Homework #5 solution

Physics 4510 Optics
Homework Assignment Problem Set #5
(Turn in before class by Dec 8th, no late homework will be accepted)
1. (15%) Prove that the secondary maxima of a single-slit diffraction pattern occur
when β = tan β .
2. (15%) A single-slit Fraunhofer diffraction pattern is formed using white light. For
what wavelength does the second minimum coincide with the third minimum
produced by a wavelength of λ = 400 nm.
3. (20%) For an apodized slit which has a transmission function of
⎡ ⎛ y ⎞2 ⎤
1 2
f ( y) =
exp ⎢− 2⎜ ⎟ ⎥ ,
a π
⎣⎢ ⎝ a ⎠ ⎦⎥
proof that the Fraunhofer diffraction pattern is
∞
k 2a2
)
E ∝ ∫ f ( y )e iky dy = exp(−
−∞
8
by using the relation
∫
∞
e −u du = π .
2
−∞
Note that the diffraction pattern has no sidebands.
4. (15%) Consider a double slits aperture, each slit has a width b, and are separated
by a distance h. Prove that the intensity of the Fraunhofer diffraction pattern is
sin β 2
I = I0 (
) cos 2 γ
β
where β =
1
1
kb sin θ and γ = kh sin θ .
2
2
5. (15%) Continue on problem #4, the first term of the diffraction pattern of a
sin β 2
) typically accounts for diffraction pattern of a single
double slits aperture (
β
slit, and the cos γ terms corresponds to the interference between the two slits.
Missing orders occur at those values of sin θ which satisfy, at the same time, the
condition for interference maxima and the condition for diffraction minima. Show
h
that this leads to the condition ( ) = integer.
b
2
6. (20%) Plot the diffraction pattern I (θ ) of the double slits aperture for θ from 180o to 180o in Problem #5, where I 0 = 1 , b = 1µm , h = 3µm and the optical
wavelength λ = 632nm .
l-lw#s
Sf o.'t,;,
s;"61nslit
ytLwn,
Fo. A
D;{(^ct,"^
Fro^"k*(rn
(?
t sin 1z
t
(1 r
+' 1;J rL t n a f , i n r * r . a , : e t # = o
& =r.a(ff)#rifli
dF
I
>s*nf
-o
l-
(
ze;^f
+o
r -
e*
0 =*.oF
F
(-
D
t 4
I
|
{
T *'f )
fl
I
s'n/t
fL tB c"E[7
P*'f= S ; n f
)
l
S i"r
iir
rit
I t l
iit
Itt
tll
Jtl
f, iii
Itl
tit
si^6lu sht d,:{Nno*ta4,
tL^ ;^-f*nsr1V
sii{l
r
,
r
o
t
T
))'
Fo"
iti
t:l
il!
f
iit
iti
t:i
Itt
ilt
rJi
,i;
tt(
prinima
occLr
f=
o-Sl*y
i
vv,TI
rn-_tl,tZ.--
I
lat
*i f l:
lii
t*l
itr
lin c-p
t'i
iii
?=
*t
+ bs ; n o
l l i
iir
r:i
:ii
iii
!ti
i:i
:.,,
:i1
I si'ro
At
minirrra,
(t
--
*
Lsr,,s =
b sintr
.)
+1*r'$r*
anol,
\
= rnA
b sr'n& = eA
b sr'nF = J\/
3\
+ \ '
^\
eAr
* \
6 un y wt I
l
r
ut'urz' A =Voonyrt
To,
Fr^^ntrr{^r
I
/,ff^drLn,
'*!^.^r
I
I**4,*>- a ( * = )
f^
_1.1.L
f lE
)^aJTe
e
vol\
(^ -(+)"- tk?
" ,
ol
JTT
I l a
q
t _
I
I*g
7
= (*f+iK%+
(f)' f#t
(ry)'*ik.*
sincr
=tt *'ft1'+*"
-\
-)
E
\ - *i$t-(+e)
-, a) Jtrn (*^-(ry
-'-_,,t:,_'drr|
d
.}_:,
=* H
=
l)',U tl*
-tr
[ e - ( # n s^ f,
u
"f',,lf
Q.
?-.f]
\ F
I_e-*T
r:olot,,^
-Xt
J-e d,x =fn
- k=o'/ g
e
E
fe
/tfi*.t;t^,
hrfi*
Tl* Fnn^n
Er= e ( (
e
J J"^L[u]it
p^t*c,t,. is
; F\r
t5{no
.!,,
ag
efls;nu
,k
uW
: f n,kt,'^oort+
e
Jl-t
Jo
I
f i b ^ i [ eol s i n $
=
iK"^oLi"e o((tQsi^o)
t
+ f
h+b i K6s,,^
$
(,
tL;kg ,ing)]
)^
I
'K(h+blsi*$
ihLq,ur$
-
-l + e
LKr,"oLe
a
|
(/ e^ i k L s i , i $ l ) ( \ + e
rk-^e
q
e
ktn^e
*
= 1l
* rus,ns
*nnl
E o{.fb e' e-
sin(i
F
tl.+* iuo*a*#&
'T
J-
)
i k(*)s'' p
- ikt*)s;,
+ e
cor{{rh*
ht+ kbsns)
e
lF iv
1l*afuru,
ii<hs,.,$\
I {nLs,'r$ i f khrr"s
:b
-T
".Lo
J
I KW:)s;"$ iK[hl'k;-'S
4t
e*+t
ifihsra$
t
*i"tr
i t.l',5inI = |"
C r SX
Fo. Tra^^hr1* d;.ll^r1,"^
dntg
'
I'aLl<
irj,,^s;tq is
+tl-
Ett ,
*o
T ( o )= T o+ * o r ' $
r'ol*ro
an*t
P=*rbsin8
M ,ss;1
(
i nfnn
o.lrnr
{o't
oao&fs
ru\^x f I
Ic*=
V --rnn
r
h a l n t n t , + tvl
ot^
7
{t
\
= nTT
?r
*h
P
,^ \r
h
T
D
n = tl,tZ
rr\
=
-
l , Y: t O ,t l , t 7
m i r\ \ f + )
F"
5
or
+
sinF
r^rlrnt
n11u- yv\^Ki6ry\^
,tifi.".*un
f , =i r l
YN
n
=
in*tq,q.r-
a
h
--
% Problem #6
% plotting the double slit diffraction pattern
clear all;
theta_angle = -180:.01:180;
theta = theta_angle/180*pi;
lambda = 632e-9;
b=1e-6;
h=3e-6;
k=2*pi/lambda
beta = .5*k*b*sin(theta);
gamma = .5*k*h*sin(theta);
I=(sin(beta)./beta.*cos(gamma)).^2;
plot(theta_angle, I);
xlabel('Angle');
ylabel('Diffraction Pattern');
1
0.9
0.8
Diffraction Pattern
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-200
-150
-100
-50
0
Angle
50
100
150
200