MATH 136 Worksheet No calculators 1. Graph the functions and show all points of intersection. Write the total area between the points of intersection as a sum of integrals. y = x 2 −12x (a) € € y = −x 3 € y = x 2 −12x = x(x −12) roots at 0 and 12 vertex at x = 6 € and x 2 −12x = −x 3 when x 3 + x 2 −12x = 0 or x(x + 4)(x − 3) = 0 y = −x 3 € € The points of intersection are (–4, 64), (0, 0), and (3, –27). € 0 3 € Area Between = ∫ (x 2 −12x) − (−x 3 ) dx + ∫ (−x 3 ) − (x 2 −12x) dx −4 0 € y = 8x − 2x 2 (b) € y = x3 € y = 8x − 2x 2 = 2x(4 − x) roots at 0 and 4 vertex at x = 2 € and 8x − 2x 2 = x 3 when x 3 + 2x 2 − 8x = 0 or x(x 2 + 2x − 8) = 0 or x(x + 4)(x − 2) = 0 y = x3 € € The points of intersection are (–4, –64), (0, 0), and (2, 8). € 0 2 € Area Between = ∫ x 3 − (8x − 2x 2 ) dx + ∫ (8x − 2x 2 ) − x 3 dx € € −4 € 0 2. Draw the region in the first quadrant bounded by the three graphs. Show all points of intersection. Then change variables to write the area between the graphs as a single integral with respect to y . (a) y= € 9 x y = x 3/ 2 € € € y = 27 9 1 1 = 27 → = x → x = Point (1/9, 27) 3 9 x 9 = x 3/ 2 → 9 = x × x 3/ 2 → x 2 = 9 → x = 3 Point (3, 33/ 2 ) x x 3/ 2 = 27 → x = 27 2 / 3 = 9 Point (9, 27) Point 1 of Int. Point 2 of Int. Point 3€of Int. € 9 9 81 → x = → x= 2 y x y top 27 ⎛ 81 ⎞ Area = ∫ ( R(y) − L(y)) dy = ∫ ⎜ y 2 / 3 − 2 ⎟ dy € € €⎝ y € ⎠ bottom 33 / 2 € € € € Right function: y = x 3/ 2 → x = y 2 / 3 € € Left function y = € 8 y= 2 x (b) y = 27x € € Point 1 of Int. 27x = 2 → x = y =2 € 2 27 Point (2/27, 2) 8 8 2 Point 2 of Int. 27x = 2 → x 3 = Point (2/3, 18) → x= 27 3 x € € € 8 Point 3 of Int. €2 = 2 → 4€= x 2 → x = 2 Point (2, 2) x € € € 8 8 = 2 → €x =€ Right function:€ y € y x € top € Area = € € € Left function y = 27x → x = 18 ⎛ 8 y ⎞ R(y) − L(y) dy = − € ⎜ ⎟ dy ∫( ∫ €) y 27 € ⎝ ⎠ bottom 2 y 27
© Copyright 2026 Paperzz