Factoring Perfect Squares

Factoring (Perfect Square Trinomials)
ChemistNATE
Factor each of the following perfect squares. If you can identify them as perfect squares, then you only
need ONE step to do each.
2
b)
x −18 x+81
2
d)
4 x +4 x+1
2
f)
p +8 pq+16 q
2
h)
k −20 k +100
2
j)
n +4 nj+4 j
2
l)
u −22 u+121
n)
r −2 r+1
p)
4 m +12 mw+9 w
a)
x +16 x+64
c)
m +2 m+1
e)
x −10 x+25
g)
w +20 q+100
i)
64 x +16 x+1
k)
25 f −40 f +16
m)
36 s −12 s+1
o)
100 x −42 x+121
2
2
2
2
2
2
2
2
2
2
2
2
2
Answers
Are the first and third terms perfect squares? If so, is the centre term exactly double the product
of the two? Then it's a perfect square. I've explained a few throughout.
a)
2
x +16 x+64
b)
First term: (x)2
Third term: (8)2
Second term: (8x) doubled.
2
x −18 x+81
(x-9)2
Therefore, it's a perfect square.
= (x+8)2
2
d)
4 x +4 x+1
=(2x+1)2
2
f)
p +8 pq+16 q
= (p+4q)2
2
h)
k −20 k +100
=(k-10)2
j)
n +4 nj+4 j
c)
m +2 m+1
=(m+1)2
e)
x −10 x+25
= (x-5)2
g)
w +20 q+100
= (w+10)2
i)
64 x +16 x+1
2
First term: (8x)2
Third term: (1)2
Second term: (8x) doubled.
Therefore it's a perfect square.
= (8x + 1)2
2
k)
25 f −40 f +16
= (5f – 4)2
m)
o)
100 x −42 x+121
= (10x – 11)2
2
2
2
2
2
2
First term: (n)2
Third term: (2j)2
Second term: (2nj) doubled
Therefore, it's a perfect square.
= (n+2j)2
2
l)
u −22 u+121
= (u-11)2
36 s −12 s+1
= (6s – 1)2
n)
r −2 r+1
(r - 1)2
2
p)
4 m +12 mw+9 w
= (2m + 3w)2
2
2
2
2