About Graphs of Functions: Examples TABLE OF CONTENTS Properties ............................................................................................................................ 1 Even Functions................................................................................................................ 1 Odd Functions................................................................................................................. 1 Symmetry........................................................................................................................ 1 Increasing and Decreasing Functions ............................................................................. 2 Basic Functions................................................................................................................... 2 Basic Functions............................................................................................................... 2 Polynomial Functions ......................................................................................................... 4 Factoring ......................................................................................................................... 4 Graphing ......................................................................................................................... 5 Leading Coefficients....................................................................................................... 6 Rational Functions .............................................................................................................. 7 Definition/Form .............................................................................................................. 7 Asymptotes ..................................................................................................................... 8 Defined Functions............................................................................................................... 9 Domain and Range.......................................................................................................... 9 Graphing ....................................................................................................................... 10 New Functions .................................................................................................................. 11 Shifting of Graphs......................................................................................................... 11 Combining the Shifts .................................................................................................... 12 Compression and Stretching ......................................................................................... 12 Reflection...................................................................................................................... 13 About Graphs of Functions: Examples Properties Even Functions ► Below are two graphs of even functions. Odd Functions ► Below are two graphs of odd functions. Symmetry ► Both graphs below evidence "mirror image" properties, qualifying each as examples of symmetry. 1 Increasing and Decreasing Functions ► Below are graphs of increasing and decreasing functions. Increasing Decreasing Basic Functions Basic Functions ► Below are the domain, range and a sample graph of the constant function y = C. In this case, C = 2. Domain: ( -∞, +∞) Range: {C} 2 ► Below are the domain, range, and the graph of the identity function y = x. Domain: ( -∞, +∞) Range: ( -∞, +∞) ► Below are the domain, range and the graph of the function y = x². Domain: ( -∞, +∞) Range: ► [ 0, +∞ ) Here are the domain, range and the graph of the function y = x³. Domain: ( -∞, +∞) Range: ( -∞, +∞) 3 ► Below are the domain, range and the graph of the function y = 1/x. Domain: ( -∞, 0 ) U ( 0, +∞) Range: ( -∞, 0 ) U ( 0, +∞) ► Below are the domain, range and the graph of the function y = x1/3. Domain: ( -∞, +∞ ) Range: ( -∞, +∞) Polynomial Functions Factoring ► 20x2 + 23x - 21 = (5x - 3)(4x + 7) ► x5 + 15x4 + 90x3 +270x2 + 405x + 243 = (x + 3)5 ► x3 – 4x2 – x + 4 = (x - 1)(x + 1)(x - 4) ► x2 = (x - 0)(x - 0) = (x - 0)2 4 Graphing ► Below is a degree 6 polynomial (notice the 5 bumps, as 5 + 1 = 6): x6 + 5x5 + 6x4 - 4x3 - 8x2 = x2(x + 2)3(x - 1) ► Below is a degree 5 polynomial (notice the 4 bumps, as 4 + 1 = 5): x5 + 5x4 + 3x3 - 9x2 = x2(x - 1)(x + 3)2 ► Below is a degree 4 polynomial (notice the 3 bumps, as 3 + 1 = 4): x4 - 5x2 + 4 = (x + 2)(x + 1)(x - 1)(x - 2) 5 ► Below is a degree 3 polynomial (notice the 2 bumps, as 2 + 1 = 3): x3 + x2 - 2x = x(x - 1)(x + 2) Leading Coefficients ► Case 1: Consider the polynomial 3x2 + 5x - 4 (Fig 1). ► Case 2: Consider the polynomial -2x4 + 10 (Fig 2). ► Case 3: Consider the function 5x3 -7x +2 (Fig 1). 6 ► Case 4: Consider the polynomial -2x3 + 20 (Fig 2). Rational Functions Definition/Form ► Below are some examples of rational functions. ► Below are some examples of rational functions in factored form. 7 ► Below are some examples of rational functions in reduced factored form. Asymptotes ► The function (25x7 + 7) / (5x7 + 4x4 + 3x3) has a numerator of degree 7 and a denominator of degree 7. Since m = n, there is a horizontal asymptote at 25/5 = 5. 8 ► The function (-28x2 + 7x + 1) / (4x2 + 2x - 8) has numerator of degree 2 and a denominator of degree 2. Since m = n, there is a horizontal asymptote at -28/4 = -7. Note that the function crosses the asymptote on the right of the y-axis. This occasionally occurs with horizontal asymptotes, but never with vertical asymptotes. Defined Functions Domain and Range ► Consider the following function: Domain = ( -∞, +∞ ) Range = ( -∞, 0 ) U { 1 } 9 ► Consider the following function: Domain = ( -∞, 2 ) Range = ( -∞, 0 ) U ( 0 , 2 ) Graphing ► Consider the following piecewise function: 10 ► Consider the following piecewise function: New Functions Shifting of Graphs ► y = f(x) + c y = f(x) = x² ( - - - line) y = x² + 2 ► ( line) y = f(x) + c y = f(x) = x² ( - - - line) y = (x - 4)² ( line) 11 Combining the Shifts ► Consider the graph below. Compression and Stretching ► Consider the following graphs, in which c ≥ 1: y = 2[x] y = [2x] 12 ► Consider the following graphs, in which 0 < c < 1: y = (1/2) [x] y = [(1/2) x] Reflection ► Note that the two graphs below are mirror images of one another, as the only difference in their respective formulas is that one has a negative term. 13
© Copyright 2025 Paperzz