Math 202 Assignment 1: Hyperbolic Fuctions The due date for this assignment is .................. Reading assignment: Section 3:11 .................................................................................................................................................. 1. Find the numerical value of each expression (a) sinh (ln 2) (b) sinh 2 2. Prove the identity sinh (x + y) = sinh x cosh y + cosh x sinh y coth2 x 1 = csc h2 x x2 1 tanh (ln x) = 2 x +1 3. If coshx = 5 and x 3 0; …nd the values of the other hyperbolic functions at x: 4. Find the derivatives. Simplify where possible. f (t) = sec h2 (et ) y = sinh (cosh x) 1 cosh x G (x) = 1 + cosh x p y = x tanh 1 x + ln 1 x2 p x y = x sinh 1 9 + x2 3 1 Math 202 Assignment 2: Indeterminate Forms and L’Hospital’s Rule The due date for this assignment is .................. Reading assignment: Section 4:4 .................................................................................................................................................. 1. Find the limit. Use L’hospital’s Rule where appropriate. If L’hospital’s Rule doesn’t apply, explain why (a) lim x!1 (b) lim xa 1 xb 1 p 1 + 2x p 1 4x x x!0 x x3 x!0 3x 1 a x ax + a (d) lim x!1 (x 1)2 (c) lim 1 (e) lim cot (2x) sin (6x) x!0 (f) lim x3 e x2 x!1 (g) lim+ ln (x) tan x!1 (h) lim x!1 (i) lim (x x!1 x x 1 ln x) (j) lim+ [ln (x7 x!1 x 2 1 ln x 1) ln (x5 1)] (k) lim+ (4x + 1)cot x x!0 (l) lim+ (cos x)1=x 2 x!0 2 Math 202 Assignment 3: Antiderivatives The due date for this assignment is .................. Reading assignment: Section 4:9 .................................................................................................................................................. 1. Find the most general antiderivatives of the function (check your answer by di¤erentiation) (a) f (x) = (x + 1) (2x p (b) f (x) = 2 (c) f (x) = 1) 1 + t + t2 p t 2. Find f f 000 (t) = cos t 4 f 0 (t) = ; f (1) = 0 1 + t2 f 0 (t) = 2 cos t + sec2 t; <t< ; f 2 2 0 1=3 f (x) = x ; f (1) = 1; f ( 1) = 1 3 =4 f 00 (x) = x 2 ; x > 0; f (1) = 0; f (2) = 0 3. A particle is moving with the given data. Find the position of the particle v (t) = sin t cos t; s (0) = 0 a (t) = 2t + 1; s (0) = 3; v (0) = 2 3 Math 202 Assignment 4: The De…nite Integral The due date for this assignment is .................. Reading assignment: Section 5:2 .................................................................................................................................................. 1. Evaluate the integral by interpreting it in terms of areas Z 2 (a) (1 x) dx 1 2 Z (b) 1 jxj dx 2. Write as a single integral in the form Z b f (x) dx : a Z 3. If Z 5 f (x) dx = 12 and f (x) dx + 2 Z Z Z Z 5 f (x) dx 2 5 f (x) dx = 3:6; …nd 4 1 4. Find 2 Z 1 f (x) dx 2 4 f (x) dx 1 5 f (x) dx if 0 f (x) = 3 x for x < 3 for x 3 5. Use property 8 to estimate the value of the integral Z 4 p x dx 1 Z =3 tan x dx =4 4 Math 202 Assignment 5: The Fundamental Theorem of Calculus The due date for this assignment is .................. Reading assignment: Section 5:3 .................................................................................................................................................. 1. Use Part 1 of the Fundamental Theorem of Calculus to …nd the derivative of the function Z ex (a) h (x) = ln (t) dt 1 Z 1 u3 (b) y = du 2 1 3x 1 + u 2. Evaluate the integral. Z 2 (a) (1 + 2y)2 dy 1 Z 1 (b) (xe + ex ) dx 0 Z 1 eu+1 du (c) Z 1 (d) f (x) dx where 0 f (x) = sin x cos x if 0 x < n2 if n2 x 3. What is wrong with the equation? Z 1 x 3 1 3 x 4 dx = ] 2= 3 8 2 4. Find the derivative of the function Z sin x y= ln (1 + 2v) dv cos x 5 Math 202 Assignment 6: Inde…nite Integrals and The Net Change The due date for this assignment is .................. Reading assignment: Section 5:4 .................................................................................................................................................. 1. Find the general inde…nite integral. Z (a) (1 + tan2 ) d 2. Evaluate the integral. (a) Z 1 (x10 + 10x ) dx 0 (b) (c) Z 0 Z p 0 (d) (e) n4 Z Z 1 + cos2 cos2 3n2 p p 1n 3 2 t t4 0 2 1 jx d dr 1 r2 1 dt 1 2 j x j j dx 6 Math 202 Assignment 7: The Substitution Rule The due date for this assignment is .................. Reading assignment: Section 5:5 .................................................................................................................................................. 1. Evaluate the inde…nite integral. Z (a) 5t sin (5t ) dt Z cos d (b) sin2 Z sin 2x (c) dx 1 + cos2 x Z sin x (d) dx 1 + cos2 x Z dx p (e) 1 x2 sin 1 x Z x (f) dx 1 + x4 Z 1+x (g) dx 1 + x2 2. Evaluate the de…nite integral. (a) (b) (c) Z Z n4 2 1 Z 1 0 (x3 + x4 tan x) dx n4 p x x 1 dx dx p 4 (1 + x) 7 Math 202 Assignment 8: Integration by Parts The due date for this assignment is .................. Reading assignment: Section 7:1 .................................................................................................................................................. 1. Evaluate the integral. Z (a) (x2 + 2x) cos x dx Z p (b) ln ( 3 x) dx Z (c) x 2x dx (d) (e) (f) (g) Z Z Z0 Z x e2x dx (1 + 2x)2 1 y dy e2y cos x ln (sin x) dx 2 x4 (ln x)2 dx 1 2. First make a substitution and then use intgration by parts to evaluate the integral. Z p (a) cos x dx (b) (c) Z Z p p 3 cos 2 d n2 x ln (1 + x) dx 8 Math 202 Assignment 9: Trigonometric Integrals The due date for this assignment is .................. Reading assignment: Section 7:2 .................................................................................................................................................. 1. Evaluate the integral. Z (a) cos4 (2x) dx 0 (b) (c) (d) (e) (f) (g) (h) (i) (j) Z n2 sin2 x cos2 x dx Z0 t sin2 t dt Z cos2 x tan3 x dx Z Z Z Z Z cos5 x p dx sin x tan5 x dx x sec x tan x dx n2 cot5 csc3 d n4 csc x dx Z n6 p 1 + cos 2x dx 0 (k) Z x tan2 x dx 9 Math 202 Assignment 10: Trigonometric Substitution The due date for this assignment is .................. Reading assignment: Section 7:3 .................................................................................................................................................. 1. Evaluate the integral. Z p 2 x 9 dx (a) x3 Z p 1 + x2 (b) dx x Z 0:6 x2 p dx (c) 9 25x2 0 Z x p (d) dx x2 + x + 1 Z p (e) x2 + 2x dx Z p (f) x 1 x4 dx 10 Math 202 Assignment 11: Integration of Rational Function by Partial Fractions The due date for this assignment is .................. Reading assignment: Section 7:4 .................................................................................................................................................. 1. Evaluate the integral. Z 4x (a) dx 3 2 x +x +x+1 Z 3 x + x2 + 2x + 1 (b) dx (x2 + 1) (x2 + 2) Z x+4 (c) dx 2 x + 2x + 5 Z 1 (d) dx x3 1 2. Make a substitution to express the integrand as a rational function and then evaluate the integral. Z p x+1 dx (a) x Z dx p (b) 2 x +x x Z x3 p dx (c) 3 2+1 x Z p 1 p p (d) dx [Hint: Substitute u = 6 x] 3 x x Z 2x e (e) dx 2x e + 3ex + 2 Z sec2 x (f) dx tan2 x + 3 tan x + 2 Z dx (g) 1 + ex 11 Math 202 Assignment 12: Strategy for Integration The due date for this assignment is .................. Reading assignment: Section 7:5 .................................................................................................................................................. 1. Evaluate the integral. Z x (a) ex + e dx Z 1 dx (b) 1 + ex Z sec x tan x (c) dx sec2 x sec x Z (d) tan2 d Z p x (e) dx 1 + x3 Z 3 (f) x5 e x dx Z (g) x3 (x 1) 4 dx Z (h) cos x cos3 (sin x) dx Z sin 2x dx (i) 1 + cos4 x Z 1 p (j) p dx x+1+ x Z p3 p 1 + x2 (k) dx x2 Z1 xex p dx (l) 1 + ex Z (m) x sin2 x cos x dx Z p (n) 1 sin x dx 12 Math 202 Assignment 13: Improper Integral The due date for this assignment is .................. Reading assignment: Section 7:8 .................................................................................................................................................. 1. Determine weather each integral is convergent or divergent. Evaluate those that are convergent. Z 1 (a) sin2 d 0 (b) (c) Z Z 1 1 3 x2 0 (d) (e) Z Z x2 dx 9 + x6 0 1 2 dx 6x + 5 e1nx dx x3 x2 ln x dx 0 2. Sketch the region and …nd its area (if the area is …nite) S = f(x; y) j x 1; 0 y e xg 3. Use the Comparison Theorem to determine weather the integral convergent or divergent. Z 1 x dx (a) 3 x +1 0 Z 1 2+e x dx (b) x 1 Z 1 x+1 p (c) dx x4 x 1 13 (d) (e) (f) Z Z 1 0 1 arctan x dx 2 + ex 0 sec2 x p dx x x 0 sin2 x p dx x Z 4. The integral Z 0 1 p 1 dx x (1 + x) is improper for two reasons: The interval [0; 1) is in…nite and the integrand has an in…nite discontinuity at 0. Evaluate it by expressing it as a sum of improper integrals of Type 2 and Type 1 as follows: Z 1 Z 1 Z 1 1 1 1 p p p dx = dx + dx x (1 + x) x (1 + x) x (1 + x) 0 0 1 14 Math 202 Assignment 14: Areas Between Curves The due date for this assignment is .................. Reading assignment: Section 6:1 .................................................................................................................................................. 1. Sketch the region enclosed by the given curves. Decide weather to integrate with respect to x or y. Draw a typical approximating rectangle and label its height and width. Then …nd the area of the region. (a) y = 1 ; x y= 1 ; x2 x=2 2. Sketch the region enclosed by the given curves and …nd its area. (a) y = ex ; (b) y = tan x; y = xex ; x = 0: y = 2 sin x; (c) y = cos x; y=1 1 (d) y = ; y = x; x n3 x cos x; 0 x 1 y = x; x > 0 4 n3 3. Use calculus to …nd the area of the triangle with the given vertices. (a) (0; 0) ; (3; 1) ; (1; 2) 15 Math 202 Assignment 15: Volumes The due date for this assignment is .................. Reading assignment: Section 6:2 .................................................................................................................................................. 1. Find the volume of the solid obtained by rotating the region bounded by the given curves about the speci…ed line. Sketch the region, the solid, and a typical disk or washer. (a) y = ln x; y = 1; y = 2; x = 0; about the y 1 (b) y = x2 ; y = 5 x2 ; about the x axis 4 1 (c) y = x2 ; x = 2; y = 0; about the y axis 4 (d) y = 1 + sec x; y = 3; about y = 1 (e) y = sin x; (f) x = y 2 ; (g) y = x; y = cos x; 0 x = 1; p y = x; x about x = 1 n4; about x = 2 16 about y = axis 1 Math 202 Assignment 16: Arc Length The due date for this assignment is .................. Reading assignment: Section 8:1 .................................................................................................................................................. 1. Find the exact length of the curve 1p y (y 3) ; 1 y 9 3 (b) y = ln (cos x) ; 0 x n3 1 (c) y = 3 + cosh 2x; 0 x 1 2 1 1 (d) y = x2 ln x; 1 x 2 4 2 1 (e) y = ln (1 x2 ) ; 0 x 2 (a) x = 2. Find the arc length function for the curve y = 2x3n2 with starting point P0 (1; 2) : 17 Math 202 Assignment 17: Area of Surface of Revolution The due date for this assignment is .................. Reading assignment: Section 8:2 .................................................................................................................................................. 1. Find the exact area of the surface obtained by rotating the curve about the x (a) 9x = y 2 + 18; 2 (b) y = sin x; 0 3 (c) y = x 1 + ; 6 2x x x 6 1 1 2 x 1 2. The given curve is rotated about the y (a) y = p 3 x; 1 (b) y = x2 4 1 y 1 ln x; 2 axis axis. Find the area of the resulting surface. 2 1 x 2 18
© Copyright 2025 Paperzz