Chapter 35 Problem 55 † Given U = 12 mω 2 x2 Solution a) What is Schrodinger’s equation for the harmonic oscillator. Schrodinger’s equation is h̄2 ∂ 2 ψ ∂ 2 ψ ∂ 2 ψ + 2 + 2 + U (x, y, z)ψ = Eψ − 2m ∂x2 ∂y ∂z In one dimension it becomes h̄2 ∂ 2 ψ − + U ψ = Eψ 2m ∂x2 Substituting in the potential energy function gives h̄2 ∂ 2 ψ − + 12 mω 2 x2 ψ = Eψ 2m ∂x2 b) Show that ψ = A0 e−α 2 x2 /2 satisfies this equation where α2 = mω/h̄. Take the first derivative of this function with respect to x. −α2 x2 /2 ∂ A e 0 ∂ψ 2 2 = = A0 e−α x /2 (−α2 2x/2) ∂x ∂x ∂ψ 2 2 = A0 e−α x /2 (−α2 x) = ψ(−α2 x) ∂x Take the second derivative −α2 x2 /2 2 ∂ A e (−α x) 2 0 ∂ ψ ∂(∂ψ/∂x) = = ∂x2 ∂x ∂x ∂ 2ψ 2 2 2 2 = A0 e−α x /2 (−α2 ) + A0 e−α x /2 (−α2 x)2 2 ∂x ∂ 2ψ 2 2 = A0 e−α x /2 (−α2 ) + (−α2 x)2 = (−α2 ) + (−α2 x)2 ψ 2 ∂x Now substitute this into Schrodinger’s equation − h̄2 (−α2 ) + (−α2 x)2 ψ + 2m h̄2 − (−α2 ) + (−α2 x)2 ψ + 2m Factor out ψ, energy becomes 1 mω 2 x2 2 ψ = Eψ 1 mω 2 x2 2 ψ = Eψ h̄2 E=− (−α2 ) + (−α2 x)2 + 2m † 1 mω 2 x2 2 Problem from Essential University Physics, Wolfson Since α2 = mω/h̄, then h̄2 (−mω/h̄) + (−mωx/h̄)2 + 12 mω 2 x2 2m h̄2 −mω m2 ω 2 x2 2 2 1 E=− + + mω x 2 2m h̄ h̄2 h̄ω 1 − 2 mω 2 x2 + 12 mω 2 x2 = 12 h̄ω E= 2 This is the ground state of the harmonic oscillator. E=− c) Normalize the function and find the value of A0 . The solution to the harmonic oscillator is a bell curve and normalization involves a subtitle process. Write out the normalization process for ψ Z ∞ 1= ψ 2 dx −∞ Z ∞ 1= Z 2 −α2 x2 /2 2 A0 e dx = A0 −∞ ∞ −α2 x2 e dx = 1 −∞ Now let’s square the integration portion and take the square root. s 2 Z ∞ 2 2 2 (e−α x ) dx 1 = A0 −∞ Write out each term of the square based on a different variable sZ Z ∞ ∞ 2 y2 2 x2 2 −α −α 1 = A0 (e ) dy (e ) dx −∞ −∞ Since each variable is independent of the other the two individual integrals can be treated as a double integral. sZ Z sZ Z ∞ ∞ ∞ ∞ 2 x2 −α2 y 2 2 2 −α 1 = A0 e e dxdy = A0 e−α2 (x2 +y2 ) dxdy −∞ −∞ −∞ −∞ Notice this double integral is over all space in Cartesian coordinates. Change to polar coordinates and dxdy becomes rdrdθ and x2 + y 2 becomes r2 . Also the limits for θ go from 0 to 2π and the limits for r go from 0 to ∞. s Z 2π Z ∞ 2 1 = A0 e−α2 r2 rdrdθ 0 0 Make a u-substitution on r where u = −α2 r2 and du = −2α2 rdr. The limits now go from 0 to −∞. s Z 2π Z −∞ u e 2 1 = A0 dudθ −2α2 0 0 Solving the integral gives s r Z 2π Z −∞ 1 1 2 2 1 = A0 dθ eu du = A0 (2π − 0) (e−∞ − e0 ) 2 −2α −2α2 0 0 r 1= A20 1 (2π) (0 − 1) = A20 −2α2 Solving for A0 gives r 2 4 α A0 = π Since α2 = mω/h̄, then r mω A0 = 4 πh̄ r 2π = A20 2α2 r π α2
© Copyright 2026 Paperzz