Mar. 10/17 * = (x)(3x) + (x)(2) - (1)(3x) - (1)(2) * = (d)(d) + (d)(2) - (6)(d) - (6)(2) = 3x2 + 2x - 3x - 2 = d2 + 2d - 6d - 12 = 3x - x - 2 = d2 - 4d - 12 2 * this line is not necessary ≠(x)2 + (3)2 = 6a2 - 21ab +8ab -28b2 = 6a2 - 13ab -28b2 = (x + 3)(x + 3) = x2 + 3x + 3x + 9 = x2 + 6x + 9 = (2x - 5)(2x - 5) = 4x2 - 10x - 10x + 25 = 4x2 - 20x + 25 = 5(2x2 - 6x + x - 3) = 5(2x2 - 5x - 3) = 10x2 - 25x - 15 = 6x(2x + 1)(2x + 1) = 6x(4x2 + 2x + 2x + 1) = 6x(4x2 + 4x + 1) = 2(x + 2)(x + 2) - 3x(2x - 4) = 2(x2 + 2x + 2x + 4) - 6x2 + 12x = 2(x2 + 4x + 4) - 6x2 + 12x = 2x2 + 8x + 8 - 6x2 + 12x = 24x3 + 24x2 + 6x = -4x2 + 20x + 8 The word FOIL helps us to remember how to expand two binomials. First Outer Inner Last We can also use a table to help expand binomials. x -3 x + 5 - = x2 - 3x + 5x - 15 = x2 + 2x - 15 OR Algebra Tiles +1 -1 = x2 + 2x - 15 1
© Copyright 2026 Paperzz