 2 x  10 3x  15
x 2 ο€­ 16 48
ο‚·
12
x4
8.
x3
ο‚· (5 x  10)
9. x  5 x  6
x3
x3
ο‚Έ
10. x ο€­ 3x ο€­ 10 8 x  16
3x 2  x ο€­ 2
2x
ο‚Έ
2
11. x  3x  2 x  2
x 2  7 x  10
ο‚Έ (8 x  16)
2
12. x ο€­ 2 x ο€­ 35
x 2 ο€­ 5 x  4 x 2 ο€­ 3x ο€­ 4
ο‚Έ
x 2  3x
2x 2  6x
13.
2
2
2
x 2 ο€­ 11x  30
ο‚· ( x ο€­ 6)
x 2  7 x  12
x
x2 ο€­1
ο‚· ( x  1) ο‚Έ
x3
14. x  3
15.
x 2  11x
x2 ο€­ 4
ο‚Έ (3x 2  6 x) ο‚·
xο€­2
x  11
16.
x 2 ο€­ x ο€­ 12 x 3  3x 2 4 x ο€­ 1
ο‚Έ 3
ο‚Έ
8x 2
8x ο€­ 2 x 2 x  2
17.
( x ο€­ 5) ο‚Έ
Find the
14 least7 common denominator
4
,
1. 4( x  1) 4 x
2.
21x
2
,
x
3x ο€­ 15 x
2
Perform
the indicated operation(s)
7 11
4x
3and simplify
5.
6x

6x
6.
x 1
ο€­
x 1
5x  2 3 9 x
, ,
2
3. 4 x ο€­ 1 x 2 x  1
3x  1
3
, 2
4. x( x ο€­ 7) x ο€­ 6 x ο€­ 7
x
5
ο€­ 2
2
7. x ο€­ 5 x x ο€­ 5 x
5x 2
5x

8. x  8 x  8
6
2

2
5x
9. 4 x
7
x3
ο€­
6x
10. 6( x ο€­ 2)
10
2

2
11. x ο€­ 5 x ο€­ 14 x ο€­ 7
4x 2
10
ο€­
12. 3 x  5 x  8
x2  x ο€­ 3
3x

2
13. x ο€­ 12 x  32 x ο€­ 8
4x
5
4

ο€­
14. x  1 2 x ο€­ 3 x
20
x 1
1
7
ο€­
15. 4 x  1
1
5
ο€­
4 x  3 3(4 x  3)
x
4x  3
16.
4
2

x ο€­9 xο€­3
1
1

17. x  3 x ο€­ 3
2