Year 12 Summer Task The Maths Department is very pleased to see that you have decided to opt to do A-Level Mathematics. You will no doubt already realise that this is not an easy option and the course is very challenging, even for students who achieved a grade A* at GCSE. In order to help you in your transition from GCSE to A-Level you need to complete this task over the summer, prior to starting the course in September. The techniques used to complete the Summer Task are things that you should have already met and are readily used at A-Level. Completing the questions will help refresh your memory and prepare you for the challenge of A-Level Maths. You must attempt ALL questions. Core 1 is a non-calculator module and so this work must be completed without the using a calculator. Leave answers as exact fractions if you need to, but try to always cancel these to their lowest form. For the questions involving surds and/or indices, it is vital that you include sufficient working out to demonstrate that you have not used a calculator. The task needs to be completed and handed in as part of the enrolment process. Please ensure your name is clearly visible on the work. The Mathematics Department Section 1 2 Marks Target Setting and Review of Learning ________________________________________________________________ ________________________________________________________________ 3 ________________________________________________________________ 4 ________________________________________________________________ 5 ________________________________________________________________ 6 7 ________________________________________________________________ ________________________________________________________________ 8 9 Total Marks ________________________________________________________________ ________________________________________________________________ Section 1: Collecting Like Terms and Removing Brackets Simplify the following expressions as much as possible: 1. x + 1 + 3x + 5 __________________ (1) 2. xy + 4xy __________________ (1) 3. 12a + b – 3a + 8b __________________ (1) 4. x2 + 3x2 – x __________________ (1) 5. x + y + xy + 4xy __________________ (1) 6. x + x + 1 – 2x + 3 – 3x __________________ (1) 7. 6(x + 2) __________________ (1) 8. 3y(2x – 7) __________________ (1) 9. 4x(3 – 9x) __________________ (1) 10. 2y + 5(y + 2) __________________ → __________________ (1) 11. 2(x + 3) + 3(x – 2) __________________ → __________________ (1) 12. 10(2x + 3) – 3(4x -1) __________________ → __________________ (1) 13. (x + 7)(x + 4) __________________ → __________________ (1) 14. (x + 2)(x – 9) __________________ → __________________ (1) 15. (x – 13)(x + 2) __________________ → __________________ (1) 16. (x + 11)2 __________________ → __________________ (1) 17. (x – 5)2 __________________ → __________________ (1) 18. (3x – 5)(2x + 1) __________________ → __________________ (1) 19. (2x + 1)(2x – 1) __________________ → __________________ (1) 20. (x + 2)(x + 3) – x(x + 5) __________________ → __________________ (1) 21. (x - 2)(x – 7) – x(x – 9) __________________ → __________________ (1) 21 Section 2: Solving Linear Equations Solve the following equations: 1. 2x – 7 = 21 X = ________ (2) 2. 6y – 11 = 4y + 31 y = ________ (2) 3. 3(x – 1) = 2(2x + 5) X = ________ (2) 4. 8(x + 3) = 6 – 2(2x – 1) X = ________ (2) 5. (x + 2)(x + 3) – x(x + 2) = 0 X = ________ (2) 6. 2𝑥𝑥−6 3 𝑥𝑥−3 = 5 X = ________ (2) 7. 𝑥𝑥−10 2 − 2𝑥𝑥+3 3 =2 X = ________ (2) 8. 3𝑥𝑥+8 4 = 1+ 2𝑥𝑥−2 5 X = ________ (2) 9. 3 − 2𝑥𝑥−6 10 = 𝑥𝑥 + 4 X = ________ (2) 18 Section 3: Factorising Quadratic Expressions Factorise fully the following expressions 1. 5x – x2 __________________ (1) 2. 2x2 – 10x __________________ (1) 3. x2 + 5x + 6 __________________ (1) 4. x2 – 8x + 12 __________________ (1) 5. x2 – 10x + 9 __________________ (1) 6. x2 + 2x – 8 __________________ (1) 7. x2 – 5x – 36 __________________ (1) 8. x2 – 9x __________________ (1) 9. x2 – 9 __________________ (1) 10. x2 – 144 __________________ (1) 11. x2y – 9xy __________________ (1) 12. x2 + 3xy + 2y2 __________________ (1) 13. 4x2 – 49 __________________ (1) 14. 25y2 – 100x2 __________________ (1) 15. 36x4 – 9x2 __________________ (1) 16. 2x2 + 8x + 6 __________________ (1) 17. 4x2 + 14x +12 __________________ (1) 18. 3x2 + 7x – 6 __________________ (1) 19. 5x2 + 20x + 15 __________________ (1) 20. 6x2 + 11x – 7 __________________ (1) 20 Section 4: Completing the square Re-write the following in the form: a(bx + c)2 +d 1. x2 + 12x 2. x2 - 16x 3. 5x2 + 20x 4. 2x2 - 10x 8 Section 5: Solving Quadratic Equations Solve the following quadratic equations by factorising 1. x2 + 6x + 5 = 0 __________________ x = ________ x = ________ (2) 2. x2 - 8x + 7 = 0 __________________ x = ________ x = ________ (2) 3. x2 - 10x + 24 = 0 __________________ x = ________ x = ________ (2) 4. x2 + 9x - 36 = 0 __________________ x = ________ x = ________ (2) 5. x2 - 5x - 36 = 0 __________________ x = ________ x = ________ (2) 6. x2 - 3x - 40 = 0 __________________ x = ________ x = ________ (2) 7. x2 + x - 42 = 0 __________________ x = ________ x = ________ (2) 8. 3x2 + 10x + 3 = 0 __________________ x = ________ x = ________ (2) 9. 5x2 - 9x - 2 = 0 __________________ x = ________ x = ________ (2) Solve the following quadratic equations using the quadratic formula. Remember you cannot use a calculator, instead you should leave your answers in surd form (with roots). For 10. x2 - 2x - 5 = 0 ax2 + bx + c = 0 𝑥𝑥 = −𝑏𝑏±√𝑏𝑏 2 −4𝑎𝑎𝑎𝑎 2𝑎𝑎 x = ________ x = ________ (2) 11. x2 + 6x + 4 = 0 x = ________ x = ________ (2) 12. x2 + 8x + 5 = 0 x = ________ x = ________ (2) Solve the following quadratic equations using a method of completing the square. 13. x2 + 8x + 10 = 0 x = ________ x = ________ (2) 14. 2x2 - 8x + 7 = 0 x = ________ x = ________ (2) 15. 15 – 6x -2x2 = 0 x = ________ x = ________ (2) 30 Section 6: Solving Linear Simultaneous Equations Solve the following linear simultaneous equations 1. 2x + y =1 7 x+y=9 x = ________ y = ________ (2) 2. x + 2y = 7 3x – y = 14 x = ________ y = ________ (2) 3. 2x + y = 7 x – 3y = 0 x = ________ y = ________ (2) 4. x + 2y = 5 3x + y = 5 x = ________ y = ________ (2) 5. 4x + 2y = 8 3x – 3y = -3 x = ________ y = ________ (2) 6. 2x - 3y = -4 3x + 2y = 7 x = ________ y = ________ (2) 7. x + 2y = 8.5 3x + y = 10.5 x = ________ y = ________ (2) 14 Section 7: Rearranging Formulae Rearrange the following to make x the subject of the formula 1. y = mx + c 2. 𝑎𝑎 = 𝑥𝑥 + 𝑑𝑑 3. 𝑗𝑗 = 𝑘𝑘 + 𝑚𝑚 𝑐𝑐 𝑥𝑥 4. 𝑣𝑣 = 𝑥𝑥𝑣𝑣 3 5. 𝑎𝑎 = 𝜋𝜋𝑥𝑥 2 6. 𝑣𝑣 = 𝜋𝜋𝑟𝑟 2 𝑥𝑥 7. 𝑥𝑥 2 + 𝑦𝑦 2 = 𝑧𝑧 2 8. 𝑎𝑎 = 2𝜋𝜋𝜋𝜋 + 2𝜋𝜋𝜋𝜋𝜋𝜋 8 Section 8: Basic Indices Simplify the following leaving your answer in index form 1. 𝑎𝑎3 × 𝑎𝑎2 2. 𝑎𝑎14 ÷ 𝑎𝑎5 3. 4𝑥𝑥 2 × 5𝑥𝑥 4 4. 5. _________________________ (1) _________________________ (1) _________________________ (1) 𝑎𝑎7 ×𝑎𝑎3 𝑎𝑎5 _________________________ (1) 10𝑦𝑦 2 ×2𝑦𝑦4 4𝑦𝑦 3 _________________________ (1) 6. 𝑏𝑏 3 × 𝑏𝑏 −3 _________________________ (1) 7. 2𝑥𝑥 2 𝑦𝑦 × 3𝑥𝑥 2 𝑦𝑦 2 _________________________ (1) 8. 8𝑦𝑦 2 𝑧𝑧 5 × 4𝑦𝑦 7 𝑧𝑧 3 _________________________ (1) 9. 10𝑎𝑎2 𝑏𝑏 3 5𝑎𝑎5 𝑏𝑏 10. 24𝑐𝑐 0 _________________________ (1) _________________________ (1) 4𝑗𝑗 2 𝑘𝑘 4 𝑖𝑖 6 11. 20𝑗𝑗5 𝑘𝑘 2 𝑖𝑖 5 _________________________ (1) 12. 10𝑥𝑥𝑥𝑥 2 𝑧𝑧 3 ×2𝑥𝑥2 𝑦𝑦 4 𝑧𝑧 2 4𝑥𝑥 5 𝑦𝑦 4 𝑧𝑧 6 _________________________ (1) 13. (𝑥𝑥 2 )3 _________________________ (1) 14. (2𝑥𝑥 2 )3 _________________________ (1) 15. (3𝑥𝑥 2 𝑦𝑦 3 )2 _________________________ (1) Work out the value of the following and it is vital that you include sufficient working out to demonstrate that you have not used a calculator. 16. 212 ÷ 28 _________________________ (1) 17. 37 ÷ 34 _________________________ (1) 18. (29 )0 _________________________ (1) 1 19. 812 _________________________ (1) 1 20. 1692 _________________________ (1) 1 21. 164 _________________________ (1) 2 22. 273 _________________________ (1) 3 23. 325 _________________________ (1) 2 2 24. �5� _________________________ (1) 1 3 25. �3� _________________________ (1) 3 0 26. �10� _________________________ (1) 27. 5−1 _________________________ (1) 28. 2−3 _________________________ (1) 1 −2 29. �3� _________________________ (1) 3 30. 16−4 _________________________ (1) 1 31. 1000−3 32. _________________________ (1) 1 1 −2 �49� _________________________ (1) 32 Section 9: Surds Simplify each of the following, rationalising the denominator if necessary and include all working out 1. √28 2. √72 3. 5√27 4. √20 + √80 5. √12 + 3√48 + √75 6. 7. 6 √3 10√2 √5 8. �3 + √2� 2 P 8
© Copyright 2026 Paperzz