Loop – to – Loop (No calculator!) For each polar curve a) name the curve, b) determine the axis of symmetry, c) determine the quadrangle values, and d) graph the curve. If you use a scale other than 1, be sure to indicate it on the polar grid 1. r 2 2cos _____________________ Name of Curve r r r _____________________ Axis of Symmetry 2. r 2 3cos _____________________ Name of Curve _____________________ Axis of Symmetry 3. r 2 2sin _____________________ Name of Curve _____________________ Axis of Symmetry 4. r 3 5cos _____________________ Name of Curve r r r r _____________________ Axis of Symmetry 5. r 5 2sin _____________________ Name of Curve _____________________ Axis of Symmetry 6. r 4 4cos _____________________ Name of Curve _____________________ Axis of Symmetry 7. r 2 3cos _____________________ Name of Curve _____________________ Axis of Symmetry 8. r 1 4sin _____________________ Name of Curve r r 𝑟 _____________________ Axis of Symmetry 9. r 4 1sin _____________________ Name of Curve _____________________ Axis of Symmetry 10. r 3 3cos _____________________ Name of Curve _____________________ Axis of Symmetry For each polar curve a) name the curve, b) determine the requested data, c) determine the quadrangle values, and d) graph the curve. If you use a scale other than 1, be sure to indicate it on the polar grid 11. r 2 sin 4 _____________________ Name of Curve _____________________ Axis of Symmetry _____________________ # of Petals _____________________ Length of Petals _____________________ Spacing between Petals 12. r 7 cos5 _____________________ Name of Curve _____________________ Axis of Symmetry _____________________ # of Petals _____________________ Length of Petals _____________________ Spacing between Petals 13. r 3sin _____________________ Name of Curve r 𝑟 _____________________ Axis of Symmetry _____________________ Radius _____________________ Center 14. r 6 _____________________ Name of Curve _____________________ Axis of Symmetry _____________________ Radius _____________________ Center 15. r 4 cos 3 _____________________ Name of Curve _____________________ Axis of Symmetry _____________________ # of Petals _____________________ Length of Petals _____________________ Spacing between Petals 16. 𝑟 2 = 25 cos 2𝜃 _____________________ Name of Curve r r 𝑟 _____________________ Axis of Symmetry _____________________ Length of Lobe 17. r 4sin _____________________ Name of Curve _____________________ Axis of Symmetry _____________________ Radius _____________________ Center 18. r 3sin 2 _____________________ Name of Curve _____________________ Axis of Symmetry _____________________ # of Petals _____________________ Length of Petals _____________________ Spacing between Petals 19. r 2cos _____________________ Name of Curve _____________________ Axis of Symmetry _____________________ Radius _____________________ Center 20. Why is it impossible to graph a six-petal rose using these equations? Loop – to – Loop (No calculator!) For each polar curve a) name the curve, b) determine the axis of symmetry, c) determine the quadrangle values, and d) graph the curve. If you use a scale other than 1, be sure to indicate it on the polar grid 1. r 2 2cos _____________________ Name of Curve Cardioid 𝑟 4 0–axis _____________________ Axis of Symmetry 2 0 2 2. r 2 3cos Limaçon (loop) _____________________ Name of Curve 0–axis _____________________ Axis of Symmetry 𝑟 5 2 –1 0 3. r 2 2sin Cardioid _____________________ Name of Curve 𝜋 –axis _____________________ Axis of Symmetry 2 r 2 4 2 0 4. r 3 5cos Limaçon (loop) _____________________ Name of Curve 0–axis _____________________ Axis of Symmetry r 5 3 –2 3 r-scale = 2 5. r 5 2sin Limaçon (no loop) _____________________ Name of Curve 3𝜋 –axis _____________________ Axis of Symmetry 2 r 5 3 5 7 r-scale = 2 6. r 4 4cos Cardioid _____________________ Name of Curve 𝜋 –axis _____________________ Axis of Symmetry r 0 4 8 4 r-scale = 2 7. r 2 3cos Limaçon (loop) _____________________ Name of Curve 0–axis _____________________ Axis of Symmetry r 5 2 0 2 8. r 1 4sin Limaçon (loop) _____________________ Name of Curve 𝜋 –axis _____________________ Axis of Symmetry 2 r 1 5 1 –3 9. r 4 1sin Limaçon (no loop) _____________________ Name of Curve 𝜋 –axis _____________________ Axis of Symmetry 2 r 4 5 4 3 10. r 3 3cos Cardioid _____________________ Name of Curve r 𝜋 –axis _____________________ Axis of Symmetry r-scale = 2 For each polar curve a) name the curve, b) determine the requested data, c) determine the quadrangle values, and d) graph the curve. If you use a scale other than 1, be sure to indicate it on the polar grid 11. r 2 sin 4 Rose _____________________ Name of Curve Where to start first petal? longest radius = 2 Every 22.5 _____________________ Axis of Symmetry so 8 _____________________ # of Petals 2 = 2 sin 4𝜃 1 = 1 sin 4𝜃 2 _____________________ Length of Petals sine = 1 at 90 4𝜃 = 90° 45 _____________________ Spacing between Petals 𝜃 = 22.5° 12. r 7 cos5 Rose _____________________ Name of Curve Where to start first petal? longest radius = 7 Every 36 _____________________ Axis of Symmetry so 7 = 7 cos 5𝜃 5 _____________________ # of Petals 1 = 1 sin 5𝜃 cosine = 1 at 0 7 _____________________ Length of Petals 5𝜃 = 0° 72 𝜃 = 0° _____________________ Spacing between Petals r-scale = 2 13. r 3sin Circle _____________________ Name of Curve 90 _____________________ Axis of Symmetry 1.5 _____________________ Radius (1.5,90°) _____________________ Center r 0 3 3 3 14. r 6 Polar Circle _____________________ Name of Curve –– _____________________ Axis of Symmetry 6 _____________________ Radius Pole _____________________ Center r 6 6 6 6 r-scale = 2 15. r 4 cos 3 Rose _____________________ Name of Curve Where to start first petal? longest radius = 4 Every 60 _____________________ Axis of Symmetry so 4 = 4 cos 3𝜃 3 _____________________ # of Petals 1 = 1 sin 3𝜃 cosine = 1 at 0 7 _____________________ Length of Petals 3𝜃 = 0° 120 𝜃 = 0° _____________________ Spacing between Petals 16. 𝑟 2 = 25 cos 2𝜃 _____________________ Name of Curve Lemniscate 0 –axis _____________________ Axis of Symmetry 5 _____________________ Length of Lobe r 5 5 17. r 4sin Circle _____________________ Name of Curve 270 _____________________ Axis of Symmetry 2 _____________________ Radius (2,270°) _____________________ Center r 0 –4 0 4 18. r 3sin 2 Rose _____________________ Name of Curve Where to start first petal? longest radius = 3 Every 45 _____________________ Axis of Symmetry so 3 = 3 sin 2𝜃 4 _____________________ # of Petals 1 = 1 sin 2𝜃 sine = 1 at 90 3 _____________________ Length of Petals 2𝜃 = 90° 90 _____________________ Spacing between Petals 𝜃 = 45° 19. r 2cos Circle _____________________ Name of Curve 180 _____________________ Axis of Symmetry 1 _____________________ Radius (1,180°) _____________________ Center r –2 0 2 0 20. Why is it impossible to graph a six-petal rose using these equations? Odd coefficients of theta graph the exact number of petals but even coefficients of theta graph double the number of petals. Since 6 is even you would get 12 petals not 6.
© Copyright 2026 Paperzz