Structure and Stability of Polynitrogen Molecules and Their Spectroscopic Characteristics Rodney J. Bartlett Stefan Fau Motoi Tobita Ken Wilson Ajith Perera Quantum Theory Project P.O. Box 118435 University of Florida Gainesville, FL 32611-8435 (352)–392-6974 [email protected] This work is supported by AFOSR-DARPA (F49620-98-1-0477) To be published Table of Contents Abstract ......................................................................................................................................7 Computational Methods ..............................................................................................................7 Molecular Description.................................................................................................................8 N2+ D∞ h 2Σ g (B3LYP/aug-cc-pVDZ) .....................................................................................................8 N2 D∞ h 1Σ g(B3LYP/aug-cc-pVDZ) .......................................................................................................8 N2 D∞ h 1Σ g(CCSD(T)/aug-cc-pVTZ) ....................................................................................................8 N2 D∞ h 1Σ g(EOM-CCSD/PBS//B3LYP/aug-cc-pVDZ) .........................................................................9 N3+ D∞ h 1Σ g (B3LYP/aug-cc-pVDZ) ...................................................................................................10 N3+ D∞ h 1Σ g (CCSD(T)/cc-pVTZ) .......................................................................................................10 N3+ D∞ h 1Σ g(EOM-CCSD/PBS//B3LYP/aug-cc-pVDZ) ......................................................................11 N3+ D3h 1A1’(B3LYP/aug-cc-pVDZ) ..................................................................................................12 N3+ D3h 1A1’ (CCSD(T)/cc-pVTZ) ......................................................................................................12 N3+ D3h 1A1’ (EOM-CCSD/PBS//B3LYP/aug-cc-pVDZ) ....................................................................13 N3 D∞ h 2Σ g (B3LYP/aug-cc-pVDZ) ....................................................................................................13 N3- C2v 1A1 (B3LYP/aug-cc-pVDZ)....................................................................................................14 N3- C2v 1A1EOM-CCSD/PBS//B3LYP/aug-cc-pVDZ) ........................................................................14 N3- D3h 3A1’ (B3LYP/aug-cc-pVDZ)...................................................................................................15 N3- D∞ h 1Σ g (B3LYP/aug-cc-pVDZ) ...................................................................................................15 N3- D∞ h 1Σ g (CCSD(T)/aug-cc-pVTZ).................................................................................................15 N3- D∞ h 1Σ g(EOM-CCSD/PBS//B3LYP/aug-cc-pVDZ) ......................................................................16 N4+ D2h 2B 2u (B3LYP/aug-cc-pVDZ) ..................................................................................................17 N4 C2v 3B 1 (B3LYP/aug-cc-pVDZ).....................................................................................................17 N4 C2v 3B 1 (CCSD(T)/aug-cc-pVDZ)..................................................................................................18 N4 D2d 3A2 (B3LYP/aug-cc-pVDZ) ....................................................................................................18 N4 D2d 3A2 (CCSD(T)/aug-cc-pVDZ) .................................................................................................19 N4 Td 1A1 (B3LYP/aug-cc-pVDZ) ......................................................................................................19 N4 Td 1A1 (B3LYP/TZ2P) ..................................................................................................................19 N4 Td 1A1 (CCSD(T)/aug-cc-pVTZ) ...................................................................................................20 N4 Td 1A1(EOM-CCSD/PBS//B3LYP/aug-cc-pVDZ) .........................................................................20 N4 D2h 1Ag (B3LYP/aug-cc-pVDZ) ....................................................................................................21 N4 D2h 1Ag(EOM-CCSD/PBS//B3LYP/aug-cc-pVDZ)........................................................................22 N4 C2h 3B u (B3LYP/aug-cc-pVDZ).....................................................................................................23 N4 C2h 3B u (CCSD(T)/aug-cc-pVDZ)..................................................................................................23 N4- D2h 2B1g (B3LYP/aug-cc-pVDZ) ..................................................................................................24 N4- C2h 4B g (B3LYP/aug-cc-pVDZ) ....................................................................................................24 N5+ D3h 1A1’(B3LYP/aug-cc-pVDZ)..................................................................................................25 N5+ D2d 1A1’(B3LYP/aug-cc-pVDZ)..................................................................................................25 N5+ C2v 1A1 (B3LYP/aug-cc-pVDZ) ...................................................................................................26 N5+ C2v 1A1 CCSD(T)/6-311+G(2d)....................................................................................................26 N5+ C2v 1A1 (EOM-CCSD/PBS//B3LYP/aug-cc-pVDZ) ......................................................................27 N5 D2d 2B1 (B3LYP/aug-cc-pVDZ) ....................................................................................................28 N5- D3h 1A1’ (B3LYP/aug-cc-pVDZ)...................................................................................................28 N5- D3h 1A1’(EOM-CCSD/PBS//B3LYP/aug-cc-pVDZ) .....................................................................29 N5- D5h 1A1’ (B3LYP/aug-cc-pVDZ)...................................................................................................30 N5- D5h 1A1’ (CCSD(T)/aug-cc-pVTZ) ................................................................................................30 N5- D5h 1A1’(EOM-CCSD/PBS//B3LYP/aug-cc-pVDZ) .....................................................................31 N5- D2d 1A1 (B3LYP/aug-cc-pVDZ) ...................................................................................................32 N6+ C2h 2Ag (B3LYP/aug-cc-pVDZ) ...................................................................................................33 N6+ C2h planar 2B g (B3LYP/aug-cc-pVDZ) .........................................................................................33 N6+ C2v 2B g (B3LYP/aug-cc-pVDZ) ...................................................................................................34 N6 D3h 1A1’ (B3LYP/aug-cc-pVDZ) ...................................................................................................34 N6 D3h 1A1’(EOM-CCSD/PBS//B3LYP/aug-cc-pVDZ) ......................................................................35 N6 C2 book 1A (B3LYP/aug-cc-pVDZ)...............................................................................................36 N6 D2 1A (B3LYP/aug-cc-pVDZ).......................................................................................................37 N6 C2h 1Ag (B3LYP/aug-cc-pVDZ) ....................................................................................................37 N6 C2h 1Ag (CCSD(T)/cc-pVDZ) ........................................................................................................38 N6 C2 1A (CCSD(T)/cc-pVDZ)...........................................................................................................38 N6- C2 2A (B3LYP/aug-cc-pVDZ) ......................................................................................................39 N6- Cs 2A’ (B3LYP/aug-cc-pVDZ)......................................................................................................39 N7+ C2v 1A1 (B3LYP/aug-cc-pVDZ) ...................................................................................................40 N7 Cs 2A’trigonal (B3LYP/aug-cc-pVDZ) .........................................................................................41 N7 Cs 2A’(B3LYP/aug-cc-pVDZ) ......................................................................................................42 N7 C2v 2B 1 (B3LYP/aug-cc-pVDZ).....................................................................................................43 N7 D2d 2A2 (B3LYP/aug-cc-pVDZ) ....................................................................................................44 N7 C2 2B (B3LYP/aug-cc-pVDZ) .......................................................................................................45 N7 C2v 2B 1 (B3LYP/aug-cc-pVDZ).....................................................................................................46 N7 Cs 2A’(B3LYP/aug-cc-pVDZ) ......................................................................................................47 N7- C2v 1A1 (B3LYP/aug-cc-pVDZ)....................................................................................................48 N8 Oh 1A1g (B3LYP/aug-cc-pVDZ) ....................................................................................................49 N8 D2h 1A1g (B3LYP/aug-cc-pVDZ) ...................................................................................................50 N8 C2h ladder 1Ag (B3LYP/aug-cc-pVDZ) ..........................................................................................51 N8 C2v ring 1A1 (B3LYP/aug-cc-pVDZ)..............................................................................................52 N8 C2v 1A1 (B3LYP/aug-cc-pVDZ) ....................................................................................................53 N8 C1 ZZE 1A (B3LYP/aug-cc-pVDZ) ...............................................................................................54 N8 C2h ZEZ 1Ag (B3LYP/aug-cc-pVDZ) .............................................................................................55 N8 Cs 1A’(B3LYP/aug-cc-pVDZ) ......................................................................................................56 N8 D2h planar 1A1g (B3LYP/aug-cc-pVDZ) .........................................................................................57 N8 C2h EEE 1Ag (B3LYP/aug-cc-pVDZ) .............................................................................................58 N8 C2v EZE 1A1 (B3LYP/aug-cc-pVDZ) .............................................................................................59 N8 Cs pentagonal 1A’ (B3LYP/aug-cc-pVDZ) .....................................................................................60 N8- C2h 2B g (B3LYP/aug-cc-pVDZ) ....................................................................................................61 N8- C2h ZEZ 2B g (B3LYP/aug-cc-pVDZ) ............................................................................................62 N9+ C2v rings 1A1 (B3LYP/aug-cc-pVDZ) ...........................................................................................63 N9+ C2v 1A1 (B3LYP/aug-cc-pVDZ) ...................................................................................................64 N9 C2v rings 2B 1 (B3LYP/aug-cc-pVDZ) ............................................................................................65 N9 C2v 2A2 (B3LYP/aug-cc-pVDZ) ....................................................................................................66 N9- C2 1A (B3LYP/aug-cc-pVDZ) ......................................................................................................67 N9- C2v 1A1 (B3LYP/aug-cc-pVDZ)....................................................................................................68 N9- Cs 1A’(B3LYP/aug-cc-pVDZ) .....................................................................................................69 N10+ C1 2A (B3LYP/aug-cc-pVDZ) ....................................................................................................70 N10+ C1 chain 2A (B3LYP/aug-cc-pVDZ)............................................................................................71 N10 C2v 1A1 (B3LYP/aug-cc-pVDZ) ...................................................................................................72 N10 D5h 1A1’(B3LYP/aug-cc-pVDZ)..................................................................................................73 N10 Cs 1A’7-ring (B3LYP/aug-cc-pVDZ) ..........................................................................................74 N10 C2 1A (B3LYP/aug-cc-pVDZ)......................................................................................................75 N10 C2v 1A1 (B3LYP/aug-cc-pVDZ) ...................................................................................................76 N10 C1 1A (B3LYP/aug-cc-pVDZ)......................................................................................................77 N10 C1 1A n5-ring (B3LYP/aug-cc-pVDZ)..........................................................................................79 N10 Cs 1A’(B3LYP/aug-cc-pVDZ).....................................................................................................80 N10 D2d 1A1 (B3LYP/aug-cc-pVDZ) ...................................................................................................81 N10- D2h 2B 3u (B3LYP/aug-cc-pVDZ)..................................................................................................82 Absolute and Relative Electronic Energies ................................................................................83 Heats of Formation (Direct method)..........................................................................................85 Heats of Formation (Quasi-isodesmic method)..........................................................................87 References ................................................................................................................................89 Acknowledgements...................................................................................................................93 Abstract The most pressing problem with characterizing any synthesized polynitrogen is that except for N2, N3-, N4+ and N5+, none are known experimentally. Consequently, we require predictive quantum chemical results to assist the experimental effort. Using Density Functional Theory (DFT), which we calibrate against CCSD(T), we report a survey of all polynitrogen molecules from N2 to N10, and their cations and anions that appear to be stable. These are characterized by vibrational frequencies including their associated infrared and Raman intensities. For the most interesting candidates, we also provide the more predictive CCSD(T) results. We also obtain STEOM-CC excitation spectra and IP-EOM-CC photoelectron spectra that can aid spectroscopic identification. Computational Methods Our initial survey for bound polynitrogen molecules was performed using DFT. The exchange-correlation potential was constructed from Becke’s three parameter formula for exchange (B3) along with the Lee-Yang-Parr parameterization for correlation (LYP). These calculations were performed within a valence double-ζ basis set augmented with both diffuse and polarization functions (aug-cc-pVDZ). This basis set was contracted as: (10s5p2d/4s3p2d) and used pure spherical harmonic (i.e. 5 d-type), one-particle Gaussian functions. For selected molecules, we present more accurate and reliable structures and energetics obtained at the CCSD(T) level of theory. The CCSD(T) calculations were performed within a much larger valence triple-ζ basis set augmented with a polarization function (cc-pVTZ). Raman intensities are based upon the CCSD model and were computed within the POL1 basis. For select closed shell molecules, excitation spectra from the similarity-transformed equation of motion (STEOM) method are presented along with ionization potentials and electron affinities. All of the coupled-cluster calculations were performed with the ACES II program system. Normal harmonic vibrational frequencies and their related information are given in tables. Bond lengths are shown in units of Angstroms, frequencies are in cm-1, IR intensities are in km mol-1, and Raman intensities is Angstroms4 AMU-1. To avoid overloading each picture, we have not included the dihedral angles, which are necessary to completely specify non-planar structures. These may be obtained upon request from the authors. 7 N2 D∞ h Σ g (B3LYP/aug-cc-pVDZ) Structure + Molecular Description 2 1.1166 Vibrational frequency 1 Symm. Frequency Σg 2329.5 IR Intensity 0 Raman Intensity 284.5 Depolarization Ratio 0.195 N2 D∞ h 1Σ g(B3LYP/aug-cc-pVDZ) Structure 1.1044 Vibrational frequency 1 Symm. Frequency Σg 2444.1 IR Intensity 0 Raman Intensity 22.4 Depolarization Ratio 0.116 N2 D∞ h 1Σ g(CCSD(T)/aug-cc-pVTZ) Structure 1.1035 (1.0977)* Vibrational frequency Symm. Frequency Calc. Σg 2355.5 Exp. Harmonic* Σg 2358.57 IR Intensity 0.0 Raman Intensity 19.7 Depolarization Ratio 0.08 * K.P. Huber and G. Herzberg, Constants of Diatomic Molecule, in W.G. Mallard and P.J. Linstrom, editors, NIST Chemistry Webbook, http://webbook.nist.gov 8 N2 D∞ h 1Σ g(EOM-CCSD/PBS//B3LYP/aug-cc-pVDZ) Vertical Excitation Energies by EE-STEOM Mult. Symmetry Singlet Singlet Singlet Singlet Singlet Singlet Singlet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Σu Πg ∆u Σg Πu Σu Πu Σu Πg ∆u Σu ∆g Πu Σg Πu Excitation energy (eV) 9.19 12.57 13.29 13.03 13.58 7.46 8.01 11.21 11.99 13.27 Experimental* Adiabatic (eV) 8.45 859 8.94 12.40 12.61 12.96 12.95 6.22 7.39 7.42 8.22 10.90 11.05 11.88 12.19 Osc. Strength 0 0 0.322 0.332 0 0 0 0 0 0 0 0 Vertical Ionization Potentials by IP-EOM Mult. Symmetry IP (eV) Doublet Doublet Doublet Σg Πu Σu 15.41 17.02 18.72 Experimental* Adiabatic (eV) 15.581±0.008 Vertical Electron Affinities by EA-EOM Mult. Symmetry EA (eV) Doublet Doublet Doublet Doublet Doublet Doublet Σg Σu Πg Πu Σg Πg 1.90 2.31 2.62 3.55 4.86 5.77 Experimental* Adiabatic (eV) 2.35 * K.P. Huber and G. Herzberg, Constants of Diatomic Molecule, in W.G. Mallard and P.J. Linstrom, editors, NIST Chemistry Webbook, http://webbook.nist.gov 9 N3+ D∞ h 1Σ g (B3LYP/aug-cc-pVDZ) Structure 1.1891 Vibrational frequencies 1 2 3 4 Symm. Frequency Πu Πu Σg Σu 262.4 521.2 1359.1 1523.7 IR Intensity 6.9 0.2 0.0 27.6 Raman Intensity 0.0 0.0 26.5 0.0 Depolarization Ratio 0.43 0.75 0.19 0.75 N3+ D∞ h 1Σ g (CCSD(T)/cc-pVTZ) Structure 1.1887 Vibrational frequencies 1 2 3 10 Symm. Frequency Πu Σg Σu 307.5 1307.5 1426.4 IR Intensity 6.2 0.0 31.0 Raman Intensity Depolarization Ratio N3+ D∞ h 1Σ g(EOM-CCSD/PBS//B3LYP/aug-cc-pVDZ) Vertical Excitation Energies by EE-STEOM Mult. Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Triplet Triplet Triplet Triplet Triplet Triplet Symmetry Σg Σu Σu Σu Σu Σg Σg Σg Σu Σg Σg Σg Σu Σu Σu Σg Σu Σg Σu Σu Σu Excitation energy (eV) -0.14 4.63 4.93 4.96 5.59 6.35 10.05 10.58 10.63 10.70 11.08 11.19 12.67 13.10 14.41 -1.55 2.84 4.04 4.19 5.02 5.86 Osc. Strength 0 0.024 0 0 0 0 0 0 0.855 0 0 0 0.077 0.108 0.049 0 0 0 0 0 0 Vertical Ionization Potentials by IP-EOM Mult. Doublet Doublet Doublet Doublet Symmetry Σg Σu Σg Σu IP (eV) 20.98 25.30 26.78 26.80 Vertical Electron Affinities by EA-EOM Mult. Doublet Doublet Doublet Doublet Doublet Doublet Doublet Symmetry Σg Σu Σu Σg Σu Σu Σu EA (eV) -12.34 -6.00 -5.50 -3.96 -2.06 -1.99 -1.71 11 N3+ D3h 1A1’(B3LYP/aug-cc-pVDZ) Structure 1.3253 Vibrational frequencies 1 2 Symm. Frequency E’ A1 ’ 1080.0 1612.5 IR Intensity 9.0 0.0 Raman Intensity 5.3 23.5 Depolarization Ratio 0.75 0.06 N3+ D3h 1A1’ (CCSD(T)/cc-pVTZ) Structure 1.3271 Vibrational frequencies 1 2 12 Symm. Frequency E’ A1 ’ 1060.2 1549.8 IR Intensity 7.4 0.0 Raman Intensity 6.8 29.2 Depolarization Ratio 0.75 0.06 N3+ D3h 1A1’ (EOM-CCSD/PBS//B3LYP/aug-cc-pVDZ) Vertical Excitation Energies by EE-STEOM Mult. Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Symmetry E’’ A2’’ A2’’ E’’ A2 ’ A1 ’ A1 ’ A2 ’ A2’’ E’’ A2’’ E’’ A2 ’ A1 ’ E’ Excitation energy (eV) 4.89 4.96 5.13 5.14 9.84 9.92 13.83 13.85 3.59 3.62 3.68 4.19 7.72 7.83 10.52 Osc. Strength 0 0.014 0.004 0 0.035 0.036 0.173 0.177 0 0 0 0 0 0 0 Vertical Ionization Potentials by IP-EOM Mult. Doublet Doublet Doublet Symmetry E’ A1 ’ A2’’ IP (eV) 24.02 26.08 28.41 Vertical Electron Affinities by EA-EOM Mult. Doublet Doublet Doublet Doublet Doublet Doublet Symmetry E’’ A1 ’ E’ A2 ’ E’’ A1 ’ EA (eV) -9.65 -3.06 -2.73 -2.71 -2.14 -0.69 N3 D∞ h 2Σ g (B3LYP/aug-cc-pVDZ) Structure 1.1846 Vibrational frequencies 1 2 3 4 Symm. Frequency Πu Πu Σg Σu 472.1 582.1 1371.8 1714.5 IR Intensity 9.0 1.9 0.0 222.4 Raman Intensity 0.0 0.0 31.5 0.0 Depolarization Ratio 0.69 0.75 0.18 0.75 13 N3- C2v 1A1 (B3LYP/aug-cc-pVDZ) Structure 1.2942 84.76 Vibrational frequencies Symm. Frequency A1 B2 A1 676.8 832.5 1535.2 1 2 3 IR Intensity 0.8 359.0 0.0 Raman Intensity 10.6 50.5 12.6 Depolarization Ratio 0.32 0.75 0.07 N3- C2v 1A1EOM-CCSD/PBS//B3LYP/aug-cc-pVDZ) Vertical Excitation Energies by EE-STEOM Mult. Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Irrep. B2 B1 A2 A2 B1 B3 A1 A1 B1 B2 B2 A2 B1 A2 A1 A1 Excitation energy (eV) 2.22 2.25 3.14 3.57 3.87 4.71 5.10 5.59 1.37 1.55 2.88 3.11 3.38 3.59 5.02 5.53 Vertical Ionization Potentials by IP-EOM Mult. Doublet Doublet Doublet Irrep. A2 A1 B2 IP (eV) 1.37 3.39 6.44 Vertical Electron Affinities by EA-EOM Mult. Doublet Doublet Doublet Doublet Doublet Doublet 14 Irrep. A1 B2 A1 B1 B2 B1 EA (eV) 5.76 5.89 6.14 7.53 8.31 8.45 Osc. Strength 0.023 0.008 0 0 0.023 0.112 0.010 0.062 0 0 0 0 0 0 0 0 N3- D3h 3A1’ (B3LYP/aug-cc-pVDZ) Structure 1.4055 Vibrational frequencies 1 2 Symm. Frequency E’ A1 ’ 894.9 1342.1 IR Intensity 0.0 0.0 Raman Intensity 2.9 34.0 Depolarization Ratio 0.75 0.26 N3- D∞ h 1Σ g (B3LYP/aug-cc-pVDZ) Structure 1.1902 Vibrational frequencies 1 2 3 Symm. Frequency Πu Σg Σu 627.9 1352.0 2072.3 IR Intensity 1.4 0.0 1273.0 Raman Intensity 0.0 37.3 0.0 Depolarization Ratio 0.31 0.18 0.67 N3- D∞ h 1Σ g (CCSD(T)/aug-cc-pVTZ) Structure 1.1897 Vibrational frequencies 1 2 3 Symm. Frequency Πu Σg Σu 662.6 1309.0 2102.6 IR Intensity 12.6 0.0 730.6 Raman Intensity 0.0 63.7 0.0 Depolarization Ratio 0.75 0.16 0.13 15 N3- D∞ h 1Σ g(EOM-CCSD/PBS//B3LYP/aug-cc-pVDZ) Vertical Excitation Energies by EE-STEOM Mult. Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Symmetry Πg Πu Πu Σu Σu Πg Πg Σg Σg Πu Πg Σu Πu Πu Σu Πg Σg Πg Σg Πu Excitation energy (eV) 3.94 4.64 4.66 4.69 5.20 5.66 7.28 7.31 7.70 8.42 3.86 4.20 4.56 4.63 4.80 5.66 6.91 7.16 7.31 8.38 Vertical Ionization Potentials by IP-EOM Mult. Doublet Doublet Doublet Doublet Symmetry Πg Σu Σg Πu IP (eV) 2.53 7.21 8.68 8.82 Vertical Electron Affinities by EA-EOM Mult. Doublet Doublet Doublet Doublet Doublet Doublet Doublet 16 Symmetry Σg Σu Σg Πu Πg Σg Πu EA (eV) 5.50 5.80 7.08 7.51 9.26 10.20 10.46 Osc. Strength 0 0 0.038 0.038 0 0.403 0 0 0 0.077 0 0 0 0 0 0 0 0 0 0 N4+ D2h 2B2u (B3LYP/aug-cc-pVDZ) Structure 1.6314 1.2085 Vibrational frequencies 1 2 3 4 5 6 Symm. Frequency B2u Au B3g Ag B1u Ag 311.8* 365.5 620.9 805.6 1543.5 1844.1 IR Intensity 0.5 0.0 0.0 0.0 1.3 0.0 Raman Intensity 0.0 0.0 0.0 7.4 0.0 20.9 Depolarization Ratio 0.64 0.69 0.75 0.19 0.72 0.09 * asymmetric stretch along the longer bond N4 C2v 3B1 (B3LYP/aug-cc-pVDZ) Structure 90.46 65.03 57.48 1.5423 1.4346 Vibrational frequencies 1 2 3 4 5 6 Symm. Frequency A2 A1 B2 A1 B1 A1 145.7* 692.0 751.0 832.1 959.8 1242.5 IR Intensity 0.0 0.1 5.8 4.0 16.9 0.1 Raman Intensity 7.8 3.5 4.7 4.5 5.7 31.6 Depolarization Ratio 0.75 0.47 0.75 0.66 0.75 0.02 * dissociative mode 17 N4 C2v 3B1 (CCSD(T)/aug-cc-pVDZ) Structure 89.92 65.16 57.42 1.5644 1.4527 Vibrational frequencies 1 2 3 4 5 6 Symm. Frequency A2 A1 A1 B1 B2 A1 188.0 665.4 808.7 891.9 1113.8 1169.3 IR Intensity Raman Intensity Depolarization Ratio 0.0 0.1 3.4 15.3 33.9 0.1 N4 D2d 3A2 (B3LYP/aug-cc-pVDZ) Structure 88.50 1.3758 Vibrational frequencies 1 2 3 4 5 * Symm. Frequency B1 A1 E B2 A1 409.9* 697.2 792.0 1041.9 1272.3 dissociative mode 18 IR Intensity 0 0 0.1 9.6 0 Raman Intensity 11.5 0.5 0.9 0.0 22.1 Depolarization Ratio 0.75 0.71 0.75 0.75 0.03 N4 D2d 3A2 (CCSD(T)/aug-cc-pVDZ) Structure 88.39 1.3943 Vibrational frequencies 1 2 3 4 5 Symm. Frequency B1 A1 B2 A1 E 535.8 656.6 1029.4 1196.5 2570.7 IR Intensity Raman Intensity Depolarization Ratio 0.0 0.0 9.6 0.0 146.4 N4 Td 1A1 (B3LYP/aug-cc-pVDZ) Structure 1.4537 Vibrational frequencies 1 2 3 Symm. Frequency E T2 A1 753.4* 973.7 1362.6 IR Intensity 0.0 3.2 0.0 Raman Intensity 4.2 9.9 41.0 Depolarization Ratio 0.75 0.75 0.00 * rocking around N-N bond N4 Td 1A1 (B3LYP/TZ2P) Structure 1.4512 Vibrational frequencies 1 2 3 Symm. Frequency E T2 A1 752.2* 966.7 1360.5 IR Intensity Raman Intensity Depolarization Ratio 0.0 3.7 0.0 19 N4 Td 1A1 (CCSD(T)/aug-cc-pVTZ) Structure 1.4613 Vibrational frequencies Symm. Frequency E T2 A1 723.9 936.0 1296.2 1 2 3 IR Intensity 0.0 3.3 0.0 Raman Intensity 4.7 10.2 45.6 Depolarization Ratio 0.75 0.75 0.00 N4 Td 1A1(EOM-CCSD/PBS//B3LYP/aug-cc-pVDZ) Vertical Excitation Energies by EE-STEOM Mult. Singlet Singlet Singlet Singlet Triplet Triplet Triplet Triplet Symmetry T1 T2 E T2 T2 T1 A1 T1 Excitation energy (eV) 9.51 10.15 10.21 10.67 7.70 8.78 9.41 9.74 Vertical Ionization Potentials by IP-EOM Mult. Doublet Doublet Symmetry E T2 IP (eV) 14.28 14.38 Vertical Electron Affinities by EA-EOM Mult. Doublet Doublet Doublet Doublet Doublet Doublet 20 Symmetry A1 T2 T1 T2 E T2 EA (eV) 1.68 1.74 3.65 4.19 4.47 5.55 Osc. Strength 0 0.007 0 0 0 0 0 0 N4 D2h 1Ag (B3LYP/aug-cc-pVDZ) Structure 1.5372 1.2562 Vibrational frequencies 1 2 3 4 5 6 Symm. Frequency Au B2u Ag B3g B1u Ag 522.3 559.1 987.8 1048.7 1449.1 1675.6 IR Intensity 0.0 3.7 0.0 0.0 0.0 0.0 Raman Intensity 0.0 0.0 25.5 2.0 0.0 14.8 Depolarization Ratio 0.11 0.74 0.33 0.75 0.73 0.20 Note: not a local minimum structure at higher level of theory 21 N4 D2h 1Ag(EOM-CCSD/PBS//B3LYP/aug-cc-pVDZ) Vertical Excitation Energies by EE-STEOM Mult. Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Irrep. B1u Au B1g B2g B1g B3g B1u Ag B2u B2g B3g Ag B2u B3u B3u Au B1u B1g B1g Au B2g B2u B3g Ag B1u B2g B2u Excitation energy (eV) 1.43 3.91 3.97 5.36 5.46 6.65 7.02 7.04 7.87 7.99 8.29 8.66 8.83 9.80 10.08 10.59 1.05 2.29 3.17 3.45 4.74 5.07 5.83 6.29 6.46 7.19 7.80 Vertical Ionization Potentials by IP-EOM Mult. Doublet Doublet Doublet Irrep. B2u B3u B2g IP (eV) 10.80 13.42 13.69 Vertical Electron Affinities by EA-EOM Mult. Doublet Doublet Doublet Doublet Doublet 22 Irrep. B3g B3u Ag B2u Au EA (eV) -1.61 1.12 1.57 2.10 2.32 Osc. Strength 0.003 0 0 0 0 0 0.001 0 0.049 0 0 0 0 0.202 0.060 0 0 0 0 0 0 0 0 0 0 0 0 N4 C2h 3Bu (B3LYP/aug-cc-pVDZ) Structure 1.1839 1.5055 114.82 Vibrational frequencies 1 2 3 4 5 6 Symm. Frequency Au Bu Ag Ag Bu Ag 77.6* 287.4 520.1 683.5 1779.9 1808.2 IR Intensity 0.7 9.8 0.0 0.0 31.7 0.0 Raman Intensity 0.0 0.0 25.1 6.8 0.0 12.4 Depolarization Ratio 0.45 0.38 0.20 0.46 0.75 0.41 * out of plane bend N4 C2h 3Bu (CCSD(T)/aug-cc-pVDZ) Structure 1.1987 1.5292 113.15 Vibrational frequencies 1 2 3 4 5 6 Symm. Frequency Au Bu Ag Ag Bu Ag 88.6 264.3 493.4 650.2 1681.3 1757.0 IR Intensity Raman Intensity Depolarization Ratio 0.6 7.9 0.0 0.0 28.2 0.0 23 N4- D2h 2B1g (B3LYP/aug-cc-pVDZ) Structure 1.4524 1.3136 Vibrational frequencies 1 2 3 4 5 6 Symm. Frequency Au B2u B3g Ag B1u Ag 599.5* 667.6 1059.3 1110.7 1134.4 1459.0 IR Intensity 0.0 0.6 0.0 0.0 79.8 0.0 Raman Intensity 0.0 0.0 0.8 40.9 0.0 8.1 Depolarization Ratio 0.44 0.50 0.75 0.28 0.73 0.73 * out of plane bend N4- C2h 4Bg (B3LYP/aug-cc-pVDZ) Structure 1.2519 1.3442 121.14 Vibrational frequencies 1 2 3 4 5 6 * Symm. Frequency Au Bu Ag Ag Bu Ag 272.4* 302.1 621.0 1013.6 1299.6 1509.8 out of plane bend 24 IR Intensity 3.3 0.8 0.0 0.0 353.3 0.0 Raman Intensity 0.0 0.0 27.3 57.8 0.0 49.9 Depolarization Ratio 0.63 0.33 0.15 0.64 0.51 0.13 N5+ D3h 1A1’(B3LYP/aug-cc-pVDZ) Structure 59.5 1.469 61.0 1.448 96.6 Vibrational frequencies 1 2 3 4 5 6 Symm. Frequency E’ E” A2 ” A1 ’ E’ A1 ’ 305.4 372.5 464.8 991.7 1047.3 1274.2 IR Intensity 5.8 0 8.9 0 16.5 0 Raman Intensity 5.1 3.9 0 21.9 4.9 21.4 Depolarization Ratio 0.75 0.75 0.75 0.14 0.75 0.01 N5+ D2d 1A1’(B3LYP/aug-cc-pVDZ) Structure 1.422 1.253 63.8 Vibrational frequencies 1 2 3 4 5 6 7 Symm. Frequency E B1 A1 E B2 A1 B2 252.7 444.7 674.4 881.5 1348.1 1569.3 1674.4 IR Intensity 2.0 0 0 0 10.2 0 9.0 Raman Intensity 1.0 1.4 13.1 8.2 2.2 35.5 4.8 Depolarization Ratio 0.75 0.75 0.36 0.75 0.75 0.00 0.75 25 N5+ C2v 1A1 (B3LYP/aug-cc-pVDZ) Structure 1.3082 165.92 111.94 1.1184 Vibrational frequencies 1 2 3 4 5 6 7 8 9 Symm. Frequency A1 B1 B2 A2 A1 A1 B2 B2 A1 185.4* 403.8 419.3 485.1 667.7 862.3 1175.3 2294.1 2349.3 IR Intensity Raman Intensity 6.6 0.0 0.3 0.6 9.0 1.9 0.0 23.7 188.4 0.4 5.8 0.5 0.0 0.8 3.4 135.7 141.6 20.3 Depolarization Ratio 0.57 0.75 0.75 0.75 0.20 0.33 0.75 0.75 0.24 * out of plane bend N5+ C2v 1A1 CCSD(T)/6-311+G(2d) Structure* 1.33 166.4 108.3 1.12 Vibrational frequencies* 1 2 3 4 5 6 7 8 9 * Symm.* A1 B2 B1 A2 A1 A1 B2 B2 A1 Experimental Frequency* 209 CCSD(T) Frequency* 181 Exp. Raman Intensity* strong 871-872 1088 2210-2211 2270-2271 818 weak 2175 2229 weak strong data from N5+: A Novel Homoleptic Polynitrogen Ion as a High Energy Density Material. Karl O. Christe, William W. Wilson, Jeffrey A. Sheehy, and Jerry A. Boatz, Angew Chem Int. Ed. 1999, vol 38, 2004. 26 N5+ C2v 1A1 (EOM-CCSD/PBS//B3LYP/aug-cc-pVDZ) Vertical Excitation Energies by EE-STEOM Mult. Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Irrep. A2 B1 B2 A2 B1 A1 B2 A1 A1 B1 B2 A1 B1 A2 A2 B2 A2 B2 B1 A1 B2 B1 A1 A2 A1 B2 B1 B1 A2 Excitation energy (eV) 5.16 5.85 6.15 7.74 7.93 7.99 8.22 9.51 9.62 9.76 9.77 9.92 10.16 10.32 10.64 11.30 4.80 4.98 5.42 6.12 6.39 7.00 7.07 7.57 7.61 7.68 8.78 8.91 9.03 Osc. Strength 0 0.002 0.154 0 0.001 0.758 0.009 0.122 0.013 0.023 0.068 0.018 0 0 0.073 0 0 0 0 0 0 0 0 0 0 0 0 0 Vertical Ionization Potentials by IP-EOM Mult. Doublet Doublet Doublet Irrep. B1 A1 B2 EA (eV) 18.44 20.49 23.12 Vertical Electron Affinities by EA-EOM Mult. Doublet Doublet Doublet Doublet Irrep. B2 A2 A1 A1 IP (eV) -6.04 -5.63 -5.53 -3.93 27 N5 D2d 2B1 (B3LYP/aug-cc-pVDZ) Structure 1.392 1.327 57.0 61.5 140.6 Vibrational frequencies 1 2 3 4 5 6 7 Symm. Frequency E B2 B1 A1 E A1 B2 311.2 355.3 509.7 677.4 930.6 1355.8 1623.1 IR Intensity 6.3 1835.5 0 0 1.6 0 26.2 Raman Intensity 2.2 14.2 1.4 154.4 2.8 53.6 3.0 Depolarization Ratio 0.75 0.75 0.75 0.37 0.75 0.01 0.75 N5- D3h 1A1’ (B3LYP/aug-cc-pVDZ) Structure 84.16 78.60 1.4716 Vibrational frequencies 1 2 3 4 5 6 * Symm. Frequency E’ A2 ” E’ E” A1 ’ A1 ’ 311.0* 829.1 852.0 874.6 1067.8 1231.2 rocking on triangular plane 28 IR Intensity 67.2 8.3 0.6 0.0 0.0 0.0 Raman Intensity 0.7 0.0 30.9 11.8 10.6 24.1 Depolarization Ratio 0.75 0.74 0.75 0.75 0.04 0.20 N5- D3h 1A1’(EOM-CCSD/PBS//B3LYP/aug-cc-pVDZ) Vertical Excitation Energies by EE-STEOM Mult. Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Symmetry E’ A1 ’ E’ E’’ E’’ E’ A1 ’ A1 ’ A2’’ E’’ E’ A1’’ E’’ E’ E’ E’ E’ A2 ’ A2 ’ A2’’ E’’ A2’’ E’’ Excitation energy (eV) 2.69 2.90 4.82 4.83 4.95 4.95 5.24 5.30 5.80 6.17 0.84 2.85 4.71 4.72 4.74 4.75 5.00 5.08 5.22 5.72 6.01 6.68 6.70 Osc. Strength 0.018 0 0.094 0.097 0.017 0.019 0 0 0.063 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Vertical Ionization Potentials by IP-EOM Mult. Doublet Doublet Doublet Doublet Doublet Symmetry E’ A2’’ E’ A1 ’ E’’ IP (eV) 3.33 4.28 7.23 9.60 10.07 Vertical Electron Affinities by EA-EOM Mult. Doublet Doublet Doublet Doublet Doublet Symmetry A1 ’ A2 ’ A2’’ E’ A1 ’ EA (eV) 5.33 5.36 5.60 5.80 6.63 29 N5- D5h 1A1’ (B3LYP/aug-cc-pVDZ) Structure 1.3291 Vibrational frequencies 1 2 3 4 5 Symm. Frequency E2 ” E2 ’ E2 ’ A1 ’ E1 ’ 769.5* 1016.6 1106.5 1189.7 1243.7 IR Intensity 0.0 0.0 0.0 0.0 17.5 Raman Intensity 0.0 2.4 0.3 38.6 0.0 Depolarization Ratio 0.75 0.75 0.75 0.05 0.65 * out of plane bend N5- D5h 1A1’ (CCSD(T)/aug-cc-pVTZ) Structure 1.3294 Vibrational frequencies 1 2 3 4 5 30 Symm. Frequency E2 ” E2 ’ E2 ’ A1 ’ E1 ’ 754.6 1075.1 1113.3 1207.8 1276.7 IR Intensity 0.0 0.0 0.0 0.0 13.6 Raman Intensity 0.0 1.5 1.8 47.8 0.0 Depolarization Ratio 0.75 0.75 0.75 0.04 0.57 N5- D5h 1A1’(EOM-CCSD/PBS//B3LYP/aug-cc-pVDZ) Vertical Excitation Energies by EE-STEOM Mult. Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Singlet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Symmetry E1’’ E2 ’ E1 ’ E2 ’ E2’’ A2’’ A1’’ E2 ’ E1’’ A2 ’ A1 ’ A2’’ E2 ’ E1 ’ E1’’ E1 ’ E1’’ E2 ’ A2’’ E2’’ E1 ’ E1’’ E2 ’ A1’’ E2’’ Excitation energy (eV) 6.65 6.68 6.74 6.96 7.02 7.47 7.48 7.49 7.67 7.81 7.83 7.88 7.91 7.94 9.76 5.63 5.77 5.95 6.10 6.28 6.87 6.97 7.19 7.33 7.47 Osc. Strength 0 0 0 0.156 0 0.081 0 0 0 0 0.026 0 193800 0.165 0 0 0 0 0 0 0 0 0 0 0 Vertical Ionization Potentials by IP-EOM Mult. Doublet Doublet Doublet Doublet Doublet Symmetry E1 ’ E1’’ E2 ’ A1 ’ A2’’ IP (eV) 5.58 5.65 6.14 9.98 10.58 Vertical Electron Affinities by EA-EOM Mult. Doublet Doublet Doublet Doublet Doublet Symmetry A1 ’ E1 ’ E2 ’ A2’’ E2’’ EA (eV) 5.36 5.95 6.53 7.72 7.84 31 N5- D2d 1A1 (B3LYP/aug-cc-pVDZ) Structure 1.371 1.419 62.3 58.8 Vibrational frequencies 1 2 3 4 5 6 7 32 Symm. Frequency IR Intensity E B2 B1 A1 E A1 B2 362.7 568.1 569.8 643.7 1013.8 1155.1 1607.6 5.3 477.8 0 0 6.5 0 31.4 Raman Intensity 4.7 5.2 0.8 54.6 33.3 14.3 2.9 Depolarization Ratio 0.75 0.75 0.75 0.30 0.75 0.00 0.75 N6+ C2h 2Ag (B3LYP/aug-cc-pVDZ) Structure 64.83 50.34 115.72 1.4711 1.4467 1.2306 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 Symm. Frequency IR Intensity Au Bu Au Bg Ag Ag Au Bu Bg Ag Bu Ag 70.0 262.5 285.3 342.8 423.2 563.2 807.4 833.8 855.6 975.9 1696.3 1710.1 0.0 17.2 0.2 0.0 0.0 0.0 0.9 45.2 0.0 0.0 4.7 0.0 Raman Intensity 0.0 0.0 0.0 0.8 3.4 6.5 0.0 0.0 16.2 14.3 0.0 75.4 Depolarization Ratio 0.41 0.74 0.73 0.75 0.19 0.54 0.73 0.52 0.75 0.30 0.58 0.09 N6+ C2h planar 2Bg (B3LYP/aug-cc-pVDZ) Structure 167.30 109.55 1.3427 1.1233 1.2999 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 Symm. Frequency IR Intensity Au Bu Ag Bg Au Bu Ag Ag Bu Ag Bu Ag 131.2* 160.4 294.5 399.6 448.2 584.0 596.7 980.4 1036.0 1276.5 2191.8 2245.0 0.0 0.4 0.0 0.0 3.5 12.6 0.0 0.0 112.1 0.0 206.7 0.0 Raman Intensity 0.0 0.0 8.0 0.2 0.0 0.0 20.3 10.6 0.0 45.3 0.0 498.6 Depolarization Ratio 0.74 0.75 0.45 0.75 0.40 0.73 0.22 0.74 0.68 0.32 0.72 0.29 * out of plane bend 33 N6+ C2v 2Bg (B3LYP/aug-cc-pVDZ) Structure 1.3288 119.32 1.3064 166.05 1.1268 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 Symm. Frequency IR Intensity A1 A2 B2 B1 A2 A1 B2 B2 A1 A1 B2 A1 122.3* 217.1 283.9 381.4 389.5 530.7 769.1 840.9 844.6 1281.6 2138.7 2189.5 0.0 0.0 1.1 7.0 0.0 0.5 46.4 35.0 12.8 0.7 54.1 35.3 Raman Intensity 9.5 0.0 1.0 0.1 0.3 2.7 12.3 0.5 10.7 13.8 91.8 172.2 Depolarization Ratio 0.57 0.75 0.75 0.75 0.75 0.08 0.75 0.75 0.05 0.30 0.75 0.16 * in plane rocking N6 D3h 1A1’ (B3LYP/aug-cc-pVDZ) Structure 1.4840 1.5245 Vibrational frequencies 1 2 3 4 5 6 7 8 * Symm. Frequency IR Intensity E" A1 " E' E' E" A1 ' A2 " A1 ' 589.3* 600.5 768.6 879.4 948.8 983.8 1043.9 1207.5 0.0 0.0 2.2 14.0 0.0 0.0 7.4 0.0 torsion around C3 axis 34 Raman Intensity 0.1 0.0 4.0 5.8 2.5 37.7 0.0 25.3 Depolarization Ratio 0.75 0.75 0.75 0.75 0.75 0.09 0.75 0.12 N6 D3h 1A1’(EOM-CCSD/PBS//B3LYP/aug-cc-pVDZ) Vertical Excitation Energies by EE-STEOM Mult. Singlet Singlet Singlet Singlet Singlet Triplet Triplet Triplet Triplet Triplet Symmetry A1 ’ A2 ’ E’’ E’ E’’ E’ A1’’ A2’’ E’’ E’ Excitation energy (eV) 5.07 5.08 5.43 6.30 6.36 4.60 4.62 4.63 4.82 5.95 Osc. Strength 0 0 0 0.007 0 0 0 0 0 Vertical Ionization Potentials by IP-EOM Mult. Doublet Doublet Doublet Doublet Doublet Symmetry E’’ E’ A2’’ E’ A1 ’ IP (eV) 12.01 12.52 13.91 16.91 17.38 Vertical Electron Affinities by EA-EOM Mult. Doublet Doublet Doublet Doublet Doublet Symmetry A2’’ A2 ’ E’ A1 ’ A2’’ EA (eV) 0.10 0.94 1.25 1.56 2.34 35 N6 C2 book 1A (B3LYP/aug-cc-pVDZ) Structure 1.4654 85.22 94.77 1.4997 1.2558 94.78 1.4653 109.86 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 36 Symm. Frequency IR Intensity A A B B A A B A A B B A 451.1* 468.4 498.7 604.2 741.9 821.7 901.9 981.1 1012.7 1108.6 1500.4 1575.0 0.0 4.6 4.8 121.3 0.0 2.8 0.0 0.0 1.3 8.3 14.9 1.9 Raman Intensity 0.9 8.3 0.7 1.2 2.2 8.6 0.1 1.7 11.9 0.2 2.4 27.8 Depolarization Ratio 0.75 0.43 0.75 0.75 0.75 0.02 0.75 0.75 0.34 0.75 0.75 0.05 N6 D2 1A (B3LYP/aug-cc-pVDZ) Structure 116.81 121.21 1.3185 1.3274 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 Symm. Frequency IR Intensity B2 A B3 A B2 B3 A B1 A B1 B3 B2 146.9 292.6 294.6 682.9 735.3 858.0 1144.7 1109.5 1122.1 1150.4 1174.8 1369.1 0.0 0.0 8.2 0.0 6.8 9.2 0.0 0.8 0.0 1.9 0.1 2.8 Raman Intensity 0.2 1.0 0.0 2.1 2.0 0.0 31.8 0.1 2.6 1.1 1.0 0.3 Depolarization Ratio 0.75 0.22 0.75 0.74 0.75 0.75 0.05 0.75 0.33 0.75 0.75 0.75 N6 C2h 1Ag (B3LYP/aug-cc-pVDZ) Structure 171.59 109.25 1.4438 1.1402 1.2481 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 Symm. Frequency IR Intensity Au Bu Ag Au Bg Ag Bu Ag Bu Ag Bu Ag 63.0 163.4 284.5 467.4 505.4 597.9 639.6 888.5 1243.7 1300.7 2183.0 2242.0 0.2 2.5 0.0 8.2 0.0 0.0 39.9 0.0 118.5 0.0 1293.2 0.0 Raman Intensity 0.0 0.0 14.3 0.0 0.5 21.5 0.0 23.8 0.0 37.4 0.0 159.1 Depolarization Ratio 0.70 0.74 0.50 0.49 0.75 0.19 0.44 0.53 0.49 0.21 0.75 0.29 Note : not a local minimum at higher level of theory 37 N6 C2h 1Ag (CCSD(T)/cc-pVDZ) Structure 171.54 109.15 1.4672 1.1521 1.2614 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 Symm. Frequency IR Intensity Au Bu Ag Au Bg Ag Bu Ag Bu Ag Bu Ag 20.6i 158.7 276.4 456.6 504.6 584.1 631.4 882.4 1206.2 1266.4 2125.1 2182.3 0.7 2.2 0.0 12.2 0.0 0.0 27.2 0.0 97.2 0.0 1030.6 0.0 Raman Intensity Depolarization Ratio N6 C2 1A (CCSD(T)/cc-pVDZ) Structure 1.2621 1.1520 109.18 1.4675 171.44 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 38 Symm. Frequency IR Intensity A B A A B A B A B A B A 22.0 164.2 275.9 466.9 505.3 585.2 636.1 882.6 1202.2 1261.1 2126.0 2178.5 0.7 2.4 0.0 12.1 1.3 0.2 25.8 0.1 96.8 0.0 1000.7 4.2 Raman Intensity Depolarization Ratio N6- C2 2A (B3LYP/aug-cc-pVDZ) Structure 64.94 1.4577 106.81 1.5014 65.09 1.2676 1.4996 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 Symm. Frequency IR Intensity A B A A B B A A B A B A 177.8 341.6 350.6 520.4 565.8 693.4 739.2 771.2 779.6 856.9 1292.8 1546.8 0.3 2.1 0.0 4.4 62.5 306.2 3.0 0.2 301.2 0.0 1625.6 4.4 Raman Intensity 62.1 1.0 183.5 6.7 4.1 10.2 19.8 32.7 1.9 22.0 8.2 28.3 Depolarization Ratio 0.36 0.75 0.30 0.65 0.75 0.75 0.44 0.13 0.75 0.26 0.75 0.64 N6- Cs 2A’ (B3LYP/aug-cc-pVDZ) Structure 1.3453 126.03 1.1635 1.4405 105.04 1.2086 114.20 1.2231 174.10 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 Symm. Frequency IR Intensity A" A" A" A" A" A' A' A' A' A' A' A' 98.0* 169.3 320.0 392.9 415.2 511.3 661.4 882.4 1016.3 1283.2 1636.8 2145.5 0.0 5.4 1.4 4.7 4.8 5.6 109.0 32.9 192.9 11.0 390.5 936.9 Raman Intensity 0.4 7.0 4.7 14.5 3.2 4.0 11.5 113.5 13.2 168.7 104.1 2.5 Depolarization Ratio 0.75 0.60 0.75 0.49 0.75 0.12 0.18 0.26 0.11 0.29 0.55 0.27 * out of plane bend 39 N7+ C2v 1A1 (B3LYP/aug-cc-pVDZ) Structure 1.3228 165.28 109.58 108.72 1.3009 1.1168 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 * Symm. Frequency IR Intensity A1 B1 A2 B2 A1 A2 B1 A1 B2 B2 A1 A1 B2 B2 A1 129.6* 194.7 218.4 259.3 452.5 505.5 537.8 543.5 718.0 868.8 1054.0 1326.3 1329.7 2310.6 2316.0 0.1 1.1 0.0 0.7 2.8 0.0 2.0 0.0 4.1 279.3 7.7 3.5 828.6 227.0 28.2 out of plane bend 40 Raman Intensity 9.3 0.0 0.0 0.0 0.2 1.6 0.0 19.8 5.8 4.0 33.1 41.8 0.4 64.4 726.5 Depolarization Ratio 0.55 0.75 0.75 0.75 0.21 0.75 0.75 0.22 0.75 0.75 0.42 0.23 0.75 0.75 0.28 N7 Cs 2A’trigonal (B3LYP/aug-cc-pVDZ) Structure 1.510 91.4 1.521 90.0 1.472 101.1 1.516 91.2 99.3 1.416 1.573 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Symm. Frequency IR Intensity A’ A’ A” A” A’ A” A’ A” A’ A” A’ A” A’ A’ A’ 204.4 361.4 416.8 523.9 604.9 695.2 742.5 790.5 841.0 867.8 874.1 932.7 988.4 1067.2 1088.0 14.8 13.0 0.8 0.0 7.8 0.7 5.0 4.7 0.5 0.2 4.4 0.4 12.5 0.5 1.3 Raman Intensity 26.0 1.1 0.0 0.1 9.3 0.4 3.4 4.6 2.8 2.0 8.9 7.2 16.0 0.8 14.2 Depolarization Ratio 0.22 0.56 0.75 0.75 0.25 0.75 0.58 0.75 0.75 0.75 0.22 0.75 0.02 0.25 0.08 41 N7 Cs 2A’(B3LYP/aug-cc-pVDZ) Structure 61.4 1.424 1.479 59.3 105.5 92.9 1.455 109.2 1.462 92.7 1.475 1.482 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 42 Symm. Frequency IR Intensity A” A’ A” A’ A” A’ A’ A” A’ A” A’ A” A’ A’ A’ 352.6 411.0 574.3 624.4 644.4 679.3 711.3 730.3 764.4 780.0 791.0 870.1 998.9 1163.5 1200.4 1.3 2.6 4.7 1.0 19.3 0.3 0.3 2.3 0.7 0.6 1.8 0.6 1.8 4.8 0.3 Raman Intensity 0.2 0.9 2.8 4.0 3.6 2.4 8.8 5.6 2.8 2.4 8.0 0.2 3.4 26.8 13.7 Depolarization Ratio 0.75 0.25 0.75 0.16 0.75 0.42 0.40 0.75 0.32 0.75 0.47 0.75 0.15 0.03 0.02 N7 C2v 2B1 (B3LYP/aug-cc-pVDZ) Structure 105.48 1.3998 109.18 60.92 102.77 1.4582 1.5836 1.4783 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Symm. Frequency IR Intensity B1 B2 A1 A2 B1 B2 B1 A2 A1 A2 A1 B2 A1 A1 B2 275.0 334.6 503.3 512.4 584.8 656.8 696.3 738.6 780.6 879.8 927.3 935.2 962.0 1092.3 1103.7 0.1 0.5 7.0 0.0 17.3 16.4 0.6 0.0 14.6 0.0 13.5 6.5 1.0 0.0 0.0 Raman Intensity 0.3 1.6 11.5 0.0 0.8 0.1 5.5 0.3 28.8 1.8 3.0 1.2 2.9 24.4 0.4 Depolarization Ratio 0.75 0.75 0.38 0.75 0.75 0.75 0.75 0.75 0.20 0.75 0.30 0.75 0.11 0.07 0.75 43 N7 D2d 2A2 (B3LYP/aug-cc-pVDZ) Structure 1.322 1.474 87.0 99.5 86.4 122.1 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 44 Symm. Frequency IR Intensity E B1 A1 E B2 E E A1 B2 A1 B2 116.0 348.7 458.4 506.8 778.7 940.3 1028.0 1088.3 1103.3 1290.6 1364.7 2.7 0 0 15.4 3.3 26.5 3.6 0 155.5 0 93.4 Raman Intensity 3.8 3.1 156.5 0.1 1.7 59.8 56.2 16.3 5.7 27.0 2.7 Depolarization Ratio 0.75 0.75 0.27 0.75 0.75 0.75 0.75 0.11 0.75 0.00 0.75 N7 C2 2B (B3LYP/aug-cc-pVDZ) Structure 167.25 122.09 120.36 1.3608 1.2676 1.1439 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Symm. Frequency IR Intensity A A B B B A A B A A B A B B A 53.2 146.3 173.9 222.0 384.4 385.9 431.2 611.9 866.3 871.4 955.0 1086.0 1105.9 2095.9 2153.0 0.0 0.1 3.4 0.6 5.0 0.2 0.9 9.8 3.0 46.2 22.0 17.7 68.8 245.3 259.8 Raman Intensity 2.3 9.2 4.8 5.9 0.3 0.1 0.4 1.5 11.5 4.3 1.5 39.2 17.4 48.2 52.2 Depolarization Ratio 0.72 0.41 0.75 0.75 0.75 0.54 0.56 0.75 0.24 0.16 0.75 0.12 0.75 0.75 0.09 45 N7 C2v 2B1 (B3LYP/aug-cc-pVDZ) Structure 1.257 170.6 104.7 1.140 112.0 1.368 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 46 Symm. Frequency IR Intensity A1 B1 A2 B2 B1 A2 A1 A1 B2 B2 A1 B2 A1 B2 A1 128.4 133.2 169.1 255.0 431.3 432.0 458.0 559.0 705.6 1035.0 1039.8 1188.2 1260.0 2193.0 2220.0 0.1 0.0 0.0 1.2 6.1 0.0 1.8 0.6 24.6 30.6 11.0 219.8 10.0 1285.0 90.2 Raman Intensity 11.3 0.0 2.1 1.2 0.1 0.5 18.4 6.2 1.2 1.4 75.0 0.1 123.3 28.7 270.6 Depolarization Ratio 0.60 0.75 0.75 0.75 0.75 0.75 0.24 0.13 0.75 0.75 0.42 0.75 0.28 0.75 0.29 N7 Cs 2A’(B3LYP/aug-cc-pVDZ) Structure 1.2897 1.3381 109.49 126.50 1.4763 1.3730 109.11 120.30 119.46 1.1687 104.31 1.3284 1.2916 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Symm. Frequency IR Intensity A’ A” A” A” A’ A” A” A’ A’ A’ A’ A’ A’ A’ A’ 121.4 200.5 217.1 289.9 581.8 666.4 752.1 863.3 1035.7 1071.7 1091.5 1143.6 1292.7 1411.6 1823.6 1.4 1.0 7.6 48.8 40.0 0.2 0.0 63.5 8.3 16.5 14.2 4.8 0.2 8.2 24.7 Raman Intensity 0.1 1.2 7.2 9.9 1.7 0.0 0.0 31.5 0.1 1.4 2.8 0.3 16.1 0.3 30.0 Depolarization Ratio 0.75 0.75 0.34 0.22 0.72 0.75 0.75 0.22 0.46 0.74 0.18 0.34 0.10 0.31 0.21 47 N7- C2v 1A1 (B3LYP/aug-cc-pVDZ) Structure 1.2228 174.46 115.78 102.70 1.4149 1.1694 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 48 Symm. Frequency IR Intensity B1 A2 A1 B2 B1 A2 A1 A1 B2 A1 B2 B2 A1 B2 A1 78.9 108.3 126.2 247.8 272.6 302.8 426.8 549.5 700.7 929.1 937.0 1257.3 1301.2 2132.1 2143.4 2.9 0.0 1.5 25.0 14.4 0.0 2.0 2.4 179.1 3.1 140.1 126.8 15.4 1638.3 110.1 Raman Intensity 0.0 6.7 11.7 7.4 3.2 30.5 37.3 58.5 1.5 380.2 0.1 0.1 602.3 0.3 207.8 Depolarization Ratio 0.75 0.75 0.66 0.75 0.75 0.75 0.31 0.39 0.75 0.33 0.75 0.75 0.30 0.75 0.25 N8 Oh 1A1g (B3LYP/aug-cc-pVDZ) Structure 1.5218 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Symm. Frequency IR Intensity B2u A1u Eg B1g A2u Eu Eg B1g Eu B1u A1g A1g B2g B2u 525.5* 525.7 738.0 738.4 798.8 799.3 856.6 856.6 924.9 925.0 936.3 1033.3 1033.5 1132.5 0.0 0.0 0.0 0.0 10.5 10.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Raman Intensity 0.0 0.0 0.5 0.5 0.0 0.0 2.9 2.9 0.0 0.0 54.2 13.5 13.5 0.0 Depolarization Ratio 0.00 0.00 0.75 0.75 0.20 0.75 0.75 0.75 0.00 0.00 0.00 0.75 0.75 0.60 * torsion around C4 axis 49 N8 D2h 1A1g (B3LYP/aug-cc-pVDZ) Structure 60.38 117.32 1.4621 59.23 1.4793 1.4536 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 50 Symm. Frequency IR Intensity Au B1u B3g Ag B1g B2g B3u B2g Au Ag B1u B2u B2u B1g Ag B3u B3u Ag 195.5* 344.4 490.8 532.3 642.8 661.1 666.9 706.8 716.4 727.8 731.3 733.8 785.1 873.2 922.9 1067.6 1187.5 1228.0 0.0 6.3 0.0 0.0 0.0 0.0 1.3 0.0 0.0 0.0 1.0 0.3 6.5 0.0 0.0 5.7 0.2 0.0 Raman Intensity 0.0 0.0 8.7 15.2 3.0 5.1 0.0 7.2 0.0 16.7 0.0 0.0 0.0 7.4 14.2 0.0 0.0 43.8 Depolarization Ratio 0.00 0.00 0.75 0.22 0.75 0.75 0.75 0.75 0.48 0.33 0.71 0.42 0.70 0.75 0.02 0.00 0.75 0.02 N8 C2h ladder 1Ag (B3LYP/aug-cc-pVDZ) Structure 95.43 84.57 104.82 90.00 1.4933 1.5296 1.4499 1.2552 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Symm. Frequency IR Intensity Au Bu Au Bg Ag Bu Au Bg Ag Ag Bg Au Bu Ag Au Bg Bu Ag 253.6* 304.9 429.4 444.4 447.0 740.4 762.7 790.6 817.1 853.8 900.3 938.5 958.4 1014.9 1103.8 1145.0 1543.8 1572.4 0.6 6.2 1.5 0.0 0.0 3.2 1.6 0.0 0.0 0.0 0.0 0.3 48.4 0.0 5.4 0.0 7.9 0.0 Raman Intensity 0.0 0.0 0.0 3.1 9.4 0.0 0.0 1.1 9.9 19.1 1.3 0.0 0.0 5.9 0.0 0.5 0.0 27.6 Depolarization Ratio 0.00 0.00 0.00 0.75 0.34 0.00 0.00 0.75 0.10 0.14 0.75 0.00 0.68 0.66 0.58 0.75 0.66 0.06 * torsion around C2 axis 51 N8 C2v ring 1A1 (B3LYP/aug-cc-pVDZ) Structure 117.47 117.48 1.2410 1.4285 1.2409 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 52 Symm. Frequency IR Intensity A2 A2 A1 A1 B1 B2 B2 B1 A2 A1 B2 B1 A2 A2 B2 B1 A1 A1 238.2 310.8 337.8 369.1 551.3 551.3 575.4 575.4 665.9 720.9 743.9 743.9 851.7 1035.3 1534.1 1534.4 1540.5 1604.8 0.0 0.0 0.0 2.3 6.3 6.4 13.5 13.6 0.0 0.0 14.2 14.1 0.0 0.0 3.2 3.2 0.0 11.4 Raman Intensity 8.3 0.0 6.5 3.4 0.0 0.0 0.7 0.7 0.2 12.1 2.7 2.7 0.1 0.0 1.0 1.0 16.8 0.6 Depolarization Ratio 0.75 0.75 0.24 0.75 0.75 0.75 0.75 0.75 0.75 0.00 0.75 0.75 0.75 0.75 0.75 0.75 0.01 0.75 N8 C2v 1A1 (B3LYP/aug-cc-pVDZ) Structure 1.1553 1.5713 1.1380 178.56 96.66 106.04 1.2474 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Symm. Frequency IR Intensity B1 B2 A2 A1 B2 A1 A1 B1 A2 B1 B2 A1 B2 B2 A1 A1 B2 A1 55.1 83.2 107.7 112.2 277.4 314.6 388.8 505.5 549.6 557.1 599.4 735.9 815.4 1191.9 1249.5 1909.8 2174.8 2196.5 0.4 177.8 0.0 0.0 206.0 8.3 1.2 2.1 2.5 7.5 185.6 5.2 463.3 413.4 2.7 75.0 1109.6 48.6 Raman Intensity 0.1 6.8 1.9 7.6 20.2 106.7 128.7 0.1 0.2 0.0 4.0 6.9 0.2 0.3 9.9 185.5 24.4 397.6 Depolarization Ratio 0.75 0.75 0.75 0.52 0.75 0.27 0.25 0.75 0.75 0.75 0.75 0.15 0.75 0.75 0.51 0.54 0.75 0.32 53 N8 C1 ZZE 1A (B3LYP/aug-cc-pVDZ) Structure 172.62 1.2554 1.1361 168.41 1.1334 109.95 1.2614 1.2554 116.12 118.26 123.14 1.4152 1.2428 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 54 Symm. Frequency IR Intensity A A A A A A A A A A A A A A A A A A 57.7 96.9 141.0 211.5 307.0 475.6 511.5 541.5 593.6 603.4 804.3 827.6 935.9 1159.6 1238.8 1534.4 2197.2 2244.3 6.1 0.7 0.2 3.1 0.0 36.5 5.4 3.0 1.0 69.1 89.4 67.8 178.6 156.0 186.6 72.2 446.8 647.0 Raman Intensity 2.1 6.4 4.8 3.5 7.4 5.6 1.0 1.3 9.3 16.6 6.7 1.7 7.4 18.6 5.9 21.7 77.9 183.0 Depolarization Ratio 0.65 0.67 0.65 0.23 0.40 0.47 0.75 0.52 0.16 0.41 0.47 0.71 0.28 0.10 0.18 0.18 0.48 0.26 N8 C2h ZEZ 1Ag (B3LYP/aug-cc-pVDZ) Structure 1.1326 115.47 170.42 1.2546 114.89 1.2720 1.3893 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Symm. Frequency IR Intensity Au Bu Ag Bg Au Bu Ag Bg Au Bu Ag Bu Ag Bu Ag Ag Bu Ag 51.2 118.7 161.4 258.0 365.2 371.6 431.5 522.8 526.1 697.3 837.6 1017.3 1019.4 1062.1 1119.3 1473.4 2194.6 2229.9 0.5 1.4 0.0 0.0 0.1 6.8 0.0 0.0 8.8 173.0 0.0 37.8 0.0 537.1 0.0 0.0 979.0 0.0 Raman Intensity 0.0 0.0 22.6 0.4 0.0 0.0 4.0 1.0 0.0 0.0 46.6 0.0 14.1 0.0 121.0 383.5 0.0 244.1 Depolarization Ratio 0.47 0.00 0.45 0.75 0.75 0.00 0.74 0.75 0.60 0.53 0.52 0.54 0.12 0.50 0.27 0.30 0.66 0.34 55 N8 Cs 1A’(B3LYP/aug-cc-pVDZ) Structure 1.2527 114.25 1.2738 1.3986 108.92 115.80 110.04 1.2578 170.17 170.67 1.1324 1.1351 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 56 Symm. Frequency IR Intensity A A A A A” A’ A A A” A’ A’ A’ A’ A’ A’ A’ A’ A’ 92.6 98.4 200.2 205.6 358.9 383.8 464.6 518.6 528.2 637.9 793.9 982.7 1047.7 1093.0 1232.1 1513.9 2199.8 2238.2 0.0 1.3 0.4 0.8 0.2 7.4 14.5 3.0 4.6 40.8 52.2 19.5 230.2 50.5 253.2 1.1 630.0 467.4 Raman Intensity 1.0 16.2 3.7 0.4 0.2 6.2 4.4 0.2 0.0 18.6 22.0 11.3 18.4 104.2 44.4 298.5 101.2 124.3 Depolarization Ratio 0.75 0.56 0.74 0.75 0.75 0.36 0.20 0.75 0.75 0.39 0.26 0.69 0.22 0.32 0.19 0.32 0.73 0.16 N8 D2h planar 1A1g (B3LYP/aug-cc-pVDZ) Structure 141.33 109.33 113.92 1.3357 103.70 1.3244 1.3363 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Symm. Frequency IR Intensity B3u Au B2u B2g Ag B3u B1g B3g B1u B2u Ag B1u Ag B3g Ag B2u B1u B3g 252.5* 376.1 469.1 686.1 692.7 702.1 725.9 842.2 968.2 1022.8 1050.9 1110.5 1179.6 1180.3 1291.8 1316.8 1319.4 1400.1 10.4 0.0 0.7 0.0 0.0 0.1 0.0 0.0 6.2 72.1 0.0 3.6 0.0 0.0 0.0 7.1 10.7 0.0 Raman Intensity 0.0 0.0 0.0 0.0 14.4 0.0 0.0 10.4 0.0 0.0 27.2 0.0 20.4 5.3 5.4 0.0 0.0 1.5 Depolarization Ratio 0.75 0.33 0.33 0.75 0.15 0.00 0.75 0.75 0.24 0.33 0.07 0.53 0.09 0.75 0.67 0.34 0.58 0.75 * out of plane bend 57 N8 C2h EEE 1Ag (B3LYP/aug-cc-pVDZ) Structure 1.2590 1.2505 109.96 170.38 108.23 1.3965 1.1344 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 * Symm. Frequency IR Intensity Au Bu Bg Ag Au Bu Ag Au Bg Ag Bu Bu Ag Ag Bu Ag Bu Ag 67.1* 115.4 200.7 204.8 340.1 393.4 462.1 521.6 523.3 657.6 733.5 958.7 1091.4 1230.1 1230.2 1555.8 2216.4 2247.5 0.3 1.8 0.0 0.0 1.2 30.4 0.0 6.9 0.0 0.0 38.0 98.3 0.0 0.0 706.8 0.0 1811.2 0.0 out of plane bend 58 Raman Intensity 0.0 0.0 0.1 29.5 0.0 0.0 5.0 0.0 0.6 40.9 0.0 0.0 279.4 106.2 0.0 393.4 0.0 374.4 Depolarization Ratio 0.58 0.00 0.75 0.46 0.56 0.00 0.09 0.75 0.75 0.40 0.00 0.43 0.34 0.25 0.50 0.33 0.48 0.32 N8 C2v EZE 1A1 (B3LYP/aug-cc-pVDZ) Structure 1.2415 1.4156 1.1343 115.44 109.86 1.2562 171.47 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Symm. Frequency IR Intensity B1 A1 A2 B2 A1 A2 B1 A2 A1 B2 B2 A1 B2 A1 B2 A1 B2 A1 76.2 113.2 130.2 228.5 285.5 521.7 538.6 583.6 589.8 616.2 716.9 878.3 957.2 1229.8 1235.4 1576.7 2218.0 2248.2 0.0 0.0 0.0 1.1 1.1 0.0 7.9 0.0 0.3 160.8 102.7 21.1 472.0 13.7 394.4 55.8 1822.4 1.7 Raman Intensity 0.0 0.4 2.4 4.6 23.6 0.0 0.0 1.9 42.7 0.2 2.2 50.3 0.3 24.9 0.5 18.6 1.5 487.3 Depolarization Ratio 0.75 0.59 0.75 0.75 0.30 0.75 0.75 0.75 0.22 0.75 0.75 0.50 0.75 0.21 0.75 0.17 0.75 0.30 59 N8 Cs pentagonal 1A’ (B3LYP/aug-cc-pVDZ) Structure 1.3217 1.3876 1.3074 1.2606 103.90 111.14 109.31 169.36 113.33 1.3451 109.32 103.92 126.64 1.3285 1.1329 1.3058 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 * Symm. Frequency IR Intensity A" A' A" A' A" A' A" A" A' A' A' A' A' A' A' A' A' A' 44.0* 156.3 275.7 402.0 486.2 542.1 693.0 749.1 783.2 984.2 1070.5 1117.7 1147.1 1201.6 1236.4 1373.3 1406.9 2250.8 0.0 0.4 3.3 1.6 3.2 0.1 0.6 0.0 10.1 50.1 0.5 1.1 2.2 43.4 1.0 8.5 71.1 408.5 out of plane bend 60 Raman Intensity 0.3 6.3 1.2 3.4 0.1 5.3 0.0 0.0 4.3 26.5 0.5 14.1 3.3 4.4 6.9 42.9 60.9 78.1 Depolarization Ratio 0.75 0.52 0.75 0.51 0.75 0.10 0.75 0.75 0.75 0.22 0.41 0.20 0.32 0.11 0.13 0.26 0.24 0.32 N8- C2h 2Bg (B3LYP/aug-cc-pVDZ) Structure 1.2346 1.3443 115.31 172.73 1.1632 105.61 1.3948 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Symm. Frequency IR Intensity Au Bu Au Bg Ag Bg Au Bu Ag Ag Bu Bu Ag Bu Ag Ag Bu Ag 63.8 110.8 139.3 165.5 202.0 271.4 272.2 376.9 434.7 630.9 708.2 897.4 962.0 1198.3 1206.6 1281.6 2115.3 2144.6 0.1 2.7 4.2 0.0 0.0 0.0 13.7 20.2 0.0 0.0 144.4 63.1 0.0 45.9 0.0 0.0 2458.2 0.0 Raman Intensity 0.0 0.0 0.0 0.3 32.2 71.9 0.0 0.0 4.3 267.0 0.0 0.0 1741.7 0.0 823.3 290.1 0.0 307.1 Depolarization Ratio 0.60 0.75 0.24 0.75 0.59 0.75 0.53 0.72 0.30 0.32 0.71 0.58 0.32 0.52 0.32 0.38 0.44 0.24 61 N8- C2h ZEZ 2Bg (B3LYP/aug-cc-pVDZ) Structure 119.54 168.78 1.3326 1.1614 111.44 1.2568 1.3807 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 62 Symm. Frequency IR Intensity Au Au Bu Bg Ag Au Bg Bu Ag Bu Ag Bu Ag Bu Ag Ag Bu Ag 18.3 90.7 117.7 153.4 168.2 276.7 299.8 364.7 420.2 655.6 827.6 982.3 994.9 1024.7 1047.5 1247.3 2057.7 2099.2 2.8 4.6 3.3 0.0 0.0 0.9 0.0 30.9 20.1 3.3 0.0 211.4 0.0 37.7 0.0 0.0 1634.6 0.0 Raman Intensity 0.0 0.0 0.0 26.6 54.6 0.0 0.6 0.0 20.1 0.0 9.2 0.0 167.7 0.0 1357.5 5.4 0.0 12.6 Depolarization Ratio 0.74 0.62 0.75 0.75 0.43 0.68 0.75 0.70 0.61 0.45 0.52 0.45 0.39 0.36 0.31 0.23 0.65 0.36 N9+ C2v rings 1A1 (B3LYP/aug-cc-pVDZ) Structure 128.72 115.05 123.09 121.86 104.96 1.4724 111.23 1.3304 1.4213 1.2410 1.3061 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Symm. Frequency IR Intensity A2 B1 B2 B1 A1 B2 A1 A2 B1 A2 A1 B2 B2 A1 A1 A1 B2 A1 B2 A1 B2 116.0 178.6 328.8 382.8 433.8 526.7 532.4 599.4 722.2 725.7 757.0 810.3 1018.3 1045.5 1108.2 1170.4 1180.9 1281.2 1371.6 1505.2 1551.7 0.0 5.0 5.4 8.3 64.0 1.9 0.3 0.0 0.2 0.0 7.7 0.0 1.0 8.4 94.6 23.0 7.0 0.3 2.0 13.1 0.1 Raman Intensity 0.1 0.0 0.0 0.8 4.1 2.2 6.5 0.0 0.0 0.0 7.7 0.0 2.7 14.4 44.8 12.3 1.6 2.4 0.0 11.4 0.4 Depolarization Ratio 0.75 0.75 0.75 0.75 0.09 0.75 0.72 0.75 0.75 0.75 0.66 0.75 0.75 0.08 0.14 0.12 0.75 0.06 0.75 0.06 0.75 63 N9+ C2v 1A1 (B3LYP/aug-cc-pVDZ) Structure 1.3174 1.3281 108.23 164.92 105.15 109.83 1.2985 1.1170 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 64 Symm. Frequency IR Intensity A1 B1 A2 B2 B1 A2 A1 A1 B2 B1 A2 B2 A1 B2 A1 B2 B2 A1 A1 B2 A1 93.8 107.8 144.5 189.3 288.8 299.6 304.7 433.9 525.4 526.1 545.3 694.0 715.3 869.7 936.1 1196.9 1325.7 1350.9 1393.7 2298.9 2305.6 1.0 0.0 0.0 3.8 2.4 0.0 2.8 0.0 17.2 1.6 0.0 91.8 1.4 1088.2 9.6 1718.3 11.0 0.2 5.8 389.4 33.3 Raman Intensity 12.2 0.1 0.0 0.0 0.0 2.4 0.5 30.1 5.0 0.1 0.9 0.1 42.1 21.0 105.4 0.1 0.2 9.0 232.9 133.5 1691.4 Depolarization Ratio 0.52 0.75 0.75 0.75 0.75 0.75 0.29 0.21 0.75 0.75 0.75 0.75 0.37 0.75 0.35 0.75 0.75 0.18 0.31 0.75 0.29 N9 C2v rings 2B1 (B3LYP/aug-cc-pVDZ) Structure 127.80 111.77 125.00 105.36 123.24 1.2935 111.35 1.3246 1.3500 1.3775 1.3168 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Symm. Frequency IR Intensity B1 A2 B1 B2 A1 B2 A2 A2 A1 B1 B2 A1 B2 A1 B2 A1 A1 B2 A1 B2 A1 104.1 187.6 363.3 421.0 549.3 578.5 591.5 692.4 695.4 718.2 823.4 884.3 951.1 1050.5 1065.8 1138.7 1179.1 1212.4 1260.1 1377.8 1394.4 3.0 0.0 13.3 1.3 0.5 10.4 0.0 0.0 17.2 0.4 37.4 27.0 12.1 0.2 0.1 2.2 15.1 0.0 0.2 0.5 23.5 Raman Intensity 0.0 0.1 0.3 0.2 8.9 14.1 0.0 0.0 8.6 0.0 0.1 39.0 0.3 5.2 3.9 12.0 9.7 0.4 19.0 1.2 19.2 Depolarization Ratio 0.75 0.75 0.75 0.75 0.17 0.75 0.75 0.75 0.72 0.75 0.75 0.10 0.75 0.09 0.75 0.21 0.75 0.75 0.10 0.75 0.42 65 N9 C2v 2A2 (B3LYP/aug-cc-pVDZ) Structure 1.3058 169.80 1.2632 106.97 111.33 108.28 1.1355 1.3682 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 66 Symm. Frequency IR Intensity B1 A1 A2 B2 A2 A1 B1 A1 B1 A2 B2 A1 A2 B2 B2 A1 A1 B2 A1 B2 A1 88.3 95.3 124.1 186.8 267.2 300.5 309.0 439.9 483.5 489.8 532.8 703.8 718.8 1008.6 1044.9 1133.7 1210.0 1239.1 1356.9 2197.6 2222.2 0.2 0.1 0.0 0.4 0.0 1.8 0.1 0.1 5.8 0.0 17.2 47.4 3.9 167.9 211.0 9.8 6.4 353.5 2.2 1906.9 99.9 Raman Intensity 0.1 1.2 2.2 1.7 0.0 25.4 0.0 11.7 0.1 0.7 0.1 3.8 37.4 0.0 18.4 3.5 246.2 2.5 1.0 53.1 681.1 Depolarization Ratio 0.75 0.56 0.75 0.75 0.75 0.35 0.75 0.12 0.75 0.75 0.75 0.75 0.42 0.75 0.75 0.59 0.29 0.75 0.38 0.75 0.30 N9- C2 1A (B3LYP/aug-cc-pVDZ) Structure 172.72 118.77 111.07 113.90 1.2973 1.4371 1.2403 1.1536 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Symm. Frequency IR Intensity A A B B A A B A B A B B A B A A B B A B A 32.6 81.3 125.7 150.3 287.3 299.1 318.0 437.2 448.3 454.5 464.4 756.7 763.8 853.1 960.0 1176.9 1191.6 1310.6 1311.4 2112.9 2146.1 0.0 0.7 2.2 2.0 0.8 1.7 2.5 1.0 7.2 0.0 11.5 127.4 45.6 44.3 0.7 29.7 6.2 461.2 32.3 278.6 729.4 Raman Intensity 2.4 13.6 0.8 22.1 2.0 14.5 1.5 22.3 1.6 1.5 0.1 22.8 3.8 26.3 135.8 411.7 78.2 2.3 47.1 50.3 20.8 Depolarization Ratio 0.75 0.34 0.75 0.75 0.56 0.29 0.75 0.64 0.75 0.03 0.75 0.75 0.51 0.75 0.31 0.16 0.75 0.75 0.52 0.75 0.61 67 N9- C2v 1A1 (B3LYP/aug-cc-pVDZ) Structure 1.2285 173.55 1.2933 113.24 1.1572 105.89 113.12 1.4400 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 68 Symm. Frequency IR Intensity B1 A2 A1 B2 A1 A2 B1 A1 A2 B1 B2 B2 A1 B2 A1 B2 A1 A1 B2 B2 A1 58.6 92.0 95.6 185.9 275.1 284.8 341.4 394.3 450.2 451.7 557.2 644.9 712.9 861.4 996.6 1269.6 1274.9 1327.2 1382.9 2142.2 2166.2 0.6 0.0 0.1 15.7 2.5 0.0 0.8 0.3 0.0 9.4 94.0 45.8 3.3 49.2 1.8 55.3 10.7 4.6 890.0 2695.6 117.7 Raman Intensity 0.0 10.2 4.3 4.1 114.8 5.5 0.8 41.0 4.8 0.2 2.6 1.1 135.9 0.1 762.7 0.0 755.5 291.3 2.8 7.8 1.3 Depolarization Ratio 0.75 0.75 0.72 0.75 0.38 0.75 0.75 0.49 0.75 0.75 0.75 0.75 0.39 0.75 0.28 0.75 0.29 0.38 0.75 0.75 0.65 N9- Cs 1A’(B3LYP/aug-cc-pVDZ) Structure 1.3356 1.3375 1.2269 109.62 104.27 1.3158 128.96 109.89 113.90 1.1593 106.70 111.79 1.3452 104.43 1.3282 172.98 1.4140 1.3389 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Symm. Frequency IR Intensity A” A” A’ A’ A’ A” A’ A’ A” A” A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ 63.0 103.6 135.3 282.2 309.9 397.4 462.1 613.0 714.5 729.8 842.6 951.2 1005.8 1054.0 1098.8 1137.8 1235.8 1284.1 1341.6 1398.4 2164.4 0.8 0.1 3.4 4.8 4.9 4.5 1.5 52.8 1.4 0.4 13.2 35.2 2.0 55.0 5.5 68.1 0.5 22.4 5.2 474.3 1127.8 Raman Intensity 5.1 3.0 6.2 22.6 0.2 3.0 3.0 3.8 0.0 0.1 34.5 154.9 86.6 88.0 11.0 10.7 15.4 252.4 81.9 34.2 1.0 Depolarization Ratio 0.75 0.75 0.75 0.35 0.75 0.75 0.19 0.65 0.75 0.75 0.41 0.35 0.37 0.18 0.74 0.70 0.06 0.30 0.34 0.30 0.74 69 N10+ C1 2A (B3LYP/aug-cc-pVDZ) Structure 1.2768 117.47 1.3743 112.41 1.1277 168.96 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 70 Symm. Frequency IR Intensity A A A A A A A A A A A A A A A A A A A A A A A A 52.4 82.8 83.0 152.7 152.8 213.2 314.3 392.4 392.4 445.1 448.3 448.4 507.2 689.4 689.4 825.9 1084.6 1084.7 1209.2 1259.8 1259.9 2244.2 2244.3 2251.9 1.3 0.0 0.0 0.6 0.6 0.9 3.4 0.6 0.6 8.1 1.2 1.2 0.0 0.2 0.2 0.1 19.4 19.4 3.4 340.8 340.0 390.5 389.1 14.0 Raman Intensity 0.8 6.7 6.7 6.5 6.5 11.8 0.4 4.4 4.4 0.0 1.1 1.2 18.2 5.7 5.7 2.0 21.4 21.4 1.4 39.9 40.0 105.8 105.8 506.6 Depolarization Ratio 0.74 0.75 0.75 0.75 0.75 0.10 0.04 0.75 0.75 0.75 0.75 0.75 0.08 0.75 0.75 0.00 0.75 0.75 0.01 0.75 0.75 0.75 0.75 0.11 N10+ C1 chain 2A (B3LYP/aug-cc-pVDZ) Structure 1.3019 166.64 1.3295 109.63 1.2571 1.3325 112.65 116.38 116.35 112.68 1.2570 1.1210 1.1210 1.3296 109.64 166.64 1.3019 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Symm. Frequency IR Intensity A A A A A A A A A A A A A A A A A A A A A A A A 39.8 73.5 147.8 153.2 177.7 184.2 241.3 275.9 373.3 437.7 472.0 507.3 521.1 654.1 693.4 970.3 975.6 1101.1 1179.1 1268.8 1310.8 1492.4 2279.9 2289.1 1.6 1.0 0.1 22.2 0.0 0.0 7.7 1.2 0.0 0.0 158.5 0.0 17.6 0.4 0.0 78.4 0.0 0.0 1577.2 55.6 421.7 352.1 971.6 0.0 Raman Intensity 0.0 0.0 31.8 0.1 2.9 1.2 0.0 0.0 49.6 3.6 0.0 19.3 0.0 0.0 343.7 0.0 8.1 34.9 0.0 55.6 421.7 0.0 0.0 1924.7 Depolarization Ratio 0.37 0.67 0.42 0.44 0.74 0.36 0.73 0.44 0.30 0.44 0.37 0.36 0.57 0.28 0.32 0.69 0.75 0.60 0.24 0.31 0.31 0.34 0.32 0.32 71 N10 C2v 1A1 (B3LYP/aug-cc-pVDZ) Structure 1.4132 57.56 1.4611 120.47 1.5675 110.53 1.4620 117.07 1.4971 92.02 1.5325 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 72 Symm. Frequency IR Intensity A2 B1 A1 B1 B2 B2 A1 A2 B1 A1 A2 A2 A1 A2 B1 B2 A1 B1 B2 B2 A2 A1 B2 A1 274.0 319.7 416.4 426.9 520.2 529.5 607.1 607.2 627.4 664.4 726.5 750.9 759.6 807.3 807.7 810.0 860.1 873.3 909.3 980.0 1040.8 1042.3 1064.7 1121.4 0.0 0.2 23.2 12.7 0.0 1.3 12.9 0.0 1.4 7.5 0.0 0.0 0.2 0.0 1.3 0.6 1.3 0.1 0.1 1.4 0.0 1.2 0.9 2.8 Raman Intensity 0.4 0.6 11.2 1.8 4.6 1.3 3.5 2.2 1.0 5.6 5.8 1.0 31.2 0.0 0.8 1.2 18.4 1.2 0.0 0.0 0.1 7.2 0.0 19.4 Depolarization Ratio 0.75 0.75 0.61 0.75 0.75 0.75 0.58 0.75 0.75 0.51 0.75 0.75 0.04 0.75 0.75 0.75 0.00 0.75 0.75 0.75 0.75 0.34 0.75 0.01 N10 D5h 1A1’(B3LYP/aug-cc-pVDZ) Structure 1.5207 1.4984 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Symm. Frequency IR Intensity E2’’ A1’’ E2 ’ E1’’ E2’’ A2’’ E2 ’ A1 ’ E1 ’ E1’’ E2 ’ E1 ’ A1 ’ E2’’ 470.3 642.5 664.9 713.2 715.6 719.2 773.0 839.4 854.9 874.7 954.0 962.1 1017.0 1049.6 0.0 0.0 0.0 0.0 0.0 10.9 0.0 0.0 3.5 0.0 0.0 1.5 0.0 0.0 Raman Intensity 0.0 0.0 0.6 2.8 0.0 0.0 6.2 53.2 0.0 1.3 0.3 0.0 18.8 0.0 Depolarization Ratio 0.75 0.74 0.75 0.75 0.75 0.75 0.75 0.02 0.33 0.75 0.75 0.28 0.35 0.75 73 N10 Cs 1A’7-ring (B3LYP/aug-cc-pVDZ) Structure 1.486 1.498 87.2 117.3 114.0 1.452 1.565 1.437 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 74 Symm. Frequency IR Intensity A’’ A’ A’’ A’ A’ A’’ A’ A‘ A‘’ A‘ A‘’ A‘ A‘’ A‘’ A‘ A‘’ A‘ A‘’ A‘ A‘’ A‘ A’ A’ A’ 174.0 279.8 440.9 489.0 524.7 540.0 589.8 622.6 648.9 708.4 721.9 742.8 754.4 786.1 815.1 913.0 927.2 967.7 971.2 992.9 995.6 1076.6 1082.0 1214.4 0.6 3.4 0.4 2.8 2.6 0.5 4.2 0.1 0.1 0.8 0.4 12.2 16.2 0.2 3.3 0.8 5.2 0.4 7.1 0.2 0.5 1.4 0.7 0.6 Raman Intensity 0.2 1.0 1.1 5.3 7.5 3.0 6.5 9.3 1.3 7.8 8.8 3.4 1.6 1.3 14.0 1.3 3.2 0.6 0.4 1.3 1.3 28.6 1.4 21.7 Depolarization Ratio 0.75 0.43 0.75 0.59 0.11 0.75 0.43 0.32 0.75 0.55 0.75 0.73 0.75 0.75 0.01 0.75 0.73 0.75 0.72 0.75 0.42 0.01 0.42 0.02 N10 C2 1A (B3LYP/aug-cc-pVDZ) Structure 1.489 1.510 1.447 60.4 1.494 1.430 1.542 1.509 1.415 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Symm. Frequency IR Intensity A A B B A A B A B A B B A A A B B B A A A B A B 302.7 411.6 492.7 505.6 605.7 622.5 627.1 705.0 715.4 736.6 738.5 778.6 779.0 785.8 854.2 861.4 883.8 934.9 946.1 971.5 987.7 1054.9 1074.1 1094.5 0.0 0.1 3.9 6.5 5.8 0.6 12.5 2.5 0.0 0.0 6.2 1.0 1.4 0.2 0.0 2.4 2.5 3.5 8.7 0.4 0.3 0.7 0.9 5.1 Raman Intensity 0.2 1.0 0.0 0.2 7.9 14.3 0.0 6.3 5.6 7.0 2.1 7.0 16.0 0.6 2.2 2.6 1.0 0.5 2.0 2.8 4.9 0.7 29.8 0.2 Depolarization Ratio 0.42 0.71 0.75 0.75 0.75 0.21 0.75 0.09 0.75 0.24 0.75 0.75 0.04 0.75 0.75 0.75 0.75 0.75 0.41 0.09 0.05 0.75 0.01 0.75 75 N10 C2v 1A1 (B3LYP/aug-cc-pVDZ) Structure 1.429 1.494 93.2 103.0 1.495 1.464 106.0 108.5 59.7 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 76 Symm. Frequency IR Intensity A2 A1 B1 A2 B2 A1 B1 B2 A1 A2 A1 B2 A2 A1 B1 A1 A A B2 B1 A2 A1 B2 A1 189.1 232.3 368.4 490.8 529.7 538.0 583.4 677.2 702.6 712.5 753.2 779.7 799.5 833.1 849.1 878.3 889.0 896.7 1005.5 1014.8 1047.2 1064.8 1194.0 1199.2 0.0 1.2 1.4 0.0 4.1 0.0 0.0 1.5 1.0 0.0 1.2 4.9 0.0 0.1 1.6 3.5 9.6 0.7 4.0 0.8 0.0 0.4 0.4 0.8 Raman Intensity 0.1 1.3 0.9 0.3 0.9 5.7 8.3 12.5 7.8 6.2 17.8 0.0 5.6 1.6 0.0 4.1 0.1 0.1 0.0 0.3 1.6 6.2 0.2 49.9 Depolarization Ratio 0.75 0.26 0.75 0.75 0.75 0.20 0.75 0.75 0.08 0.75 0.17 0.75 0.75 0.61 0.75 0.24 0.75 0.75 0.75 0.75 0.75 0.06 0.75 0.03 N10 C1 1A (B3LYP/aug-cc-pVDZ) Structure 1.136 1.460 108.6 104.8 171.5 1.256 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Frequency IR Intensity 27.4 28.8 41.9 139.3 214.1 214.4 405.7 405.8 484.1 505.4 535.9 536.2 542.5 684.8 685.4 870.0 871.4 910.3 1188.8 1189.0 1242.0 2207.4 2207.6 2228.1 0.1 0.1 0.1 0.2 1.0 1.1 3.1 3.0 4.6 0.2 2.9 2.8 0.0 34.8 33.6 70.3 71.0 0.2 158.7 158.7 45.1 550.8 552.4 237.9 Raman Intensity 7.6 7.6 4.4 5.9 2.2 2.2 2.1 2.1 0.3 31.8 0.3 0.3 0.2 8.8 8.6 18.0 17.8 8.1 0.6 0.6 10.9 83.4 82.9 137.5 Depolarization Ratio 0.75 0.75 0.72 0.42 0.75 0.75 0.75 0.75 0.15 0.03 0.75 0.75 0.74 0.75 0.75 0.75 0.75 0.10 0.75 0.75 0.00 0.75 0.75 0.06 77 N10 C3 1A (B3LYP/aug-cc-pVDZ) Structure 1.4612 1.4674 106.59 103.54 1,2297 111.60 106.21 1.4610 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 78 Symm. Frequency IR Intensity E A E A E A A E E A E A A E E A 200.3 372.3 467.7 492.9 543.7 551.2 670.6 713.2 780.2 830.6 899.0 966.8 993.2 1061.9 1601.2 1622.5 2.3 3.5 34.6 0.0 18.3 0.0 7.3 16.1 0.0 0.6 10.7 0.0 0.0 4.6 20.3 20.2 Raman Intensity 2.2 8.6 0.6 0.0 6.3 0.0 13.4 1.7 0.3 13.0 0.9 0.0 0.4 0.4 0.6 27.9 Depolarization Ratio 0.75 0.25 0.75 0.05 0.75 0.00 0.00 0.75 0.75 0.00 0.75 0.23 0.60 0.75 0.75 0.05 N10 C1 1A n5-ring (B3LYP/aug-cc-pVDZ) Structure 104.6 1.293 109.1 1.333 1.128 118.7 1.382 1.364 111.6 114.9 1.338 109.5 168.3 1.254 115.6 1.290 1.294 104.2 1.362 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Frequency IR Intensity 30.7 104.8 117.4 207.9 262.3 373.8 409.0 506.2 538.7 674.6 697.4 748.6 897.7 939.7 953.3 1048.6 1081.6 1100.5 1183.9 1248.7 1352.4 1411.1 1519.1 2228.5 30.7 104.8 117.4 207.9 262.3 373.8 409.0 506.2 538.7 674.6 697.4 748.6 897.7 939.7 953.3 1048.6 1081.6 1100.5 1183.9 1248.7 1352.4 1411.1 1519.1 2228.5 Raman Intensity 0.0 2.1 1.7 0.5 0.2 0.2 0.3 8.7 4.6 112.9 0.3 0.0 226.2 51.3 1.8 149.1 45.6 1.9 19.0 53.1 10.1 10.2 63.5 340.6 Depolarization Ratio 0.75 0.58 0.74 0.35 0.75 0.72 0.75 0.20 0.26 0.33 0.72 0.75 0.30 0.14 0.40 0.41 0.58 0.24 0.61 0.63 0.25 0.36 0.31 0.34 79 N10 Cs 1A’(B3LYP/aug-cc-pVDZ) Structure 1.3334 1.2919 104.71 1.3824 1.2503 118.68 110.71 109.16 1.3657 109.48 1.3783 104.30 1.2690 108.61 128.96 109.62 169.45 1.3396 1.1300 1.3657 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 80 Symm. Frequency IR Intensity A” A” A’ A” A’ A’ A’ A’ A’ A” A” A” A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ 46.7 104.8 162.2 184.4 247.3 391.4 402.5 476.0 529.1 697.3 704.0 748.9 823.8 900.5 1035.7 1086.1 1097.3 1188.7 1199.1 1250.1 1352.7 1417.3 1566.1 1149.6 0.0 0.6 2.2 1.0 0.4 3.2 0.0 30.3 3.0 0.3 4.5 0.0 63.9 144.6 35.1 26.7 7.4 138.3 220.8 99.7 34.4 3.2 77.3 713.0 Raman Intensity 0.4 9.3 0.9 0.2 5.6 2.0 1.2 6.2 0..3 0.0 18.9 0.0 19.2 74.4 22.2 4.0 48.6 108.9 33.9 37.1 278.8 7.2 458.6 236.3 Depolarization Ratio 075 0.54 0.75 0.75 0.55 0.06 0.75 0.35 0.75 0.75 0.33 0.75 0.31 0.26 0.45 0.33 0.25 0.37 0.17 0.64 0.26 0.40 0.32 0.32 N10 D2d 1A1 (B3LYP/aug-cc-pVDZ) Structure 104.15 1.3528 1.3756 109.52 123.66 1.3418 1.2843 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Symm. Frequency IR Intensity B1 E A1 E E A2 B1 A1 B2 E B2 A1 E B2 A1 B2 E A1 66.1 108.4 428.9 434.4 675.1 738.8 763.4 853.4 874.6 1052.2 1086.6 1095.1 1135.7 1140.0 1258.6 1306.7 1432.9 1512.2 0.0 3.6 0.0 0.4 0.0 0.0 0.0 0.0 54.8 0.5 52.6 0.0 1.4 2.5 0.0 8.5 5.9 0.0 Raman Intensity 3.5 1.4 12.1 0.0 0.1 0.0 0.0 10.7 0.3 2.0 1.1 21.3 0.1 0.0 18.2 6.5 0.2 85.8 Depolarization Ratio 0.75 0.75 0.22 0.75 0.75 0.13 0.75 0.12 0.75 0.75 0.75 0.11 0.75 0.75 0.08 0.75 0.75 0.20 81 N10- D2h 2B3u (B3LYP/aug-cc-pVDZ) Structure 102.38 1.3245 103.04 1.3178 111.11 1.3644 1.3302 Vibrational frequencies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 82 Symm. Frequency IR Intensity Au B3u B2g B2u Ag B3g B3u B2g Au B1g B1u B2u B3g Ag B3g B1u B2u B1u B2u Ag B1u Ag B3g Ag 60.2 122.4 181.5 187.3 431.0 454.8 531.6 536.7 694.2 704.5 857.5 933.0 966.0 998.3 1078.8 1079.8 1082.0 1125.7 1142.3 1172.1 1212.1 1212.8 1313.6 1580.5 0.0 7.0 0.0 0.8 0.0 0.0 5.4 0.0 0.0 0.0 238.5 22.7 0.0 0.0 0.0 113.3 1.2 40.2 111.5 0.0 3.7 0.0 0.0 0.0 Raman Intensity 0.0 0.0 0.3 0.0 73.8 18.0 0.0 1.9 0.0 0.0 0.0 0.0 64.9 46.3 33.8 0.0 0.0 0.0 0.0 44.4 0.0 134.0 89.3 226.9 Depolarization Ratio 0.09 0.75 0.75 0.54 0.29 0.75 0.75 0.75 0.22 0.75 0.35 0.37 0.75 0.13 0.75 0.70 0.50 0.38 0.74 0.50 0.35 0.13 0.75 0.36 Absolute and Relative Electronic Energies Symm. N2 + N2 N3 + N3 + N3 N3 N3 N3 N4 + N4 N4 N4 N4 N4 N4 N4 N5 + N5 + N5 + N5 N5 N5 N5 N6 + N6 + N6 + N6 N6 N6 N6 N6 N6 N7 + N7 N7 N7 N7 N7 N7 N7 N7 - D∞ h D∞ h D∞ h D3h D∞ h C2v D3h D∞ h D2h C2v D2d Td D2h C2h D2h C2h planar D3h D2d C2v D2d D5h D2d D3h C2h C2h planar C2v D3h C2 book D2 C2h C2 Cs C2v Cs trigonal Cs 2a’ C2v D2d C2 C2v 2B1 Cs C2v Electronic Energy (Hartree) -108.9618387 -109.5428265 -163.6959494 -163.7113127 -164.1646313 -164.1484239 -164.1490584 -164.2636758 -218.417642 -218.7456892 -218.7947152 -218.8071775 -218.8083236 -218.8638079 -218.9100606 -218.9155753 -272.9557462 -273.1399788 -273.3220783 -273.4599408 -273.4886156 -273.5199278 -273.7950941 -327.8754231 -328.0422025 -328.0259405 -328.1452071 -328.2808122 -328.3378906 -328.376902 -328.3169611 -328.4277673 -382.8027423 -382.8444877 -382.8942315 -382.9012522 -382.9391571 -383.0713444 -383.0926083 -383.1155117 -383.1502583 Relative Energy (kcal mol-1) 364.6 0.0 356.3 346.6 62.2 72.3 71.9 0.0 312.5 106.6 75.8 68.0 67.3 32.5 3.5 0.0 526.7 411.1 296.8 210.3 192.3 172.7 0.0 346.6 241.9 252.1 177.3 92.2 56.4 31.9 69.5 0.0 218.1 191.9 160.7 156.3 132.5 49.5 36.2 21.8 0.0 83 Symm. N8 N8 N8 N8 N8 N8 N8 N8 N8 N8 N8 N8 N8 N8 N9 + N9 + N9 N9 N9 N9 N9 N10+ N10+ N10 N10 N10 N10 N10 N10 N10 N10 N10 N10 N10- 84 Oh D2h C2h ladder C2v ring C2v C1 ZZE C2h ZEZ Cs D2h planar C2h EEE C2v EZE Cs pentagonal C2h C2h ZEZ C2v rings C2v C2v rings C2v C2 C2v Cs C1 C1 chain C2v D5h Cs 7-ring C2 C2v C3 C1 C3-like C1 N5 ring Cs D2d D2h Electronic Energy (Hartree) -437.501925 -437.5647199 -437.6709384 -437.7811599 -437.8106544 -437.8370619 -437.8406469 -437.8445796 -437.8474594 -437.8499492 -437.8515448 -437.8684041 -437.8861288 -437.886331 -492.1849952 -492.2606899 -492.5170542 -492.5603617 -492.6445501 -492.6559203 -492.6857145 -546.9662818 -546.9736078 -546.9492043 -546.9528884 -546.9818793 -547.0238618 -547.0468873 -547.2419122 -547.2753055 -547.3297971 -547.3347569 -547.3502493 -547.4195383 Relative Energy (kcal mol-1) 241.2 201.8 135.2 66.0 47.5 30.9 28.7 26.2 24.4 22.8 21.8 11.2 0.1 0.0 314.2 266.7 105.8 78.7 25.8 18.7 0.0 284.4 279.8 295.1 292.8 274.6 248.3 233.8 111.5 90.5 56.3 53.2 43.5 0.0 Heats of Formation (Direct method) Symm. N2 N3 N3 N3 N3 N4 N4 N4 N4 N4 N4 N4 N5 N5 N5 N6 N6 N6 N6 N6 N6 N7 N7 N7 N7 N7 N7 N7 N7 - Description D∞ h linear D∞ h linear C2v D3h D∞ h C2v butterfly D2d puckered ring Td tetrahedron D2h rectangle C2h linear E D2h rectangular C2h planar D2d D3h bipyramid D5h pentagon D3h prism C2 Book D2 Twisted 6-ring C2h linear E C2 linked triangles Cs chain (W-like) Cs trigonal Cs 2A’ C2v log carrier D2d C2 linear ZZ C2v 2B1 Cs 5-ring + chain C2v chain (W-like) Electronic and Thermal Enthalpies (Hartree) -109.533594 -164.151467 -164.137515 -164.138027 -164.249409 -218.730393 -218.778917 -218.789892 -218.789855 -218.846737 -218.892177 -218.899292 -273.438591 -273.467253 -273.76942 -328.117214 -328.251513 -328.309463 -328.346304 -328.291329 -328.399466 -382.813472 -382.862886 -382.870344 -382.906138 -383.037366 -383.057369 -383.080314 -383.116003 ∆H f (kcal mol-1) 0.0 93.8 102.5 102.2 32.3 211.8 181.3 174.4 174.5 138.8 110.3 105.8 248.7 230.7 41.1 304.1 219.8 183.5 160.4 194.9 127.0 348.5 317.5 312.8 290.3 208.0 195.4 181.0 158.6 Isp (s) 0 395.9 414.0 413.3 232.4 515.2 476.8 467.6 467.7 417.1 371.8 364.2 499.4 481.0 203.0 504.1 428.6 391.6 366.1 403.5 325.8 499.6 476.9 473.3 456.0 386.0 374.2 360.1 337.1 85 Symm. N8 N8 N8 N8 N8 N8 N8 N8 N8 N8 N8 N8 N8 N8 N9 N9 N9 N9 N9 N10 N10 N10 N10 N10 N10 N10 N10 N10 N10 N10- 86 Description Oh cube D2h linked butterflies C2h ladder C2v 8-ring (~D2d) C2v W-shape C1 linear ZZE C2h linear ZEZ Cs linear ZEE D2h 8N-pentalene C2h linear EEE C2v linear EZE Cs 5-ring + chain C2h chain C2h ZEZ C2v ann. 5,6-rings C2v linear EEEE C2 twisted W C2v chain Cs 5-ring + chain C2v log carrier D5h prism Cs 7-ring C2 C2v C1 C3-like C1 N5-ring C3 cap Cs 5-ring + EE chain D2d linked 5-rings D2h two 5-rings perpendicular Electronic and Thermal Enthalpies (Hartree) -437.462235 -437.528306 -437.630591 -437.741496 -437.770227 -437.795911 -437.799618 -437.803286 -437.804109 -437.80826 -437.80992 -437.82524 -437.847229 -437.847614 -492.470881 -492.514436 -492.599421 -492.610201 -492.638218 -546.902183 -546.903006 -546.933852 -546.975286 -546.998285 -547.223217 -547.276300 -547.280799 -547.295231 -547.366753 ∆H f (kcal mol-1) Isp (s) 422.7 381.2 317.0 247.4 229.4 213.3 211.0 208.7 208.1 205.5 204.5 194.9 181.1 180.8 271.0 243.7 190.4 183.6 166.0 481.7 481.1 461.8 435.8 421.4 280.2 246.9 514.7 488.8 445.7 393.8 379.2 365.6 363.6 361.6 361.2 358.9 358.0 349.5 336.9 336.7 388.6 368.5 325.7 319.8 304.1 491.4 491.2 481.2 467.4 459.6 374.8 351.8 244.1 235.0 190.1 349.8 343.3 308.8 Heats of Formation (Quasi-isodesmic method) Symm. N2 + N3 + N3 + N3 N3 N3 N4 + N4 N4 N5 + N5 + N5 + N5 N5 N5 N6 + N6 + N6 + N6 N6 N7 + N7 N8 N8 N9 + N9 + N9 N9 N9 N10+ N10+ N10- D∞ h D∞ h D3h C2v D3h D∞ h D2h D2h C2h D3h D2d C2v D5h D2d D3h C2h C2h C2v C2 Cs C2v C2v C2h C2h C2v C2v C2 C2v Cs C1 C1 D2h Electronic ∆H f and Thermal (kcal mol-1) Enthalpies (Hartree) linear -108.953227 348.4 linear -163.6836 371.4 triangle -163.698884 361.8 -164.137515 100.2 triangle -164.138027 99.9 linear -164.249409 30.0 rectangle -218.400373 402.9 rectangle -218.892177 107.9 planar -218.899292 103.4 -272.936024 548.0 -273.116535 434.8 V-like -273.296533 321.81 pentagon -273.76942 38.7 -273.498245 38.7 bipyramid -273.467253 228.3 linked triangles -327.848745 456.6 planar -328.012140 354.0 U-like -327.996654 363.8 linked triangles -328.291329 192.5 chain (W-like) -328.399466 124.6 W-like -382.766541 361.9 W-like -383.116003 156.3 Chain -437.847229 178.7 chain ZEZ -437.847614 178.5 fused 5-ring + 6-ring -492.138314 463.7 chain -492.213996 416.2 twisted W -492.599421 188.0 chain -492.610201 181.2 5-ring + chain -492.638218 163.7 propeller-like -546.913656 458.5 linear -546.922489 452.9 log carrier -547.366753 187.8 Description Isp (s) 934.6 787.8 777.6 409.2 408.5 223.8 710.6 367.8 360.1 741.3 660.3 568.1 197.0 197.0 478.5 617.7 543.9 551.3 401.1 322.7 509.2 334.6 334.7 334.4 508.2 481.5 323.6 317.8 301.9 479.4 476.5 306.8 1 A value of 351.1 kcal mol-1 was obtained with the G2 method by K. O. Christe, W. W. Wilson, J. A. Sheehy and J. A. Boatz, Angew. Chem. Int. Ed. 1999, 38, 2004. 87 Quasi-isodesmic reactions2 x− 1 [NH4]+ + N2 à Nx+ + 2 H2 2 x− 1 N2 à Nx- + H2 [NH2]- + 2 2 ∆Hf(NH4+) = 150.6 kcal mol-1 ∆H f(NH2-) = 27.0 kcal mol-1 Experimental heats of formation are from H.H. Michels, J. A. Montgomery Jr., K. O. Christe and D. A. Dixon, J. Phys. Chem. 1995, 99, 187. 88 References 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. Lifschitz, J.; Ber. Dtsch. Chem. Ges., 1915, 48, 410. Curtis, T.; Darapsky, A.; Muller, E.; The So-Called Pentazole Compounds of Lifschitz. Ber. Dtsch. Chem. Ges., 1915, 48, 1614. Huisgen, R.; Ugi, I.; Zur Losung Eines Klassischen Problems Der Organischen Stickstoff-Chemie. Ang. Chem. Int. Ed., 1956, 68, 705-706. Ugi, I.; Perlinger, H.; Behringer, L.; Pentazole 3. Kristallisierte Aryl-Pentazole. Chem. Ber., 1958, 91, 23242329. Douglas, A. E.; Jones, W. J.; 2700 A Bands of N3 Molecule. Can. J. Phys., 1965, 43, 2216. Guest, M. F.; Hillier, I. H.; Saunders, V. R.; Theoretical Study of Bonding in P4 and N4. J. Chem. Soc. Faraday Trans. II, 1972, 68, 2070. Jaffe, S.; Karpas, Z.; Klein, F. S.; Ion Cyclotron Mass Spectrometric Study of the Reaction N2+ + N2 à N3+ + N. J. Chem. Phys., 1973, 58, 2190-2191. Wright, J. S.; J. Am. Chem. Soc., 1974, 96, 4753. Venanzi, T. J.; Schulman, J. M.; The N4 Molecule and the N3+ Ion. Mol. Phys., 1975, 30, 281-287. Vogler, A.; Wright, R. E.; Kunkely, H.; Photochemical Reductive Cis-Elimination on CisDiazidobis(triphenylphosphane)platinum(0) and Hexaazabenzene. Ang. Chem. Int. Ed., 1980, 19, 717-718. Casewit, C.; Wenninger, J.; Roberts, J. D.; Isotope Scrambling with N-15 Labeled Azide ion and ParaToluenesulfonyl Azide. J. Am. Chem. Soc., 1981, 103, 6248-6249. DeCastro, S. C.; Schaefer III, H. F.; Electronic Structure of the N4+ Molecular Ion. J. Chem. Phys., 1981, 74, 550-558. Ha, T. K.; Cimiraglia, R.; Nguyen, M. T.; Can Hexazine (N6) Be Stable? Chem. Phys. Lett., 1981, 83, 317-319. Huber, H.; Ha, T. K.; Nguyen, M. T.; J. Mol. Struc. (Theochem), 1981, 83, 317. Trinquier, G.; Malrieu, J. P.; Daudey, J. P.; Ab Initio Study of the Regular Polyhedral Molecules N4, P4, As4, N8, P8 and As8. Chem. Phys. Lett., 1981, 80, 552-557. Dyke, J. M.; Jonathan, N. B. H.; Lewis, A. E.; Morris, A.; Vacuum Ultraviolet Photoelectron-Spectroscopy of Transient Species. 15. The N3 (X 2Π) Radical. Mol. Phys., 1982, 47, 1231-1240. Huber, H.; Is Hexazine Stable? Angew Chem. Int. Ed., 1982, 21, 64-65. Murrell, J. N.; Novaro, O.; Castillo, S.; A Comparative Study of the Species N3 and P3. Chem. Phys. Lett., 1982, 90, 421-424. Huber, H.; Ha, T. K.; Nguyen, M. T.; Is N6 an Open-Chain Molecule? J. Mol. Struc. (Theochem), 1983, 14, 351-358. Nguyen, M. T.; Sana, M.; Leroy, G.; Elguero, J.; Theoretical Study on the Structure and Reactivity Pentazole Anions. Can. J. Chem., 1983, 61, 1435-1439. Saxe, P.; Schaefer III, H. F.; Cyclic D6h Hexaazabenzene— A Relative Minimum on the N6 Potential-Energy Hypersurface. J. Am. Chem. Soc., 1983, 105, 1760-1764. Wallis, J. D.; Dunitz, J. D.; An All-Nitrogen Aromatic Ring-System-Structural Study of 4-DimethylAminophenylpentazole. J. Chem. Soc. Chem. Comm., 1983, 16, 910-911. Ramek, M.; Is N6 an Open-Chain Molecule— Comment. J. Mol. Struc. (Theochem), 1984, 18, 391. Nguyen, M. T.; McGinn, M. A.; Hegarty, A. F.; Elguero, J.; Can the Pentazole Anion (N5-) be Isolated and or Trapped in Metal-Complexes? Polyhedron, 1985, 4, 1721-1726. Gorini, J. A. C.; Farras, J.; Feliz, M.; Olivella, S.; Sole, A.; Vilarrasa, J.; 4-31G Ab Initio and MNDO Semiempirical Calculations on Bicyclic CN7- and N8 Species, and NMR and IR Studies on N-15-Labeled CN7-. J. Chem. Soc. Chem. Comm., 1986, 12, 959-961. Shibaev, A. Y.; Puzanov, Y. V.; Study of the Structure of Azatetrahedranes by Quantum-Chemical Methods. J. Struct. Chem., 1986, 27, 472-474. Glukhovtsev, M. N.; Simkin, B. Y.; Minkin, V. I.; Structure and Valence Isomerizations of Antiaromatic Molecules. 13. Relative Stability of Cyclobutadiene and its Aza-Substituted Derivatives. J. Struct. Chem., 1987, 28, 483-490. Scheier, P.; Stamatovic, A.; Mark, T. D.; Production and Properties of Singly, Doubly, and Triply Charged N2 Clusters. J. Chem. Phys., 1988, 88, 4289-4293. Simkin, B.Y.; Glukhovtsev, M. N.; Minkin, V. I.; Structure and Valent Isomerization of Antiaromatic Molecules. 12. Nature of Tetrazete and Hexazine σ-system of Cyclic Conjugation. Zh. Struct. Khim., 1988, 24, 24-36. 89 30. Tian, R. J.; Balajiv, V.; Michl, J.; Evidence for a Cyclic For of the Azide Anion. J. Am. Chem. Soc., 1988, 110, 7225-7226. 31. Tian, R. J.; Facelli, J. C.; Michl, J.; Vibrational and Electronic Spectra of Matrix-Isolated N3 and N3-. J. Phys. Chem., 1988, 92, 4073-4079. 32. Engelke, R.; 5 Stable Points on the N6 Energy Hypersurface— Structures, Energies, Frequencies, and Chemical Shifts. J. Phys. Chem., 1989, 93, 5722-5727. 33. Hiraoka,K.; Yamabe, S.; Stabilities of the N3+(N2)n Cluster Ions with n=1-11. Chem. Phys. Lett., 1989, 154, 139-142. 34. Alkorta, I.; Elguero, J. Rozas, I.; Theoretical Studies on Aza-Analogues of Platonic Hydrocarbons. 2. Tetrahedrane and its Aza Derivatives. J. Mol. Struc. (Theochem), 1990, 67, 63-77. 35. Engelke, R.; The Stable Points on the N6 Energy Hypersurface— Reply. J. Phys. Chem., 1990, 94, 6924-6925. 36. Engelke, R.; Stine, J. R.; Is N8 Cubane Stable? J. Phys. Chem., 1990, 94, 5689-5694. 37. Francl, M. M.; Chesick, J. P.; The N4 Molecule and its Metastability, J. Phys. Chem., 1990, 94, 526-528. 38. Nguyen, M. T.; The Stable Points on the N6 Energy Hypersurface-Comments, J. Phys. Chem., 1990, 94, 69236924. 39. Thompson, W. E.; Jacox, M. E.; The Vibrational-Spectra of Molecular-Ions Isolated in Solid Neon. 3. N4+. J. Chem. Phys., 1990, 93, 3856-3862. 40. Guthrie, J. A.; Chaney, R. C.; Cunningham, A. J.; Temperature Dependencies of Ternary Ion Molecule Association Reactions Yielding N3+, N4+ and (CO)2+. J. Chem. Phys., 1991, 95, 930-936. 41. Lee, T. J.; Rice, J. E.; Theoretical Characterization of Tetrahedral N4. J. Chem. Phys., 1991, 94, 1215-1221. 42. Pyykkö, P.; Runeburg, N.; Ab Initio Studies of Bonding Trends Part 9. The Dicyanamide-Carbon SuboxideDicyanoether-Cyanogen Azide Isoelectronic Series A=B=C=D=E. Mol. Struct. (Theochem), 1991, 234, 279290. 43. Bliznyuk, A. A.; Shen, M. Z.; Schaefer III, H. F.; The Dodecahedral N20 Molecule-Some Theoretical Predictions. Chem. Phys. Lett., 1992, 198, 249-252. 44. Engelke, R; Ab Initio Correlated Calculations of Six N6 Isomers. J. Phys. Chem., 1992, 96, 10789-10792. 45. Engelke, R.; Calculated Properties of the 22 Carbon Nitrogen Cubanoids. J. Org. Chem. 1992, 57, 4841-4846. 46. Ferris, K. F.; Bartlett, R. J.; Hydrogen Pentazole: Does it Exist? J. Am. Chem. Soc., 1992, 114, 8302-8303. 47. Glukhovtsev, M. N.; Schleyer, P. v. R.; Structures, Bonding and Energies of N6 Isomers. Chem. Phys. Lett., 1992, 198, 547-554. 48. Ha, T. –K.; Nguyen, M. T.; The Identity of the 6 Nitrogen-Atoms (N6) Species. Chem. Phys. Lett., 1992, 195, 179-183. 49. Lauderdale, W. J.; Stanton, J. F.; Bartlett, R. J.; Stability and Energetics of Metastable Molecules: Tetraazatetrahedrane (N4), Hexaazabenzene (N6), and Octaazacubane (N8). J. Phys. Chem., 1992, 96, 11731178. 50. Yarkony, D. R.; J.; Theoretical Studies of Spin-Forbidden Radiationless Decay in Polyatomic Systems: Insights from Recently Developed Computational Methods. J. Am. Chem. Soc., 1992, 114, 5406-5411. 51. Balasubramanian, K.; Nuclear-Spin Multiplets for the Dodecahedral N20 Cluster. Chem. Phys. Lett., 1993, 202, 271-277. 52. Claramunt, R. M.; Sanz, D.; Boyer, G.; Catalan, J.; Depar, J. L. G.; Elguero, J.; NMR-Studies in the Heterocyclic Series 32. Experimental (C-13 and N-15 NMR-Spectroscopy) and Theoretical (6-31G) Study of the Protonation of N-Methylazoles and N-Methylbenzazoles. Mag. Res. Chem., 1993, 31, 791-800. 53. Engelke, R.; Ab Initio Calculations of 10 Carbon Nitrogen Cubanoids. J. Am. Chem. Soc., 1993, 115, 29612967. 54. Glukhovtsev, M. N.; Schleyer, P. V.; Structures, Bonding and Energies of N6 Isomers. Chem. Phys. Lett., 1993, 204, 394. 55. Glukhovtsev, M. N.; Schleyer, P. V.; The N4 Molecule has an Open-Chain Triplet C2h Structure. Int. J. Quantum Chem., 1993, 46, 119-125. 56. Glukhovtsev, M. N.; Schleyer, P. V.; Maerker, C.; Pentaaza- and Pentaphosphacyclopentadienide Anions and their Lithium and Sodium Derivatives. Structures and Stabilities. J. Phys. Chem., 1993, 97, 8200-8206. 57. Harcourt, R. D.; On the Pentavalent Nitrogen Atom and Nitrogen Pentacoordination. J. Mol. Struc., 1993, 300, 245-256. 58. Janoschek, R.; Pentazole and Other Nitrogen Rings. Angew. Chem. Int. Ed. Engl., 1993, 32, 230-232. 59. Li, J.; Liu, C. W.; Lu, J. X.; Ab Initio Studies on the Electronic-Structures of Certain 10-Π-Electron 6Membered Ring Compounds. J. Mol. Struc. (Theochem), 1993, 99, 223-231. 90 60. Friedmann, A. A.; Nizkorodov, S.; Bieske, E. J.; Maier, J. P.; Discrete UV Absorption by N3- + (N2)n Clusters. Chem. Phys. Lett., 1994, 224, 16-20. 61. Rasul, G.; Prakash, G. K. S.; Olah, G. A.; Chemistry in Superacids. 15. Gitonic Protodiazonium and Bisdiazonium Dications and Their Potential Role in Superacid Chemistry. J. Am. Chem. Soc., 1994, 116, 89858990. 62. Chen, C.; Sun, K. C.; Theoretical Study of the N20 Molecule. J. Mol. Struc. (Theochem), 1995, 340, 143-148. 63. Dunn, K. M.; Morokuma, K.; Transition State for the Dissociation of Tetrahedral N4. J. Chem. Phys., 1995, 102, 4904-4908. 64. Leininger, M. L.; Sherrill, C. D.; Schaefer III, H. F.; N8: A Structure Analogous to Pentalene, and Other HighEnergy Density Minima. J. Phys. Chem., 1995, 99, 2324-2328. 65. Michels, H. H.; Montgomery Jr., J. A.; Christe, K. O.; Dixon, D. A.; Theoretical Prediction of the Structures and Stabilities of Azidamines. J. Phys. Chem., 1995, 99, 187-194. 66. Tornieporthoetting, I. C.; Klapotke, T. M.; Covalent Inorganic Azides. Angew. Chem. Int. Ed., 1995, 34, 511520. 67. Workentin, M. S.; Wagner, B. D.; Lusztyk, J.; Wayner, D. D. M.; Azidyl Radical Reactivity N6· as a Kinetic Probe for the Addition-Reactions of Azidyl Radicals with Olefins. J. Am. Chem. Soc., 1995, 117, 119-126. 68. Workentin, M. S.; Wagner, B. D.; Negri, F.; N6· Spectroscopic Studies and Theoretical Studies of an Unusual Pseudohalogen Radical Anion. J. Phys. Chem., 1995, 99, 94-101. 69. Butler, R. N.; Collier, S.; Fleming, A. F. M.; Pentazoles: Proton and Carbon-13 NMR Spectra of Some 1Arylpentazoles: Kinetics and Mechanisms of Degradation of the Arylpentazole System. J. Chem. Soc. Perkin Trans. II, 1996, 5, 801-803. 70. Chen, C.; Sun, K. C.; Comparisons of the Theoretical Calculation of Nitrogen Clusters by Semiemperical MO Method. Int. J. Quantum Chem., 1996, 60, 497-506. 71. Chen, C.; Sun, K. C.; Theoretical Study of N28 Molecule using Semiemperical MO Methods. J. Mol. Struc. (Theochem), 1996, 362, 181-186. 72. Evangelisti, S.; Gagliardi, L.; A Complete Active-Space Self-Consistent-Field Study on Cubic N8. Nuovo Cimento D, 1996, 18, 1395-1405. 73. Fewell, M. P.; Haydon, S. C.; Ernest, A. D.; Identification of Slowly Diffusing Metastable States of the Nitrogen Molecule. Chem. Phys., 1996, 206, 257-267. 74. Gimarc, B. M.; Zhao, M.; Strain Energies in Homoatomic Nitrogen Clusters N4, N6, and N8. Inorg. Chem., 1996, 35, 3289-3297. 75. Glukhovtsev, M. N.; Jiao, H.; Schleyer, P. v. R.; Besides N2, What is the Most Stable Molecule Composed Only of Nitrogen Atoms? Inorg. Chem., 1996, 35, 7124-7133. 76. Glukhovtsev, M. N.; Laiter, S.; Thermochemistry of Tetrazete and Tetraazatetrahedrane. A High-Level Computational Study. J. Phys. Chem., 1996, 100, 1569-1577. 77. Jiang, X. T.; Hu, X. G.; Li, Q. S.; Ab Initio Theoretical Studies on N28, B4N24, B12N16, and B16N12 with Td Symmetry. Chinese J. Chem., 1996, 14, 490-496. 78. Korkin, A. A.; Balkova, A.; Bartlett, R. J.; Boyd, R. J.; Schleyer, P. v. R.; The 28-Electron Tetraatomic Molecules: N4, CN2O, BFN2, C2O2, B2F2, CBFO, C2FN, and BNO2. Challenges for Computational and Experimental Chemistry. J. Phys. Chem., 1996, 100, 5702-5714. 79. Li, Q. S.; Qu, H.; Zhu, H. S.; Quantum Chemistry Calculations of Nitrogen Cages N10. Chinese Sci. Bull., 1996, 41, 1184-1188. 80. Nguyen, M. T.; Ha, T. K.; Azidopentazole is Probably the Lowest-Energy N8 Species-A Theoretical Study. Chem. Ber., 1996, 129, 1157-1159. 81. Wasilewski, J.; Stationary Points on the Lowest Doublet and Quartet Hypersurfaces of the N3 Radical: A Comparison of Molecular Density Functional Approaches. J. Chem. Phys., 1996, 105, 10969-10982. 82. Bickelhaupt, F. M.; Hoffmann, R.; Levine, R. D.; “Forbidden” four-center reactions: Molecular Orbital Considerations for N2 + N2 and N2 + N2+. J. Phys. Chem. A, 1997, 101, 8255-8263. 83. Gagliardi, L.; Evangelisti, S.; Widmark, P.-O.; Roos, B. O.; A Theoretical Study of the N8 Cubane to N8 Pentalene Isomerization Reaction. Theor. Chem. Acc., 1997, 97, 136-142. 84. Gimarc, B. M.; Zhao, M.; Strain and Resonance Energies in Main-Group Homoatomic Rings and Clusters. Coord. Chem. Rev., 1997, 158, 385-412. 85. Larson, A.; Larsson, M.; Ostmark, H.; Theoretical Study of Rectangular (D2h) N4. J. Chem. Soc. Faraday Trans., 1997, 93, 2963-2966. 86. Leininger, M. L.; Van Huis, T. J.; Schaefer III, H. F.; Protonated High Energy Density Materials: N4 Tetrahedron and N8 Octahedron. J. Phys. Chem. A, 1997, 101, 4460-4464. 91 87. Qu, H.; Li, Q. S.; Zhu, H. S.; Quantum Chemical Calculations of Nitrogen Cages N12. Chinese Sci. Bul., 1997, 42, 462-465. 88. Schleyer, P. V.; Jiao, H. J.; Hommes, N. J. R. V.; An Evaluation of the Aromaticity of Inorganic Rings: Refined Evidence from Magnetic Properties, J. Am. Chem. Soc., 1997, 119, 12669-12670. 89. Speck, T.; Ruchti, T.; Linnartz, H.; Maier, J. P.; N4+ Structure and Distortion. J. Mol. Struc., 1997, 185, 425427. 90. Tian, A.; Ding, F.; Zhang, L.; Xie, Y.; Schaefer III, H. F.; New Isomers of N8 Without Double Bonds. J. Phys. Chem. A, 1997, 101, 1946-1950. 91. Chertihin, G. V.; Andrews, L.; Bauschlicher, C. W.; Reactions of Laser-Ablated Scandium Atoms with Nitrogen: Matrix Infrared Spectra and DFT Calculations for Scandium Nitrides and the Fixation of Nitrogen by Two Scandium Atoms. J. Am. Chem. Soc., 1998, 120, 3205-3212. 92. Gagliardi, L.; Evangelisti, S.; Roos, B. O.; A Theoretical Study of Ten N8 Isomers. J. Mol. Struc. (Theochem), 1998, 428, 1-8. 93. Gu, J. D.; Chen, K. X.; Jiang, H. L. Chen, J. Z.; Ji, R.; Tian, A. M.; N18: A Computational Investigation. J. Mol. Struc. (Theochem), 1998, 428, 183-188. 94. Li, Q. S. Hu, X. G.; Xu, W. G.; Structure and Stability of N7 Cluster. Chem. Phys. Lett., 1998, 287, 94-99. 95. Wright, J. S.; McKay, D. J.; DiLabio, G. A.; Dodecahedral Molecular nitrogen (N20) and Related Structures. J. Mol. Struc. (Theochem), 1998, 424, 47-55. 96. Chen, C.; Shyu, S. F.; Theoretical Study of Single-Bonded Nitrogen Cluster-Type Molecules. Inter. J. Quantum Chem., 1999, 73, 349-356. 97. Chen, C.; Sun, K. C.; Shyu, S. F.; Theoretical Study of Various N10 Structures. J. Mol. Struc. (Theochem), 1999, 459, 113-122. 98. Christe, K. O.; Wilson, W. W.; Sheehy, J. A.; Boatz, J. A.; N5+: A Novel Homoleptic Polynitrogen Ion as a High Energy Density Material. Angew. Chem. Int. Ed., 1999, 38, 2004-2009. 99. Ha, T. –K.; Suleimenov, O.; Nguyen, M. T.; A Quantum Chemical Study of Three Isomers of N20. Chem. Phys. Lett., 1999, 315, 327-334. 100.Klapotke, T. M.; Homopolyatomic Nitrogen Compounds. Angew. Chem. Int. Ed., 1999, 38, 2536-2538. 101.Perera, S. A.; Bartlett, R. J.; Coupled-Cluster Calculations of Raman Intensities and Their Application to N4 and N5-. Chem. Phys. Lett., 1999, 314, 381-387. 102.Rawls, R.; N5+ Cation Makes Explosive Debut. Chem. Eng. News, 1999, 77, 7. 103.Xu, W. G.; Li, G. L.; Wang, L. J.; Li, S.; Li, Q. S.; Ab Initio and Density Functional Theory Study of the Mechanism of Synthesis on the N5+ Cation. Chem. Phys. Lett., 1999, 314, 300-306. 104.Bartlett, R. J.; Exploding the Mysteries of Nitrogen. Chem. Ind., 2000, 4, 140-143. 105.Bittererova, M.; Brinck, T.; Ostmark, H.; Theoretical Study of the Triplet N4 Potential Energy Surface. J. Phys. Chem. A, 2000, 104, 11999-12005. 106.Chen, C.; Sun, K. C.; Shyu, S. F.; Theoretical Study of Various N10 Structures. J. Mol. Struc. (Theochem) 2000, 496, 229-238. 107.Christe, K. O.; Dixon, D. A.; McLemore, D.; Wilson, W. W.; Sheehy, J. A.; Boatz, J. A.; On a Quantitative Scale for Lewis Acidity and Recent Progress in Polynitrogen Chemistry. J. Fluor. Chem., 2000, 101, 151-153. 108.Chung, G.; Schmidt, M. W.; Gordon, M. S.; An Ab Initio Study of Potential Energy Surfaces for N8 Isomers. J. Phys. Chem. A, 2000, 104, 5647-5650. 109.Gagliardi, L.; Evangelisti, S.; Barone, V.; Roos, B. O.; On the Dissociation of N6 into 3 N2 Molecules. Chem. Phys. Lett., 2000, 320, 518-522. 110.Gagliardi, L.; Evangelisti, S.; Bernhardsson, A.; Lindh, R.; Roos, B. O.; Dissociation Reaction of N8 Azapentalene to 4N2: A Theoretical Study. Inter. J. Quantum Chem., 2000, 77, 311-315. 111.Giambiagi, M.; Giambiagi, M. S. d.; Silva, C. D. d. S.; Figueiredo, A. P. d.; Multicenter Bond Indices as a Measure of Aromaticity. Phys. Chem. Chem. Phys., 2000, 2, 3381-3392. 112.Jursic, B. S.; Structural, Energetic, and Vibrational Features of Azacubanes as Energetic Materials Studied With Density Functional Theory Methods. J. Mol. Struc. (Theochem), 2000, 530, 21-30. 113.Klapotke, T. M.; Ab Initio Calculations of the Open-Chain N6 Diazide Molecule. J. Mol. Struct. (Theochem), 2000, 499, 99-104. 114.Li, Q. S.; Wang, L. J.; Xu, W. G.; Structures and Stability of N9, N9- and N9+ Clusters. Theor. Chem. Acc., 2000, 104, 67-77. 115.Manaa, M. R.; Toward New Energy-Rich Molecular Systems: From N10 to N60. Chem. Phys. Lett., 2000, 331, 262-268. 92 116.Nguyen, M. T.; Ha, T. K.; Theoretical Study of the Pentanitrogen Cation. Chem. Phys. Lett., 2000, 317, 135141. 117.Schmidt, M. W.; Gordon, M. S.; Boatz, J. A.; Cubic Fuels? Int. J. Quantum Chem., 2000, 76, 434-446. 118.Suresh, C. H.; Koga, N.; Conjugation Involving Nitrogen Lone-Pair Electrons: Can it Lead to Stable Multiply Charged Cations? Inorg. Chem., 2000, 39, 3718. 119.Wang, X.; Hu, H. R.; Tian, A. M.; An Isomeric Study of N5+, N5 and N5-: A Gaussian-3 Investigation. Chem. Phys. Lett., 2000, 329, 483-489. 120.Wang, L. J.; Xu, W. G.; Li, Q. S.; Stability of N8 Isomers and Isomerization Reactions of N8 (C2v) to N8 (Cs). J. Mol. Struc. (Theochem), 2000, 531, 135-141. 121.Zheng, J. P.; Waluk, J. Spanget-Larsen, J.; Blake, D. M.; Radziszewski, J. G.; Tetrazete (N4). Can it be Prepared and Observed? Chem. Phys. Lett., 2000, 328, 227-233. 122.Bittererova, M.; Brinck, T.; Ostmark, H.; Theoretical Study of the Singlet Electronically Excited States of N4. Chem. Phys. Lett., 2001, 340, 597-603. 123.Eremets, M. I.; Hemley, R. J.; Mao, H.; Gregoryanz, E.; Semiconducting Non-Molecular Nitrogen up to 240 GPa and its Low-Pressure Stability. Nature, 2001, 411, 170-174. 124.Fau, S.; Bartlett, R. J.; Possible Products of the End-On Addition of N3- to N5+ and Their Stability. J. Phys. Chem. A, 2001, 105, 4096-4106. 125.Gagliardi, L.; Orlandi, G.; Evangelisti, S.; Roos, B. O.; A Theoretical Study of the Nitrogen Clusters Formed from the Ions N3-, N5+, and N5-. J. Chem. Phys., 2001, 114, 10733-10737. 126.Gagliardi, L.; Pyykkö, P.; Scandium Cycloheptanitrode, ScN7: A Predicted High-Energy Molecule Containing an [? 7=N7]3- Ligand. J. Am Chem. Soc., 2001, x, x. 127.Klapötke, T. M.; Harcourt, R. D.; The Interconversion of N12 to N8 and two equivalents of N2. J. Mol. Struct. (Theochem), 2001, 541, 237-242. 128.Kortus, J.; Pederson, M. R.; Richardson, S. L.; First-Principles DFT study of the Structural, Electronic and Vibrational Properties of Azidopentazole. Chem. Phys. Lett., 2001, 340, 565-570. 129.Li, Q. S.; Wang, L. J.; A Quantum Chemical Theoretical Study of Decomposition Pathways of N9 (C2v) and N9+ (C2v) Clusters. J. Phys. Chem. A, 2001, 105, 1203-1207. 130.Li, Q. S.; Wang, L. J.; Theoretical Studies on the Potential Energy Surfaces of N8 Clusters. J. Phys. Chem A, 2001, 105, 1979-1982. 131.Nguyen, M. T.; Ha, T. K.; Decomposition Mechanism of the Polynitrogen N5 and N6 Clusters and their Ions. Chem. Phys. Lett., 2001, 335, 311-320. 132.Olah, G. A.; Surya Prakash, G. K.; Rasul, G.; N62+ and N42+ Dications and Their N12 and N10 Azido Derivatives: DFT/GIAO-MP2 Theoretical Studies. J. Am. Chem. Soc., 2001, 123, 3308-3310. 133.Ostmark, H.; Launila, O.; Wallin, S.; On the Possibility of Detecting Tetraazatetrahedrane (N4) in Liquid or Solid Nitrogen by Fourier Transform Raman Spectroscopy. J. Raman Spectrosc., 2001, 32, 195-199. 134.Ponec, R.; Roithova, J.; Girones, X.; On the Nature of Bonding in N5+ Ion. J. Mol. Struc. (Theochem), 2001, 545, 255-264. 135.Ren, Y.; Wang, X.; Wong, N. B.; Theoretical Study of the N10 Clusters Without Double Bonds, Int. J. Quantum Chem., 2001, 82, 34-43. 136.Tobita, M.; Bartlett, R. J.; Structure and Stability of N6 Isomers and Their Spectroscopic Characteristics. J. Phys. Chem. A, 2001, 105, 4107-4113. 137.Vij, A. Wilson, W. W.; Vij, V.; Polynitrogen Chemistry. Synthesis, Characterization, and Structure of Surprisingly Stable Fluoroantimonate Salts of N5+. J. Am. Chem. Soc., 2001, 123, 6308-6313. 138.Wang, X.; Ren, Y.; Shuai, M. B.; Structure and Stability of New N7 Isomers. J. Mol. Struc. (Theochem), 2001, 538, 145-156. 139.Wang, X,; Tian, A. M.; Wong, N. B.; Law, C. K.; Li, W. R.; A Gaussian-3 Investigation of N7 Isomers. Chem. Phys. Lett., 2001, 338, 367-374. Acknowledgements This work was supported by the AFSOR-DARPA under grant number F49620-98-1-0477. 93
© Copyright 2026 Paperzz