1 of 3 Name: Worksheet Factorial notation 1 Expand the following. a4! ________________________________________ b 7!________________________________________ c13! 2 ________________________________________ Calculate the following, using technology where necessary. a 8!________________________________________ b 11!________________________________________ c13! ________________________________________ d22! ________________________________________ 78! ________________________________________ 73! 100! f ________________________________________ 95! 3 Calculate the following without using technology. e a4! ________________________________________ b 6!________________________________________ 10! ________________________________________ 7! 11! d ________________________________________ 9! 20! e ________________________________________ 18! 7! ________________________________________ f 4! 4 Find: i n and ii (n 2 3)! If n! is equal to: c a120 b 5040 © Cengage Learning Australia Pty Ltd 2013 Nelson Senior Maths: Specialist MATHS11WK20021 www.nelsonnet.com.au MATHS11WK20021.indd 1 31/10/13 5:25 PM 2 of 3 c 362 880 d 479 001 600 5 Solve the following problems. a A lucky dip contains 6 different prizes. In how many different ways can six children win these prizes? b If a phone number has 8 digits, how many different phone numbers exist that do not repeat any numbers? c A committee of 6 needs to be chosen from a pool of 20 people. In how many ways is this possible? d A case-sensitive password has 5 letters or numbers. How many different combinations are possible if none are repeated? © Cengage Learning Australia Pty Ltd 2013 Nelson Senior Maths: Specialist MATHS11WK20021 www.nelsonnet.com.au MATHS11WK20021.indd 2 31/10/13 5:25 PM 3 of 3 Answers 1a4 3 3 3 2 3 1 b7 3 6 3 5 3 4 3 3 3 2 3 1 c13 3 12 3 11 3 10 3 9 3 8 3 7 3 6 3 5 3 4 3 3 3 2 3 1 2a 40 320 b 39 916 800 c 6 227 020 800 d 1 124 000 727 777 607 680 000 e 2 533 330 800 f 9 034 502 400 3a24 b 720 c 720 d110 e 380 f210 4a i n 5 5 ii (n 2 3)! 5 2 b i n 5 7 ii (n 2 3)! 5 24 c i n 5 9 ii (n 2 3)! 5 720 d i n 5 10 ii (n 2 3)! 5 3 628 800 5a720 b 40 320 c 27 907 200 d 45 239 040 © Cengage Learning Australia Pty Ltd 2013 Nelson Senior Maths: Specialist MATHS11WK20021 www.nelsonnet.com.au MATHS11WK20021.indd 3 31/10/13 5:25 PM
© Copyright 2025 Paperzz