Factoring (Perfect Square Trinomials) ChemistNATE Factor each of the following perfect squares. If you can identify them as perfect squares, then you only need ONE step to do each. 2 b) x −18 x+81 2 d) 4 x +4 x+1 2 f) p +8 pq+16 q 2 h) k −20 k +100 2 j) n +4 nj+4 j 2 l) u −22 u+121 n) r −2 r+1 p) 4 m +12 mw+9 w a) x +16 x+64 c) m +2 m+1 e) x −10 x+25 g) w +20 q+100 i) 64 x +16 x+1 k) 25 f −40 f +16 m) 36 s −12 s+1 o) 100 x −42 x+121 2 2 2 2 2 2 2 2 2 2 2 2 2 Answers Are the first and third terms perfect squares? If so, is the centre term exactly double the product of the two? Then it's a perfect square. I've explained a few throughout. a) 2 x +16 x+64 b) First term: (x)2 Third term: (8)2 Second term: (8x) doubled. 2 x −18 x+81 (x-9)2 Therefore, it's a perfect square. = (x+8)2 2 d) 4 x +4 x+1 =(2x+1)2 2 f) p +8 pq+16 q = (p+4q)2 2 h) k −20 k +100 =(k-10)2 j) n +4 nj+4 j c) m +2 m+1 =(m+1)2 e) x −10 x+25 = (x-5)2 g) w +20 q+100 = (w+10)2 i) 64 x +16 x+1 2 First term: (8x)2 Third term: (1)2 Second term: (8x) doubled. Therefore it's a perfect square. = (8x + 1)2 2 k) 25 f −40 f +16 = (5f – 4)2 m) o) 100 x −42 x+121 = (10x – 11)2 2 2 2 2 2 2 First term: (n)2 Third term: (2j)2 Second term: (2nj) doubled Therefore, it's a perfect square. = (n+2j)2 2 l) u −22 u+121 = (u-11)2 36 s −12 s+1 = (6s – 1)2 n) r −2 r+1 (r - 1)2 2 p) 4 m +12 mw+9 w = (2m + 3w)2 2 2 2 2
© Copyright 2025 Paperzz