2nd Six Weeks Test REVIEW

Name_____________________________________
2nd Six Weeks Test REVIEW
Solve the following absolute value equations.
1
3
1) . |5π‘₯| βˆ’ 4 = 21
2) |3π‘₯ βˆ’ 2| βˆ’ 6 = βˆ’5
Solve the following absolute value inequalities and graph the solution on the number line.
1
3) |2π‘₯ βˆ’ 1| < 7
4) | π‘₯| + 5 β‰₯ 10
3
State the attributes of the following functions.
5) 𝑓(π‘₯) = 2|π‘₯ βˆ’ 3| + 4
6) 𝑓(π‘₯) = βˆ’|π‘₯| βˆ’ 5
Vertex: ______________
Vertex: ______________
Axis of Symmetry: _______ Max/Min: ___________
Axis of Symmetry: _______ Max/Min: ___________
Domain: _______________ Range: ______________
Domain: _______________ Range: ______________
x-intercept(s): __________ y-intercept: __________
x-intercept(s): __________ y-intercept: __________
List the transformations of the following functions from the parent function.
1
2
7) 𝑦 = 2|π‘₯ + 1| + 1
8) 𝑦 = βˆ’ |π‘₯ βˆ’ 3|
9)
10)
11) 𝑦 = βˆ’3π‘₯ 2 + 4
12) 𝑦 = (π‘₯ + 5)2 βˆ’ 3
Graph and state the attributes to the following quadratic functions.
13) 𝑓(π‘₯) = 2(π‘₯ βˆ’ 1)2
14) 𝑓(π‘₯) = βˆ’3π‘₯ 2 + 4
Vertex: ________________
Vertex: ________________
Axis of Symmetry: _______
Axis of Symmetry: _______
Max/Min: ______________
Max/Min: ______________
Domain: _______________
Domain: _______________
Range: ________________
Range: ________________
Convert the following quadratic functions to vertex form and state the attributes.
15) 𝑦 = π‘₯ 2 βˆ’ 2π‘₯ + 5
16) 𝑦 = 3π‘₯ 2 + 18π‘₯ βˆ’ 7
Vertex: ________________
Axis of Symmetry: _______
Max/Min: ______________
Domain: _______________
Range: ________________
Vertex: ________________
Axis of Symmetry: _______
Max/Min: ______________
Domain: _______________
Range: ________________
Write the quadratic function, in vertex form, that has the given vertex and passes through the given point.
17) vertex at (βˆ’2,5) and passes through (βˆ’1,4)
18) vertex at (1,2) and passes through (0,5)
Write the quadratic function that passes through the given points.
19)
20) {(0, βˆ’32), (5, βˆ’17), (6, βˆ’20)}
x
-2
3
5
y
39
14
32
21) The given table represents the height of a bottle rocket as it flies up and returns to the
ground. Find a quadratic function to model the data as a function of x, time in the air. Use
the model to determine the height of the rocket at 3 seconds.
Factor the following expressions.
22) 5π‘š2 𝑛 + 10π‘šπ‘›2
23) 𝑦 2 βˆ’ 81
25) 36π‘₯ 2 βˆ’ 4
26) 3𝑏 2 + 14𝑏 βˆ’ 5
Time
Elapsed (s)
0
2
4
24) π‘₯ 2 + 10π‘₯ + 24
Height
(ft)
5
11
13