LESSON 13.1 Skills Practice Name me e Date ate te The Coordinate Plane Circles and Polygons on the Coordinate Plane Problem Set Use the given information to show that each statement is true. Justify your answers by using theorems and by using algebra. 1. The center of circle O is at the origin. The coordinates of the given points are A(⫺4, 0), B(4, 0), and C(0, 4). Show that n ABC is a right triangle. y 8 6 n ABC is an inscribed triangle in circle O with the hypotenuse as the diameter of the circle, therefore the triangle is a right triangle by the Right Triangle Diameter Theorem. ___________________ AB 5 √ (24 2 4)2 1 (0 2 0)2 _____ ___ 5 √ (28)2 5 √ 64 5 8 4 C 2 A –8 –6 –4 B O –2 0 2 4 x 6 8 –2 –4 D –6 ___________________ AC 5 √(24 2 0)2 1 (0 2 4)2 –8 _____________ 5 √ (24)2 1 (24)2 ___ __ 5 √ 32 5 4√2 _________________ BC 5 √ (4 2 0)2 1 (0 2 4)2 __________ 5 √ 42 1 (24)2 ___ __ 5 √ 32 5 4√2 __ __ © Carnegie Learning (4√ 2 )2 1 (4√ 2 )2 0 82 32 1 32 5 64 Therefore, by the Converse of the Pythagorean Theorem, nABC is a right triangle. Chapter 13 Skills Practice 13 875 LESSON 13.1 Skills Practice page 2 ‹___› 2. The center of circle O is at the origin. AZ and ‹___› AT are tangent to circle O. The coordinates of the given points are ___ A(⫺10, 30), T(8, 6), and Z(⫺10, 0). Show that the ___ lengths of AT and AZ are equal. y A 30 20 10 O Z –30 –20 T 0 –10 x 10 20 30 –10 –20 –30 ‹___› 3. The center of circle C is at the origin. AB is tangent to circle C at (3, 4). Show that the tangent line is ___ perpendicular to CA . y 8 B (–1, 7) 6 4 A (3, 4) 2 –10 –8 –6 –4 –2 2 4 0 –2 C (0, 0) 6 8 x 10 –4 –8 13 876 Chapter 13 Skills Practice © Carnegie Learning –6 LESSON 13.1 Skills Practice page 3 Name me e Date ate te 4. The center of circle O is at the origin. The coordinates of the given points are A(3, 4), B(⫺4, ⫺3), D(0, ⫺5), E(⫺3, 4), and F(⫺1.5, ⫺0.5). Show that EF ⭈ FD ⫽ AF ⭈ FB. 10 y 8 6 E A 4 2 O –10 –8 –6 –4 B –2 F0 –2 2 4 6 8 x 10 –4 –6 D –8 © Carnegie Learning –10 13 Chapter 13 Skills Practice 877 LESSON 13.1 Skills Practice page 4 5. The center of circle O is at the origin. The coordinates of the given points are A(⫺5, 5), B(⫺4, 3), C(0, ⫺5), and D(0, 5). Show that AD2 ⫽ AB ⭈ AC. 10 y 8 6 A D 4 B 2 O –10 –8 –6 –4 –2 0 2 4 6 8 x 10 –2 –4 C –6 –8 © Carnegie Learning –10 13 878 Chapter 13 Skills Practice LESSON 13.1 Skills Practice page 5 Name me e Date ate te ___ 6. The center of circle O is at the origin. BD is perpendicular ___ to OA at point C. The coordinates of the given points are A(⫺5, 0), B(⫺4, 3), C(⫺4, 0), and D(⫺4, ⫺3). Show that ___ ___ OA bisects BD . 10 y 8 6 4 B A –10 –8 –6 2 O C –4 –2 0 2 4 6 8 x 10 –2 D –4 –6 –8 © Carnegie Learning –10 13 Chapter 13 Skills Practice 879 LESSON 13.1 Skills Practice page 6 Classify the polygon formed by connecting the midpoints of the sides of each quadrilateral. Show all your work. 7. The rectangle shown has vertices A(0, 0), B(x, 0), C(x, y), and D(0, y). ___ x, 0 Midpoint AB : U __ 2 ( y ) ___ y Midpoint BC : S x, __ 2 ( ) ___ x, y Midpoint CD : T __ 2 ___ y Midpoint DA : R 0, __ 2 ( T D (0, y) ) R ( ) A (0, 0) y y y 2 __ __ y 2 5 __ 2 5 __ Slope RT 5 ______ x _x_ 2 0 _x_ 2 2 y y 0 2 __ 2 __ y ___ ______ 2 __ Slope US 5 x 2 5 ____ x 5x __ 2 x 2__ 2 2 ___ C (x, y) S x U B (x, 0) y y __ 2 y 2__ y 2 2 5 2__ 5 ____ Slope TS 5 ______ x x x __ _ _ x2 ___ 2 2 y y __ __ 20 ___ ______ y 2 5 2__ Slope RU 5 2 x 5 ____ x x __ _ _ 2 02 2 2 ___ ___ y RT and US are parallel since they have the same slope of __ x. ___ ___ y TS and RU are parallel since they have the same slope of 2__ x. There are no perpendicular sides. The slopes are not opposite reciprocals. __________________ y 1 __ 2 y 2 √( 2 ) ( 2 ) y x 5 √ ( 2__ ) 1 ( 2__ ) 2 2 RT 5 2 _____________ 2 __2 4 __________________ x 2 _x_ 13 y 1 __ 2 0 2 √( 2 ) ( 2 ) y 5 √ ( _x_ ) 1 ( __ ) 2 2 US 5 2 __________ 2 2 __ 2 2 __ 2 _______ y x2 1 __ __ √4 __ __ _______ 5 √( 2x 2 x ) 1 ( y 2 2y ) y x 5 √( 2 ) 1 ( ) 2 2 y 5 √x 1 4 4 TS 5 ____________ 2 2 __________________ 2 _______ y2 x2 1 __ 5 __ 4 4 √ 2 __ __________________ √( 0 2 _2x_ ) 1 ( __2y 2 0 ) y x 5 √ ( 2__ ) 1 ( __ ) 2 2 2 RU 5 2 ____________ 2 2 _______ y2 x2 1 __ 5 __ 4 4 √ All four sides of RTSU are congruent. Opposite sides are parallel and all sides are congruent, so the quadrilateral formed by connecting the midpoints of the rectangle is a rhombus. 880 Chapter 13 Skills Practice © Carnegie Learning x 0 2 __ LESSON 13.1 Skills Practice page 7 Name me e 8. The isosceles trapezoid shown has vertices A(0, 0), B(6, 0), C(4, 3), and D(2, 3). Date ate te y D (2, 3) C (4, 3) x B (6, 0) © Carnegie Learning A (0, 0) 13 Chapter 13 Skills Practice 881 LESSON 13.1 Skills Practice page 8 9. The parallelogram shown has vertices A(4, 5), B(7, 5), C(3, 0), and D(0, 0). 10 y 8 6 A B 4 2 –10 –8 –6 –4 –2 D 0 2 C4 6 8 x 10 –2 –4 –6 –8 © Carnegie Learning –10 13 882 Chapter 13 Skills Practice LESSON 13.1 Skills Practice page 9 Name me e Date ate te 10. The rhombus shown has vertices A(4, 10), B(8, 5), C(4, 0), and D(0, 5). 10 y A 8 6 D B 4 2 C –10 –8 –6 –4 –2 0 –2 2 4 6 8 x 10 –4 –6 –8 © Carnegie Learning –10 13 Chapter 13 Skills Practice 883 LESSON 13.1 Skills Practice page 10 11. The square shown has vertices A(0, 0), B(4, 0), C(4, 4), and D(0, 4). 10 y 8 6 D C 4 2 B –10 –8 –6 –4 –2 0A 2 4 6 8 x 10 –2 –4 –6 –8 © Carnegie Learning –10 13 884 Chapter 13 Skills Practice LESSON 13.1 Skills Practice page 11 Name me e Date ate te 12. The kite shown has vertices A(0, 2), B(2, 0), C(0, ⫺ 3), and D(⫺2, 0). 10 y 8 6 4 2 A D –10 –8 –6 –4 B –2 0 2 4 6 8 x 10 –2 –4 C –6 –8 © Carnegie Learning –10 13 Chapter 13 Skills Practice 885 © Carnegie Learning 13 886 Chapter 13 Skills Practice LESSON 13.2 Skills Practice Name me e Date ate te Bring On the Algebra Deriving the Equation for a Circle Problem Set Write an equation in standard form of each circle. 1. a circle with center point at the origin when r 5 4 x2 1 y2 5 r2 x2 1 y2 5 42 x2 1 y2 5 16 2 2. a circle with center point at the origin when r 5 __ 3 © Carnegie Learning 3. a circle with center point (6, 5) when r 5 1 4. a circle with center point (28, 212) when r 5 7 13 Chapter 13 Skills Practice 887 LESSON 13.2 Skills Practice 5. 10 page 2 y 8 6 4 2 (4, 0) 0 210 28 26 24 22 2 4 6 8 x 10 6 8 x 10 22 24 (4, 24) 26 28 210 6. 10 (23, 7) y 8 6 4 (0, 3) 2 210 28 26 24 22 0 22 2 4 24 26 28 13 Write the equation of each circle in standard form. Then identify the center point and radius of the circle. 7. x2 1 y2 1 6x 2 2y 1 1 5 0 x2 1 y2 1 6x 2 2y 1 1 5 0 x2 1 6x 1 y2 2 2y 5 21 (x2 1 6x 1 9) 1 (y2 2 2y 1 1) 5 21 1 9 1 1 (x 1 3)2 1 (y 2 1)2 5 9 center: (23, 1), radius: 3 888 Chapter 13 Skills Practice © Carnegie Learning 210 LESSON 13.2 Skills Practice Name me e page 3 Date ate te 8. x2 1 y2 2 14x 1 4y 1 49 5 0 9. x2 1 y2 2 2x 2 2y 1 1 5 0 © Carnegie Learning 10. 81x2 1 81y2 1 36x 2 324y 1 327 5 0 11. 9x2 1 9y2 1 72x 2 12y 1 147 5 0 13 Chapter 13 Skills Practice 889 LESSON 13.2 Skills Practice page 4 12. 36x2 1 36y2 2 36x 1 72y 1 29 5 0 Determine if each equation represents a circle. If so, describe the location of the center and radius. 13. x2 1 y2 1 4x 1 4y 2 17 5 0 x2 1 y2 1 4x 1 4y 2 17 5 0 x2 1 4x 1 y2 1 4y 5 17 (x2 1 4x 1 4) 1 (y2 1 4y 1 4) 5 17 1 4 1 4 (x 1 2)2 1 (y 1 2)2 5 25 center: (22, 22), radius: 5 14. 2x2 1 y2 1 2x 2 6y 1 6 5 0 13 16. x2 1 y2 2 8x 2 10y 1 5 5 0 890 Chapter 13 Skills Practice © Carnegie Learning 15. x2 1 4y2 2 3x 1 3y 2 9 5 0 LESSON 13.2 Skills Practice Name me e page 5 Date ate te Determine an equation of the circle that meets the given conditions. 17. Same center as circle A, (x 1 3)2 1 (y 1 5)2 5 9, but with a circumference that is twice that of circle A __ The radius of circle A is √ 9 , or 3. To calculate the circumference of A, substitute 3 for r in the formula for the circumference of a circle. C 5 2r 5 2(3) C 5 6 A circle with twice the circumference of circle A has circumference 2(6), or 12 units. To calculate its radius, substitute 12 for C in the formula for the circumference of a circle, and then solve for r. C 5 2r 12 5 2r 65r The radius of the circle is 6. So an equation of the circle with the same center as circle A but with a circumference that is twice that of circle A is (x 1 3)2 1 (y 1 5)2 5 62, or (x 1 3)2 1 (y 1 5)2 5 36. © Carnegie Learning 18. Same center as circle B, (x 2 6)2 1 (y 1 4)2 5 49, but with a circumference that is three times that of circle B 13 Chapter 13 Skills Practice 891 © Carnegie Learning 13 892 Chapter 13 Skills Practice LESSON 13.3 Skills Practice Name me e Date ate te Is That Point on the Circle? Determining Points on a Circle Problem Set For each circle A, determine whether the given point P lies on the circle. Explain your reasoning. 1. 10 a2 1 b2 5 c2 y 8 52 1 32 5 r2 6 25 1 9 5 r2 4 34 5 r2 P (5, 3) 2 A (0, 0) 210 28 26 24 22 0 22 r 25 ___ r 5 √ 34 < 5.8 3 4 6 8 x 10 24 26 Because the length of line segment AP is approximately 5.8 units instead of 6 units, line segment AP is not a radius of circle A; therefore, point P does not lie on circle A. 28 210 2. 10 y P (6, 8) 8 6 © Carnegie Learning 4 2 A (0, 0) 210 28 26 24 22 0 22 2 4 6 8 x 10 13 24 26 28 210 Chapter 13 Skills Practice 893 LESSON 13.3 Skills Practice 3. 10 page 2 y 8 P (5, Œ39) 6 4 2 A (0, 0) 210 28 26 24 22 0 22 2 4 6 8 x 10 8 x 10 24 26 28 210 10 4. y 8 P (4, 7) 6 A (0, 4) 4 210 28 26 24 22 0 22 2 24 26 13 894 28 210 Chapter 13 Skills Practice 4 6 © Carnegie Learning 2 LESSON 13.3 Skills Practice Name me e page 3 Date ate te 5. y 5 P (3, 112Œ3 ) 4 3 2 1 A (1, 1) 25 24 23 22 21 0 21 1 2 3 4 5 x 22 23 24 25 6. 10 y P (7, 8) 8 6 4 2 A (2, 3) © Carnegie Learning 210 28 26 24 22 0 2 4 6 8 x 10 22 24 26 13 28 210 Chapter 13 Skills Practice 895 LESSON 13.3 Skills Practice page 4 Use symmetry to determine the coordinates of each labeled point on the circle. Give exact values, not approximations. 7. 10 y 8. 20 16 8 12 6 4 P (0, 4) 4 B (0, 0) 210 28 26 24 22 0 2 (4, 0) 4 6 8 B (6, 0) x 10 28 216 210 220 y 10. 10 27 16 x 20 y (313Œ2, 413Œ2 ) 8 21 6 (3, 15) C (3, 4) 4 9 2 3 227 221 215 29 23 0 12 8 28 (0, 24) 212 15 4 24 26 9. C(26, 3) 0 220 216 212 28 24 22 24 P (17, 5Œ3 ) 8 2 (24, 0) y 3 15 9 21 27 x 210 28 26 24 22 0 22 29 2 6 4 8 x 10 24 215 26 221 28 227 210 13 20 y 12. 16 16 12 12 8 8 4 (0, 0) 210 26 22 0 24 2 (14, 0) 6 10 14 28 216 18 22 26 x 30 212 (5, –12) 220 Chapter 13 Skills Practice y 4 (0, 0) 28 24 0 24 28 212 896 20 216 220 (4, 7.5) (14, 0) 4 8 12 16 20 24 x © Carnegie Learning 11. LESSON 13.4 Skills Practice Name me e Date ate te The Parabola Equation of a Parabola Vocabulary a. Ax2 1 Dy 5 0 or By2 1 Cx 5 0 2. parabola b. x2 5 4py or y2 5 4px 3. focus of a parabola c. describes the orientation of the curvature of the parabola 4. directrix of a parabola d. a set of points in a plane that are equidistant from a fixed point and a fixed line 5. general form of a parabola e. the maximum or minimum point of a parabola 6. standard form of a parabola f. a set of points that share a property 7. axis of symmetry g. a line that passes through the parabola and divides the parabola into two symmetrical parts that are mirror images of each other 8. vertex of a parabola h. the fixed point from which all points of a parabola are equidistant 9. concavity i. the fixed line from which all points of a parabola are equidistant © Carnegie Learning 1. locus of points 13 Chapter 13 Skills Practice 897 LESSON 13.4 Skills Practice page 2 Problem Set Determine the equation of the parabola. 1. 5 _________________ __________________ 2 1 (1 2 y)2 5 √(x 2 x)2 1 (21 2 y)2 √(0 2 x)____________ _________ √x2 1 (1 2 y)2 5 √(21 2 y)2 y 4 x2 1 (1 2 y)2 5 (21 2 y)2 3 (x, y) 2 x2 1 1 2 2y 1 y2 5 1 1 2y 1 y2 x2 5 4y 1 (0, 1) 25 24 23 22 21 0 21 1 2 3 4 5 x (x, –1) 22 23 24 25 2. 5 y 4 (x, y) (3, y) 3 2 1 25 24 23 22 21 0 21 1 22 23 13 24 25 898 Chapter 13 Skills Practice 2 3 4 5 x © Carnegie Learning (23, 0) LESSON 13.4 Skills Practice Name me e page 3 Date ate te 3. 5 y 4 (x, y) 3 (22, y) 2 1 (2, 0) 25 24 23 22 21 0 2 3 4 5 1 2 (0, 20.5) 3 4 5 1 x 21 22 23 24 25 4. 5 y 4 3 2 (x, 0.5) © Carnegie Learning 25 24 23 22 21 1 0 21 x 22 (x, y) 23 13 24 25 Chapter 13 Skills Practice 899 LESSON 13.4 Skills Practice page 4 Identify the vertex, axis of symmetry, value of p, focus and directrix for each parabola. 5. y 5 25 24 23 22 21 Vertex: (0, 0) 4 Axis of symmetry: x 5 0 3 Value of p: 20.75 2 Focus: (0, 20.75) 1 Directrix: y 5 0.75 0 1 21 2 3 x 4 5 8 x 10 (0, 27.5) 22 23 24 25 6. 10 y 8 6 4 2 (6, 0) 0 210 28 26 24 22 22 2 4 6 24 28 210 13 900 Chapter 13 Skills Practice © Carnegie Learning 26 LESSON 13.4 Skills Practice Name me e page 5 Date ate te 7. y 10 8 6 4 Parabola c 2 0 210 28 26 24 22 2 22 6 4 y 5 21 8 x 10 24 26 28 210 8. 10 y 8 6 4 x52 2 © Carnegie Learning 210 28 26 24 22 0 2 4 6 8 10 22 24 26 13 28 210 Chapter 13 Skills Practice 901 LESSON 13.4 Skills Practice page 6 Sketch each parabola. 9. x2 5 24y y 5 4 3 2 1 0 25 24 23 22 21 1 2 3 4 5 x 21 22 23 24 25 10. y2 5 16x 10 y 8 6 4 2 210 28 26 24 22 0 2 4 6 8 x 10 22 26 13 902 28 210 Chapter 13 Skills Practice © Carnegie Learning 24 LESSON 13.4 Skills Practice Name me e page 7 Date ate te 11. y2 5 220x 10 y 8 6 4 2 210 28 26 24 22 0 2 4 6 8 x 10 2 4 6 8 x 10 22 24 26 28 210 12. x2 5 6y 10 y 8 6 4 © Carnegie Learning 2 210 28 26 24 22 0 22 24 13 26 28 210 Chapter 13 Skills Practice 903 © Carnegie Learning 13 904 Chapter 13 Skills Practice LESSON 13.5 Skills Practice Name me e Date ate te Simply Parabolic More With Parabolas Problem Set Determine the equation of the parabola. 1. __________________ 2 x2 1 (22 2 y)2 5 (x 2 2)2 1 (x, y) 0 25 24 23 22 21 _________________ 2 1 (22 2 y)2 5 √ (x 2 2)2 1 (y 2 y)2 √(0 2 x)_____________ _______ √x2 1 (22 2 y)2 5 √(x 2 2)2 y 3 3 (2, y) 4 5 x x2 1 4 1 4y 1 y2 5 x2 2 4x 1 4 y2 2 4x 1 4y 5 0 (0, 22) 22 23 24 25 26 27 2. 10 y 8 6 (3, 5) © Carnegie Learning 4 (x, y) 2 0 210 28 26 24 22 (x, 23) 2 4 6 8 x 10 13 22 24 26 28 210 Chapter 13 Skills Practice 905 LESSON 13.5 3. 10 Skills Practice page 2 y 8 6 4 2 26 24 22 (5, 1) 0 2 4 6 8 10 (x, y) 22 12 x 14 4 6 24 (x, –5) 26 28 210 4. 10 y 8 (x, 6) 6 4 2 (x, y) 214 212 210 28 26 24 22 0 22 (23, 24) 2 x 24 28 210 13 906 Chapter 13 Skills Practice © Carnegie Learning 26 LESSON 13.5 Skills Practice page 3 Name me e Date ate te Identify the vertex, axis of symmetry, value of p, focus and directrix for each parabola. 5. 14 y Vertex: (3, 4) 12 Axis of symmetry: x 5 3 10 Value of p: 2 Focus: (3, 6) 8 Directrix: y 5 2 (3, 6) 6 4 2 0 26 24 22 2 4 6 8 10 12 6 8 x 14 22 24 26 6. 10 y 8 6 4 2 210 28 26 24 22 0 2 4 x 10 © Carnegie Learning (0, 22) 24 26 13 28 210 Chapter 13 Skills Practice 907 LESSON 13.5 Skills Practice 7. 12 page 4 y 10 8 6 4 2 212 210 28 26 24 22 y 5 22 0 2 4 6 8 x 22 24 26 28 8. 12 y 10 8 x55 6 4 2 212 210 28 26 24 22 0 22 2 4 6 8 x 26 28 13 908 Chapter 13 Skills Practice © Carnegie Learning 24 LESSON 13.5 Skills Practice page 5 Name me e Date ate te Complete the table for each equation. Then, plot the points and graph the curve on the coordinate plane. 9. x2 2 6x 2 y 1 11 5 0 y x y 10 1 6 8 3 2 5 6 x y 12 6 4 2 28 26 24 22 0 22 2 4 6 8 10 x 12 24 26 28 10. y2 2 x 1 6y 1 8 5 0 10 y 8 21 6 3 4 3 2 © Carnegie Learning 210 28 26 24 22 0 22 2 4 6 8 x 10 24 26 13 28 210 Chapter 13 Skills Practice 909 LESSON 13.5 Skills Practice page 6 11. x2 1 4x 1 y 1 5 5 0 y 10 x 8 24 6 22 4 y 0 2 210 28 26 24 22 0 22 2 4 6 8 x 10 24 26 28 210 12. y2 2 6x 2 y 1 11 5 0 10 y x 8 21 6 1 4 y 1 2 0 2 26 910 6 8 x 10 22 24 13 4 28 210 Chapter 13 Skills Practice © Carnegie Learning 210 28 26 24 22 LESSON 13.5 Skills Practice page 7 Name me e Date ate te Rewrite the equations in standard form. 13. x2 2 4x 1 3y 1 10 5 0 14. y2 2 6x 2 6y 1 15 5 0 x2 2 4x 1 3y 1 10 5 0 x2 2 4x 5 23y 2 10 x2 2 4x 1 4 5 23y 2 10 1 4 (x 2 2)2 5 23(y 1 2) 16. y2 2 2x 1 6y 1 3 5 0 © Carnegie Learning 15. x2 1 2x 1 2y 1 1 5 0 13 Chapter 13 Skills Practice 911 © Carnegie Learning 13 912 Chapter 13 Skills Practice
© Copyright 2026 Paperzz