5.5 Double–Angle and HalfAngle Formulas Copyright © Cengage Learning. All rights reserved. Double Angle/Multiple – Angle Formulas Double Angle Derivations: sin 2u = sin (u + u) = sin u cos u + cos u sin u 2sinu cosu cos 2u = cos (u + u) = cos u cos u– sin u sin u cos2u– sin2u tan 2u =tan (u+u) = (tanu +tanu)/(1-tanutanu) 2tanu/(1 – tan22u) Example 1 – Solving a Double –Angle Equation by first rewriting any double angles into “single angles” Solve for x in [0,2 ): a) 2 cos x + sin 2x = 0 2 cos x + 2 sinx cosx = 0 2 cos x ( 1 + sinx) = 0 2 cos x = 0 1 + sinx = 0 cos x = 0 sin x = -1 x= /2, 3 /2 x = 3 /2 b) sin 2x sin x = cos x 2 sinx cos x sin x – cos x = 0 2 sin2x cos x – cos x = 0 cos x (2sin2x-1) = 0 cos x = 0 2sin2x-1 = 0 sin x = 1/ 2 x = /2, 3 /2 x = /4, 3 /4 5 /4, 7 /4 c) Solve for x in (- , ) tan 2x – cot x = 0 You try this one!! 3 Example 2 – Solving a Multiple–Angle Equation by first rewriting any multiple angles into “single angles” Solve in (- , ): sin 4x = -2 sin 2x Rewrite this one as: sin 2(2x) + 2 sin 2x = 0 2sin 2x cos 2x + 2 sin 2x = 0 2 sin 2x [cos 2x + 1] =0 2 sin 2x = 0 cos 2x + 1 = 0 sin 2x = 0 cos 2x = -1 2x = 0 + 2n , + 2n 2x = + 2n x = 0 + n , /2 + n x = /2 + n 4 Half–Angle Formulas 5 Example 3 – Solving a Trigonometric Equation by rewriting all half-angles into “single angles” Find all solutions in the interval [0, 2 ). 6 Example 4 – Using Half-Angle Formulas to find exact values of uncommon angles Use the half-angle formulas to determine the exact values of the sine, cosine, and tangent of the following angles: a) 75˚ b) π/12 c) 3π/8 7
© Copyright 2026 Paperzz