Factorial notation

1 of 3
Name:
Worksheet
Factorial notation
1
Expand the following.
a4!
________________________________________
b 7!________________________________________
c13!
2
________________________________________
Calculate the following, using technology where necessary.
a
8!________________________________________
b 11!________________________________________
c13!
________________________________________
d22!
________________________________________
78! ________________________________________
73!
100!
f
________________________________________
95!
3 Calculate the following without using technology.
e
a4!
________________________________________
b 6!________________________________________
10!
________________________________________
7!
11!
d
________________________________________
9!
20!
e
________________________________________
18!
7! ________________________________________
f
4!
4 Find: i n and ii (n 2 3)! If n! is equal to:
c
a120
b 5040
© Cengage Learning Australia Pty Ltd 2013 Nelson Senior Maths: Specialist MATHS11WK20021 www.nelsonnet.com.au
MATHS11WK20021.indd 1
31/10/13 5:25 PM
2 of 3
c
362 880
d 479 001 600
5
Solve the following problems.
a
A lucky dip contains 6 different prizes. In how many different ways can six children win these prizes?
b
If a phone number has 8 digits, how many different phone numbers exist that do not repeat any
numbers?
c
A committee of 6 needs to be chosen from a pool of 20 people. In how many ways is this possible?
d
A case-sensitive password has 5 letters or numbers. How many different combinations are possible if
none are repeated?
© Cengage Learning Australia Pty Ltd 2013 Nelson Senior Maths: Specialist MATHS11WK20021 www.nelsonnet.com.au
MATHS11WK20021.indd 2
31/10/13 5:25 PM
3 of 3
Answers
1a4 3 3 3 2 3 1
b7 3 6 3 5 3 4 3 3 3 2 3 1
c13 3 12 3 11 3 10 3 9 3 8 3 7 3 6 3 5 3 4 3 3 3 2 3 1
2a
40 320
b 39 916 800
c
6 227 020 800
d 1 124 000 727 777 607 680 000
e
2 533 330 800
f
9 034 502 400
3a24
b 720
c
720
d110
e
380
f210
4a i n 5 5 ii (n 2 3)! 5 2
b i n 5 7 ii (n 2 3)! 5 24
c i n 5 9 ii (n 2 3)! 5 720
d i n 5 10 ii (n 2 3)! 5 3 628 800
5a720
b 40 320
c
27 907 200
d 45 239 040
© Cengage Learning Australia Pty Ltd 2013 Nelson Senior Maths: Specialist MATHS11WK20021 www.nelsonnet.com.au
MATHS11WK20021.indd 3
31/10/13 5:25 PM