Name_____________________________________ 2nd Six Weeks Test REVIEW Solve the following absolute value equations. 1 3 1) . |5π₯| β 4 = 21 2) |3π₯ β 2| β 6 = β5 Solve the following absolute value inequalities and graph the solution on the number line. 1 3) |2π₯ β 1| < 7 4) | π₯| + 5 β₯ 10 3 State the attributes of the following functions. 5) π(π₯) = 2|π₯ β 3| + 4 6) π(π₯) = β|π₯| β 5 Vertex: ______________ Vertex: ______________ Axis of Symmetry: _______ Max/Min: ___________ Axis of Symmetry: _______ Max/Min: ___________ Domain: _______________ Range: ______________ Domain: _______________ Range: ______________ x-intercept(s): __________ y-intercept: __________ x-intercept(s): __________ y-intercept: __________ List the transformations of the following functions from the parent function. 1 2 7) π¦ = 2|π₯ + 1| + 1 8) π¦ = β |π₯ β 3| 9) 10) 11) π¦ = β3π₯ 2 + 4 12) π¦ = (π₯ + 5)2 β 3 Graph and state the attributes to the following quadratic functions. 13) π(π₯) = 2(π₯ β 1)2 14) π(π₯) = β3π₯ 2 + 4 Vertex: ________________ Vertex: ________________ Axis of Symmetry: _______ Axis of Symmetry: _______ Max/Min: ______________ Max/Min: ______________ Domain: _______________ Domain: _______________ Range: ________________ Range: ________________ Convert the following quadratic functions to vertex form and state the attributes. 15) π¦ = π₯ 2 β 2π₯ + 5 16) π¦ = 3π₯ 2 + 18π₯ β 7 Vertex: ________________ Axis of Symmetry: _______ Max/Min: ______________ Domain: _______________ Range: ________________ Vertex: ________________ Axis of Symmetry: _______ Max/Min: ______________ Domain: _______________ Range: ________________ Write the quadratic function, in vertex form, that has the given vertex and passes through the given point. 17) vertex at (β2,5) and passes through (β1,4) 18) vertex at (1,2) and passes through (0,5) Write the quadratic function that passes through the given points. 19) 20) {(0, β32), (5, β17), (6, β20)} x -2 3 5 y 39 14 32 21) The given table represents the height of a bottle rocket as it flies up and returns to the ground. Find a quadratic function to model the data as a function of x, time in the air. Use the model to determine the height of the rocket at 3 seconds. Factor the following expressions. 22) 5π2 π + 10ππ2 23) π¦ 2 β 81 25) 36π₯ 2 β 4 26) 3π 2 + 14π β 5 Time Elapsed (s) 0 2 4 24) π₯ 2 + 10π₯ + 24 Height (ft) 5 11 13
© Copyright 2025 Paperzz