EDEXCEL NATIONAL CERTIFICATE UNIT 4 – MATHEMATICS FOR TECHNICIANS OUTCOME 1 TUTORIAL 2 – STRAIGHT LINE GRAPHS Determine the fundamental algebraic laws and apply algebraic manipulation techniques to the solution of problems involving algebraic functions, formulae and graphs CONTENTS OF OUTCOME 1 Algebraic laws and algebraic manipulation techniques Algebraic laws and manipulation: introduction to algebraic expressions and equations, algebraic operations, rules for manipulation and transposition of formulae; manipulation and algebraic solution of algebraic expressions; direct and inverse proportion and constants of proportionality; linear, simultaneous and quadratic equations; graphical solution of simple equations; use of standard formulae to solve surface areas and volumes of regular solids; use of calculator for algebraic problems Indices, logarithms and functions: the index as a power, numerical and literal numbers in index form, laws of indices and logarithms, common and Naperian logarithms, functional notation and manipulation, logarithmic and exponential functions, other simple algebraic functions. This tutorial is not specifically stated in the contents but it is implied that the student should understand graphs so it is used as a starting point for this module. It is assumed that the student is familiar with arithmetical operations, the use of brackets and fractions. CONTENTS OF TUTORIAL 2 ©D.J.Dunn • Straight line laws • Gradients • Intercepts • Practical applications 1 STRAIGHT LINE GRAPHS 1. DIRECTLY PROPORTIONAL RELATIONSHIPS In Engineering and Science, the relationship between two quantities is often DIRECTLY PROPORTIONAL and when one is plotted against the other, a straight line graph is produced. For example a mechanical spring usually behaves such that the change in length ‘x’ is directly proportional to the applied force ‘F’. With no force the spring has its normal length. Suppose that a force of 1 N stretches the spring 2 mm. Being directly proportional it follows that 2 N will stretch it 4 mm and 3 N 6 mm and so on. The graph shows this. Because the graph goes through the zero origin we see that what ever the force the ratio F/x is 0.5 N/mm and this is the gradient of the graph. The mathematical law is simply: F = 0.5 x Figure 1 In general such laws are written as y = m x where y is the quantity plotted vertically and x the quantity plotted horizontally and m is the gradient simply found as m = y/x. Now consider the graph that relates the Fahrenheit and Celsius temperature scales. This may be used to convert from one to the other. 212oF corresponds to 100oC so one point on the graph goes there. 0oC corresponds to 32oF so another point goes there. Joint the two points with a straight line and we have the complete graph. If we want to use a formula we find that all the points on the graph are related by the law: o F = oC x 9/5 + 32 Figure 2 9/5 is the gradient and is simply found as the ratio: (212 + 32) ÷ 100 = 1.8 or 9/5 Note that the graph intercepts the vertical axis at 32 and this is called the intercept. In general the law is written y = mx + C where m is the gradient and C the intercept with the y axis. The symbol ∝ means “directly proportional to” For example if y is directly proportional to x and we write this as y ∝ x To get the equation, we replace ∝ with = m hence y = m x or y/x = m m is the constant of proportionality. ©D.J.Dunn 2 WORKED EXAMPLE No.1 Convert 60oC into Fahrenheit o F = oC x 9/5 + 32 = 60 x 9/5 + 32 = 108 + 32 = 140oF WORKED EXAMPLE No.2 The graph shows the relationship between the pressure ‘p’ of a gas plotted vertically and the temperature ‘θ’ of a gas plotted horizontally when the volume is kept constant. Deduce the law relating them. Calculate the temperature at which the pressure is zero. Figure 3 SOLUTION The vertical axis is p and the horizontal is θ so the graph has a law p = mθ + C The gradient m is found from the two marked points. Vertical change = 210 – 100 = 110 kPa Horizontal change = 300 – 0 = 300oC m = 110/300 = 0.367 kPa/oC The intercept with the vertical axis is at 100 kPa so C = 100 kPa The law is p = 0.367θ + 100 where p is in kPa and θ is in oC Now put p = 0 and find θ 0 = 0.367θ + 100 0.367θ = -100 θ = -100/0.367 = -272.5oC WORKED EXAMPLE No.3 The graph shows the relationship between a variable y plotted vertically and x plotted horizontally. Deduce the law relating them. SOLUTION The law is y = mx + C The gradient m is found by choosing any two points such as (17.5, 30) and (0, -15). The vertical change in y is 30 – (-15) = 45 and the horizontal change in x is 17.5 – 0 = 17.5 m = 45/17.5 = 90/35 = 2.571 and the intercept with the y axis is C = -15. The law is y = (90/35)x – 15 or 2.571x - 15 Note 90/35 is an exact number and 2.571 is rounded off. Figure 4 Check if it works by choosing any value of x say 10. y = (2.571)(10) – 15 = 10.71 and this is correct when checked on the graph. ©D.J.Dunn 3 WORKED EXAMPLE No.4 The graph shows the relationship between a variable y plotted vertically and x plotted horizontally. Deduce the law relating them. Figure 5 SOLUTION The law is y = mx + C The gradient m is found by choosing any two points such as (-2, 30) and (7, -10). The vertical change in y is -10 – (30) = -40 and the horizontal change in x is 7 - (-2) = 9 m = -40/9 = -4.444 and the intercept with the y axis is C = 21. The law is y = -(40/9)x + 21 or -4.444x + 21 Note 90/35 is an exact number and 2.571 is rounded off. Check if it works by choosing any value of x say 0. y = (4.444) (0) + 21 = 21 and this is correct when checked on the graph. Note that when the line slopes down to the right y is decreasing as x increases and the gradient is always negative. 2. INVERSELY PROPORTIONAL The 1/x button on your calculator is called the inverse button. If you enter 2 and press the 1/x button you get the answer 0.5 because it evaluates ½. Inverse means “1 divided by” For example inverse y means 1/y Inverse A means 1/A and so on. Consider the equation x y = C Rearrange and we get y = C/x or y = C (1/x) 1/x is the inverse of y. If we have an equation x ∝ 1/y it means that x is inversely proportional to y. An example of this is Boyle’s law used in physics pV = C. In this law p is pressure and V is volume and the relationship is true when the temperature is constant. If we rearrange the law into p = C/V we may say that pressure is inversely proportional to volume or p = C (1/V). If we plot p against (1/V) we will get a straight line passing through the origin and C (the constant) is the gradient of the graph. ©D.J.Dunn 4 WORKED EXAMPLE No.5 Determine the law relating p and V from the graph. Determine the pressure when V = 0.5 m3. Figure 6 SOLUTION The law is p = C(1/V) and C is the gradient 1000/3 Hence p = (1000/3)(1/V) and pV = 1000/3 = 333.3 Nm When V = 0.5 1/V = 2 p = 333.3 (2) = 666.7 N/m2 and the graph bears this out. SELF ASSESSMENT EXERCISE No.1 1. Determine the law that relates the variables for the following graphs. (a) (b) Figure 7 a and b (Answers y = 2.286x + 2 and y = -20.833x + 250) 2. Find the relationship for y and x from the graph. Figure 8 (Answer y = 57.1(1/x) + 10) ©D.J.Dunn 5 3. Sketch the graph of the following relationships. (a) y = 0.4x – 2 (b) y = -3x -2 (c) s = -2u + 4 SOLUTIONS Figure 9(a) Figure 9 (b) Figure 9 (c) ©D.J.Dunn 6 SELF ASSESSMENT EXERCISE No.2 1. In the equation y = 6 x what is the constant of proportionality? 2. If a ball is dropped and allowed to fall, it is observed that the velocity ‘v’ is directly proportional to the time ‘t’ measured from the moment it was dropped. Write out the equation linking v and t It is observed that the velocity after 1 second is 9.81 m/s. What is the value and units of the constant? 3. It is observed that the volume of a gas ‘V’ inside a balloon is inversely proportional to the pressure ‘p’. Write down the equation linking p and V It is observed that when the volume is 2 m3 the pressure is 5 kN/m2. What is constant of proportionality and what are its units? Plot p against V over the range V = 0.1 to 2 cm3 and show that this is a curve. What would you have to plot in order to get a straight line graph? Plot this straight line graph. SOLUTIONS 1. 2. 3. 6 v ∝ t hence v = Ct (Normally we use a ‘g’ for the gravitational constant) C = 9.81 m/s2 p ∝ 1/V = C/V C = pV = 5 x 2 = 10 kN/m The graph is a curve known as a HYPERBOLA. To get a straight line we plot p vertically and 1/V horizontally. The gradient is 10. Figure 10 ©D.J.Dunn 7
© Copyright 2026 Paperzz