UK-China Forum on Nanostructure for Water 11-13 November 2010, The University of Hong Kong Assembled Hollow Metal Oxide Nanostructures for Water Treatment Junbai Li Institute of Chemistry, Beijing CAS Key Lab of Colloid and Interface Science Chinese Academy of Sciences Metal Oxide Nanomaterials Features Large surface area Various modification Rich valence states Diversity of electronic structure TiO2(B) nanofibers with a shell of anatase nanocrystals-an efficient photocatalyst structure Zhao, J. C. et al. J. Am. Chem. Soc. 2009, 131, 17885 Photocatalytic degradation of RB by Photo-inactivating E. coli by TiO2 hollow spheres TiO2 nanorods A C B Li, X. Y., Xie, Y., et al. Inorg. Chem. 2006, 45, 3493 Joo, J., Kwon, S. G., et al. J. Phys. Chem. B 2005, 109, 15297 MnO2 nanorods degrading methyl blue Zhang, W. X., Yang, Z. H. et al. Catal. Commun. 2006, 7, 408 6 Controlled Preparation of MnO2 Hierarchical Hollow Nanostructures MnSO4 KMnO4 HCl NH4HCO3 C2H6O MnCO3 MnCO3@MnO2 MnO2 Fei, J. B., Li, J. B. et al, Adv. Mater. 2008, 20, 452 7 MnCO3 crystalline as precursor MnCO3 MnO2 SAED Hollow MnO2 sphere with hierarchical structure 8 The relevant chemical reaction ΔGo = - 99.0 kJ/mol XRD patterns: (a) MnCO3 crystals; (b) MnO2 hierarchical hollow nanostructures; (c) the remained core after selective removal of the shell. 9 MnO2 hierarchical hollow nanostructures MnCO3 MnCO3@MnO2 MnO2 10 Kirkendall effect 11 Hierarchical Nanostructures easier separation and recycle compared with common nanoparticles retaining high specific surface area and high catalytic activity effectively preventing further aggregation unblocked mass transferring 12 Different treating time by KMnO4 a) 2; b) 6; c)10 min; and d) remove the core of MnCO3 with HCl 13 Controlled thickness of MnO2 shells 0.01:1 0.02:1 0.04:1 0.1:1 MKMnO4 : MMnCO3 Wall thickness increasing 14 Controllable 3D self-assembly by limited diffusion growth MnSO4 KMnO4 NH4HCO3 HCl C2H6O (NH4)2SO4 MnCO3 MnCO3@MnO2 MnO2 15 MnCO3 microcubes MnO2 hollow microcubes Single MnO2 microcube 16 The surface structure of MnO 2 Adsorption of Congo red to MnO2 shells 3.0 1 b 0 min 5 min 10 min 20 min 30 min 2.5 2.0 1.5 3 1.0 0.5 0.0 1.0 2 400 500 Wavelength (nm) 0.6 b Commercial Fe2O 3 NPs 0.4 MnO 2 as-prepared e f d c 0.2 4 5 300 a Commercial MnO 2 0.8 C/Co Absorbance 3.5 0.0 600 Uv-vis spectra curve: Congo red(100mg//L, 20mL), MnO2 (0.03g) 0 20 40 60 80 Time (min) 100 120 Adsorption curve, e-f regenerated MnO2 particles 17 Wastewater treatment Absorption of Congo red, the capacity is about 60 mg/g. 18 19 Controlled Assembly of Conductive Polymers with Hollow Hierarchical Nanostructures MnO2 MnO2 +4H+ +2e Polymers Mn2++2H2O (E o =1.2 V) Fei, J. B., Li, J. B., et al. ACS Nano 2009, 3, 3714 Monomer pyrrole Polymerization Potential 0.6~ ~0.8V thiophene 0.7~ ~1.8V aniline ~0.8V 1,2-diaminobenzene ~0.9V o-aminophenol ~0.7V …… …… C4H5N+MnO2 +H+ PPY+Mn2++ H2O Summary Hierarchical hollow MnO2 nanostructure with intricate and well-controlled 3D morphologies have been assembled by combining the Kirkendall effect with removable crystalline template; MnO2 superstructures at a micro- and nanoscale showed a good ability to remove organic pollutant in waste water; This approach will find wide acceptance and use in the field of template-directed nanostructure synthesis. 23 Acknowledgements Co-workers: Dr. Qiang He Dr. Yue Cui Dr. Jinbo Fei Dr. Xuehai Yan Dr. Yang Yang Chinese Academy of Sciences (CAS) National Nature Science Foundation of China (NNSFC) Ministry of Science and Technology of China (MOST) Max Planck Society (MPG) EU FP6 Project-Active Biometics 24 Financial Supports:
© Copyright 2026 Paperzz