Section 2.3 The Product and Quotient rules and higher-order derivatives Theorem 1: The Product Rule The product of two differentiable functions is differentiable and d [ f ( x) g ( x)] = f ′( x) g ( x) + f ( x) g ′( x) dx Proof: d f ( x + ∆x) g ( x + ∆x) − f ( x) g ( x) [ f ( x) g ( x)] = ∆lim x → 0 dx ∆x f ( x + ∆x) g ( x + ∆x) − f ( x + ∆x) g ( x) + f ( x + ∆x) g ( x) − f ( x) g ( x) = lim ∆x → 0 ∆x f ( x + ∆x) g ( x) − f ( x) g ( x) f ( x + ∆x) g ( x + ∆x) − f ( x + ∆x) g ( x) = lim + lim ∆x → 0 ∆ x → 0 ∆x ∆x f ( x + ∆x) − f ( x) g ( x + ∆x) − g ( x) = lim ⋅ g ( x) + lim f ( x + ∆x) ⋅ lim ∆x → 0 ∆x → 0 ∆x ∆x ∆x →0 = f ′( x) g ( x) + f ( x) g ′( x) The product rule can easily be extended to d [ f ( x) g ( x)h( x)] = f ′( x) g ( x)h( x) + f ( x) g ′( x)h( x) + f ( x) g ( x)h′( x) dx Example 1: Find the derivative of each function. a) f ( x) = ( x 3 + 2 x) sin x f ( x) = ( x 3 + 2 x) sin x ( ) d 3 d x + 2 x ⋅ sin x + ( x 3 + 2 x) ⋅ (sin x ) dx dx 2 3 = (3 x + 2) sin x + ( x + 2 x) cos x f ′( x) = b) g ( x) = x (cos x) g ( x) = x (cos x) g ′( x) = = 1 2 x (cos x) + x (− sin x) cos x − x (sin x) 2 x cos x x (sin x) ⋅ 2 x − 2 x 1⋅ 2 x cos x − 2 x sin x = 2 x = Calculus I by Chinyoung Bergbauer at NHMCCD: 2.3 The product and quotient rules and higher order derivative 1 Practice 1: Find the derivative of each function. a) f ( x) = (4 x 2 + 3 x)(3 x + 5) 2 b) g ( x) = (3 sin x ) x Theorem 2: The Quotient Rule The quotient f / g of two differentiable function f and g is differentiable at all values of x d f ( x) f ′( x) g ( x) − f ( x) g ′( x) for which g ( x) ≠ 0 and = dx g ( x) [g ( x)]2 Proof: f ( x + ∆x ) f ( x ) − d f ( x) g ( x + ∆x) g ( x) = lim dx g ( x) ∆x → 0 ∆x f ( x + ∆x ) g ( x ) − f ( x ) g ( x + ∆x ) = lim ∆x → 0 g ( x + ∆x ) g ( x ) ∆x f ( x + ∆x ) g ( x ) − f ( x ) g ( x ) + f ( x ) g ( x ) − f ( x ) g ( x + ∆x ) = lim ∆x → 0 g ( x + ∆x ) g ( x ) ∆x f ( x + ∆x ) g ( x ) − f ( x ) g ( x ) f ( x ) g ( x ) − f ( x ) g ( x + ∆x ) + ∆x ∆x = lim ∆x → 0 g ( x + ∆x ) g ( x ) f ( x + ∆x ) g ( x ) − f ( x ) g ( x ) f ( x ) g ( x + ∆x ) − f ( x ) g ( x ) − ∆x ∆x = lim ∆x → 0 g ( x + ∆x) g ( x) f ( x + ∆x ) − f ( x ) g ( x + ∆x ) − g ( x ) g ( x) − f ( x) ∆x ∆x = lim ∆x → 0 g ( x + ∆x) g ( x) = f ′( x) g ( x) − f ( x) g ′( x) [g ( x)]2 d 1 − g ′( x) = dx g ( x) [g ( x)]2 Calculus I by Chinyoung Bergbauer at NHMCCD: 2.3 The product and quotient rules and higher order derivative 2 Example 2: Find the derivative of each function. 5x − 2 a) f ( x) = 3 x + 2x f ( x) = f ′( x) = = = 5x − 2 x3 + 2 x 5( x 3 + 2 x) − (5 x − 2)(3 x 2 + 2) (x 3 + 2x ) 2 5 x 3 + 10 x − 15 x 3 + 6 x 2 − 10 x + 4 (x 3 + 2x ) 2 − 10 x 3 + 6 x 2 + 4 (x 3 + 2x ) 2 2 + 1/ x 2 f ( x) = 2x − 3 b) 2 + 1 / x 2 2 + x −2 = 2x − 3 2x − 3 −3 (−2 x )(2 x − 3) − (2 + 1 / x 2 )2 f ′( x) = (2 x − 3) 2 f ( x) = (−2 / x )(2 x − 3) − (2 + 1 / x )2 = (2 x − 3) 2 3 = − = = 2 − 2(2 x − 3) 1 − 2 + 2 2 3 x x = 2 (2 x − 3) 2(2 x − 3) 2(2 x 2 + 1) 2(2 x − 3) 3 2(2 x 2 + 1) 3 − − ⋅x − ⋅x 3 2 x3 x2 x x = (2 x − 3) 2 x 3 (2 x − 3) 2 − 2(2 x − 3) − 2 x(2 x 2 + 1) − 4 x + 6 − 4 x 3 − 2 x − 4 x 3 − 6 x + 6 = = 3 x 3 (2 x − 3) 2 x 3 (2 x − 3) 2 x (2 x − 3) 2 2x2 +1 Alternate method : f ( x) = 2 : Use the quotient rule x (2 x − 3) Practice 2: Find the derivative of each function. Calculus I by Chinyoung Bergbauer at NHMCCD: 2.3 The product and quotient rules and higher order derivative 3 a) b) c) 4x − 3 5x 2 + 4 x 3x − 2 x 2 f ( x) = x3 9 f ( x) = 3 7x f ( x) = Modified Quotient Rule: When the numerator is just 1, then d 1 − g ′( x) = dx g ( x) [g ( x)]2 Example 3: Use the quotient rule to get the derivative of f ( x) = x −5 . 1 f ( x ) = x −5 = 5 x 4 − 5x 5 f ′( x) = 10 = − 6 x x Practice 3: Use the quotient rule to get the derivative of f ( x) = x −9 . Example 4: Use the quotient rule to get the derivative of f ( x) = csc x . 1 f ( x) = csc x = sin x cos x cos x 1 f ′( x) = − 2 = − ⋅ = − cot x csc x sin x sin x sin x Practice 4: Use the quotient rule to get the derivative of f ( x) = cot x and f ( x) = sec x Theorem 3: Derivative of Trigonometric Functions d d [tan x] = sec2 x; [cot x] = − csc2 x dx dx d [sec x] = sec x tan x; dx d [csc x] = − csc x cot x dx Example 5: Find the derivative of each function. a) f ( x) = x tan x f ( x) = x tan x f ′( x) = tan x + x(sec 2 x) b) g ( x) = (sec x ) x Calculus I by Chinyoung Bergbauer at NHMCCD: 2.3 The product and quotient rules and higher order derivative 4 g ( x) = (sec x ) x g ′( x) = (sec x tan x) x + (sec x) 1 2 x = 2 x(sec x tan x) + sec x 2 x = sec x(2 x tan x + 1) 2 x cos x 1 + sin x cos x h( x) = 1 + sin x − sin x(1 + sin x) − cos x(cos x) − sin x − sin 2 x − cos 2 x − sin x − (sin 2 x + cos 2 x) h′( x) = = = (1 + sin x) 2 (1 + sin x) 2 (1 + sin x) 2 − sin x − 1 − (1 + sin x) 1 = = =− 2 2 (1 + sin x) (1 + sin x) 1 + sin x c) h( x) = Practice 5: Find the derivative of each function. a) f ( x) = 3 x 2 cot x b) g ( x) = 2 x + csc x 1 − sin x c) h( x) = 1 + sin x Higher-Order Derivatives dy d , [ f ( x)], Dx [ y ] dx dx d2y d2 2 Second derivative: y′′, f ′′( x), , [ f ( x)], Dx [ y ] dx 2 dx 2 d3y d3 3 Third derivative: y′′′, f ′′′( x), , [ f ( x)], Dx [ y ] 3 3 dx dx 4 d y d4 4 ( 4) ( 4) Fourth derivative: y , f ( x), , [ f ( x)], Dx [ y ] 4 4 dx dx . . . dny dn n nth derivative: y ( n ) , f ( n ) ( x), , [ f ( x)], Dx [ y ] dx n dx n First derivative: y′, f ′( x), Calculus I by Chinyoung Bergbauer at NHMCCD: 2.3 The product and quotient rules and higher order derivative 5 Example 6: Find the second derivative of the function: f ( x) = x +1 x−2 The second derivative of the position function is the acceleration function a (t ) = s′′(t ) Example 7: Finding the acceleration due to gravity Because the moon has no atmosphere, a falling object on the moon encounters no air resistance. In 1971, astronaut David Scott demonstrated that a feather and a hammer fall at the same rate on the moon. The position function of a falling object on the moon is s (t ) = −0.81t 2 + 2 where the height in meters is s (t ) and t is the time in seconds. What is the acceleration due to gravity on the moon? Note that the acceleration due to gravity on earth is – 9.8 m / sec 2 . s (t ) = −0.81t 2 + 2 v(t ) = s ′(t ) = −1.62t a (t ) = s′′(t ) = −1.62m / sec 2 Calculus I by Chinyoung Bergbauer at NHMCCD: 2.3 The product and quotient rules and higher order derivative 6
© Copyright 2025 Paperzz