Nonlinear Harmonic Modes of Steel Strings on an Electric Guitar

Linfield College
DigitalCommons@Linfield
Senior Theses
Student Scholarship & Creative Works
5-24-2016
Nonlinear Harmonic Modes of Steel Strings on an
Electric Guitar
Joel Wenrich
Linfield College
Follow this and additional works at: http://digitalcommons.linfield.edu/physstud_theses
Part of the Harmonic Analysis and Representation Commons, Music Commons, Non-linear
Dynamics Commons, and the Physics Commons
Recommended Citation
Wenrich, Joel, "Nonlinear Harmonic Modes of Steel Strings on an Electric Guitar" (2016). Senior Theses. Paper 21.
This Thesis (Open Access) is brought to you for free via open access, courtesy of DigitalCommons@Linfield. For more information, please contact
[email protected].
NonlinearHarmonicModesofSteelStringsonanElectric
Guitar
JoelWenrich
ATHESIS
PresentedtotheDepartmentofPhysics
LinfieldCollege
McMinnville,Oregon
Inpartialfulfillmentoftherequirements
fortheDegreeof
BACHELOROFSCIENCE
May,2016
1
THESIS COPYRIGHT PERMISSIONS
Please read this document carefully before signing. If you have questions about any of these
permissions, please contact the DigitalCommons Coordinator.
Title of the Thesis:
(
,
Author's Name: (Last name, first name)
l
Advisor's Name
{
DigitalCommons@Linfield is our web-based, open access-compliant institutional repository for
digital content produced by Linfield faculty, students, staff, and their collaborators. It is a
permanent archive. By placing your thesis in DigitalCommons@Linfield, it will be discoverable via
Google Scholar and other search engines. Materials that are located in DigitalCommons@Linfield
are freely accessible to the world; however, your copyright protects against unauthorized use of
the content. Although you have certain rights and privileges with your copyright, there are also
responsibilities. Please review the following statements and identify that you have read them by
signing below. Some departments may choose to protect the work of their students because of
continuing research. In these cases, the project is still posted in the repository but content will
only be accessible by individuals who are part of the Linfield community.
CHOOSE THE STATEMENT BELOW THAT DEFINES HOW YOU WANT TO SHARE YOUR
THESIS. THE FIRST STATEMENT PROVIDES THE MOST ACCESS TO YOUR WORK; THE
LAST STATEMENT PROVIDES THE LEAST ACCESS.
agree to make my thesis available to the Linfield College community and to the larger
scholarly community upon its deposit in our permanent digital archive, DigitalCommons@Linfield,
or its successor technology. My thesis will also be available in print at Nicholson Library and can
be shared via interlibrary loan.
OR
_ _ I agree to make my thesis available only to the Linfield College community upon its
deposit in our permanent digital archive, DigitalCommons@Linfield, or its successor technology.
My thesis will also be available in print at Nicholson Library and can be shared via interlibrary
loan.
OR
_ _ I agree to make my thesis available in print at Nicholson Library, including access for
interlibrary loan.
OR
_ _ I agree to make my thesis available in print at Nicholson Library only.
Updated April 2, 2012
NOTICE OF ORIGINAL WORK AND USE OF COPYRIGHT-PROTECTED MATERIALS:
If your work includes images that are not original works by you, you must include permissions
from original content provider or the images will not be included in the repository. If your work
includes videos, music, data sets, or other accompanying material that is not original work by you,
the same copyright stipulations apply. If your work includes interviews, you must include a
statement that you have the permission from the interviewees to make their interviews public. For
information about obtaining permissions and sample forms, see
http://copyright. col um bia. edu/copyright/perm issions/.
NOTICE OF APPROVAL TO USE HUMAN SUBJECTS BY THE LINFIELD COLLEGE
INSTITUTIONAL RESEARCH BOARD {IRB):
If your research includes human subjects, you must include a letter of approval from the Linfield
IRB. For more information, see http://www.linfield.edu/irb/.
NOTICE OF SUBMITTED WORK AS POTENTIALLY CONSTITUTING AN EDUCATIONAL
RECORD UNDER FERPA:
Under FERPA (20 U.S.C. § 1232g), this work may constitute an educational record. By signing
below, you acknowledge this fact and expressly consent to the use of this work according to the
terms of this agreement.
BY SIGNING THIS FORM, I ACKNOWLEDGE THAT ALL WORK CONTAINED IN THIS
PAPER IS ORIGINAL WORK BY ME OR INCLUDES APPROPRIATE CITATIONS AND/OR
PERMISSIONS WHEN CITING OR INCLUDING EXCERPTS OF WORK{S) BY OTHERS.
DAN APPROVAL LETTER FROM THE IRB TO USE
Printed Name
J
Approved by Faculty Advisor
Updated April 2, 2012
.
_
A
/
{
Date
J/ Thesis Acceptance
Linfield College
Thesis Title: Title of Thesis
Submitted by: Student Name Date Submitted: May 2016
ThesisAdvisor:
0
F
LK
D
H
&
OR
UV
V
H
U
Physics Departme
Physics Department:
Dr. %LOO
v
2
Abstract
NonlinearHarmonicModesofSteelStringsonanElectricGuitar
Steelstringsusedonelectricandacousticguitarsarenon-ideal
oscillatorsthatcanproduceimperfectintonation.Accordingtotheory,
thisintonationshouldbeafunctionofthebendingstiffnessofthestring,
whichisrelatedtothedimensionsoflengthandthicknessofthestring.
Totestthistheory,solidsteelstringsofthreedifferentlineardensities
wereanalyzedusinganoscilloscopeandaFastFourierTransform
function.Wefoundthatstringsexhibitedmoredrasticnonlinear
harmonicbehaviorastheireffectivelengthwasshortenedandaslinear
densityincreased.
3
Contents:
Introduction....................................................................................................5
Theory...............................................................................................................8
TheIdealString.........................................................................................................8
BendingStiffness...................................................................................................10
MusicTheory...........................................................................................................11
ExperimentalMethods..............................................................................13
Results&Analysis......................................................................................17
Conclusion.....................................................................................................25
Bibliography.................................................................................................26
4
Introduction
Theguitarisastringedinstrumentthatcanbeusedtoproduceawiderange
ofnotesbyeffectivelychangingthelengthofthesetofstrings,eachofadifferent
lineardensity.Thestringsarestretchedoverastrongpieceofwoodwithoneside
roundandtheotherflat,calledtheneckandfretboardrespectively,withstripsof
metalwiresetintothefretboard,calledfrets.Onanelectricguitar,vibrationsofthe
metalstringsaresensedbypickupcoils,amplifiedbyasimplecircuit,andfinally
outputted.Belowisadiagramhighlightingthebasicpartsofanelectricguitar.(See
Fig.1)
Fig. 1: Labeled diagram of an electric guitar [15].
Likeanymusicalinstrument,guitarsmustbekeptintunesothattheycanbe
usedtoproducethequalityofsoundforwhichtheyweredesigned.Possible
contributingfactorstopoorintonationhavebeenstudiedsuchasdeadspots[5],tone
decay[10],andfret-stringinteractions[1][13].Otherfactorsincludetheharmonic
5
behaviorofthevibratingstrings[3][11][12][14].Inthispaper,wewillcontinuetobuild
offoftheworkdonewithharmonics.Harmonicsareparticularfrequenciesthat
yieldzero-amplitudepointsalongavibratingstring.Theyareoftenanalyzedasa
standingwave(asnapshotofthewaveatitsgreatestamplitude).
Westudytheharmonicvibrationsofguitarstringsandwebelievethereisa
relationshipbetweenthenonlinearnatureofharmonicsonastringanditsbending
stiffness.Thismatterstoguitarplayersandlistenersalikebecausethepresenceof
sharpeningharmonicmodesmaybecomeaudiblysharporflatwhenplayedin
conjunctionwithothernotes[7].
Thisisastudyofsteelstrings.Whilemostsetsofstringsaremadeofsteel,
otheralloyssuchasbronze,copper,andnickelareusedintheindustryforthe
varietyoftonalqualitiestheyoffer.Thethickerstringsresponsibleforproducing
lowerfrequencynotesarenotmadefromasinglecoreofsteel;rather,theyconsist
ofasoftermetal–usuallynickelorcopper–woundaroundasteelcore.Fig.2shows
SEMimagesofthesetofguitarstringsusedinthisexperiment:
Fig.2:SEMimagesofastandardsetofguitarstrings.
6
Usinganelectricguitarandadigitaloscilloscopewetesttheharmonic
behaviorofdifferentsteelstringsandcompareittotheoreticalresultsyielded
throughknownrelationshipsbetweenharmonicsandbendingstiffness.Because
woundstrings(seeFig.2:LowE,A,D)werenotcomprisedofasinglematerial,they
wereexcludedfromthisstudytoavoidfurthercomplexity.
7
Theory
TheIdealString
Toanalyzethevibrationofasteelstringwemustfirstunderstandthesimplestcase,
anidealstring.Anidealstringisinfinitelythin(withoutbendingstiffness)andhas
uniformlineardensity.Whenplucked,twowavetrainspropagateinopposite
directions,reflectingoffofthetwofixedends,whichisthebridgeandeitherthefret
orthenut.Thesetwowavetrainscontinuetoreflectbackandforth,creatingan
interferencecalledastandingwave.BythePrincipleofSuperposition,the
interferingwavesarethesum
𝑦 𝑥, 𝑡 = sin 𝑘𝑥 − 𝜔𝑡 + sin 𝑘𝑥 + 𝜔𝑡 (1)
2𝜋
Here,𝑦isthewaveamplitude,𝜔 = 2𝜋𝑓isangularvelocity,and𝑘 = 𝜆 isthewave
numberwith𝜆beingwavelength.Bywayoftrigonometricidentities,Eq.(1)canbe
simplifiedto
y x, t = 2sin 𝑘𝑥 cos 𝜔𝑡 (2)
Ifwedefinethefixedendstobeat𝑥 = 0 and 𝑥 = 𝐿,whenastringisplucked,the
onlywavesthatcontinueanylongerthanafractionofasecondaretheoneswhich
yieldanamplitudeofzeroatthosepositions.NotethatinEq.(2)thefirstterm
describesamplitudeandthesecondtermdescribesfrequency.Here,itisimportant
tonotethattheresultofEq.(2)iszeroatbothfixedends,say𝑥 = 0, 𝑥 = 𝐿.What
8
arisesisaninfiniteamountofparticularfrequenciesthatyieldpositionsalongthe
string,𝑥,thatexperienceanamplitudeofzeroatalltimes;thesepointsarecalled
nodes.The𝑛!" harmonic,denoted𝑓! , isafrequencythatproduces𝑛numberof
nodes.Oftenindiscussionofthistopic,theterm“harmonic”issynonymouswith
“mode.”Thefirstthreeharmonicsforanidealstringfixedatbothendsareshownin
thefigurebelow.Alsointhefigureisthesumofthefirstthreeharmonicswhereitis
importanttonotethattheamplitudesaredescendingfromthefirsttothird
harmonic.(SeeFig.3)
Figure3:Standingwavesofthefirst,second,andthirdharmonics(left);sumofthe
firstthreeharmonicsforonefullwavelengthplottedontimevs.amplitude(right).
Motivatedtogeneratearelationshipbetweenharmonicsandtheircorresponding
modes,recallthespeedofatransversewavetravelingonastring[4],
𝑣=
𝑇
𝜇
(3)
where𝑣iswavespeed,𝑇istensionforce,and𝜇isthestring’slineardensity.For
suchastringstretchedbetweentwoendsupports,naturalmodesofvibrationare
givenby
𝜆! = 2𝐿
𝑛
9
𝑛 = 1,2,3 … (4)
where𝜆! iswavelengthofmode𝑛withstringlength𝐿.Fromfigure3andEq.(4)a
criticalconceptarises:allharmonicsoccurwhenastringisinitiallyplucked.Again,
thereareinfinitelymanyfrequenciesthatappearwhenastringisfirstpluckedbut
mostofthemaredampedbythebridge–fret/nutinteraction.Speedandwavelength
arebothrelatedtofrequency, 𝑓,through
𝑓! =
𝑣
𝜆!
𝑛 = 1,2,3 …
(5)
BysubstitutionofEqs.(3)and(4)into(5),
𝑛
𝑇
𝑓! = 2𝐿 𝜇 = 𝑛𝑓!
𝑛 = 1,2,3 …
(6)
Herewehaveawayofcalculatingthefrequencyofeachmodeofvibrationfora
stringwithspecificproperties.Wereferto𝑓! asthefundamentalfrequency.Notice
thepositivelinearrelationshipbetweenfrequencyandmode.Intheidealcase
length,tension,andlineardensityareassumedtobeconstant.
BendingStiffness
Theidealstringmodelbreaksdownwhenwenolongermaketheassumptionthat
thestringisinfinitelythin.Asaresult,harmonicsdonotaddtogethertoproducea
wavethatisconsistent.Complicationensueswhenweincorporatethicknessand
materialpropertiesofthestring[4]:
(7)
10
𝑓! = 𝑛𝑓! 1 + 𝐵𝑛! 1 +
with
2
4
𝐵+ 𝐵 𝜋
𝜋
𝐵 = 𝐸𝑆𝐾 ! 𝑇𝐿! (8)
beingbendingstiffness.Here,bendingstiffnessisapropertyofastringofgiven
materialwith𝐸,modulusofelasticity,𝑆,cross-sectionalareaandradiusofgyration,
whichforacylinderofradius𝑎is𝐾 = 𝑎 2.Clearly,Eq.(7)isadeparturefromthe
linearrelationshipbetweenfrequencyandmode.Itisthisnonlinearequationthat
wewilluselatertocomparewithresultsobtainedfromourexperiment.
MusicTheory
Wecareaboutthesharpeningofharmonicsbecausetherearepotential
ramificationsforthepurityofnotesastheyareplayedtogether.Considertwo
separatestringsoflengthLfixedatbothends.Ifwetakeonestringandstopit
halfwaysothatitsnewlengthis1/2L,wewouldbeabletoproduceanotethatis
twicethefrequencyofthenoteproducedbyastringoflengthL.Thisnoteiscalled
an‘octave.’Noticethatthefrequencyoftheoctaveisthefirstharmonicofthe
originalnote.Ifweweretotakeastringofthesamelengthandstopitat2/3Lwe
wouldproduceanotethatiscalleda‘fifth.’
Octavesarenotesseparatedbyanintervaloftwelvehalfsteps.Theinterval
ofperfectfifths,asit’scalled,consistsofnotesseparatedbysevenhalfsteps.Using
thisinterval,chordscanbemadebyplayingtwoormoreofthesefifthstogether.
Hence,itiscrucialthatchordsarecomprisedofnotesthatareintuneortheywill
11
sufferabeatfrequency,whichistheperiodicoscillationintotalamplitudeofa
compoundwavecomprisedofmultiplecomponentfrequencies[8].
12
ExperimentalMethods
Inthisexperiment,themeasurementprocedureconsistedofpluckingaguitarstring
andobtainingthecomponentfrequenciesofthesignalusingtheTektronixTDS
2002Boscilloscope.Figure4showsaschematicoftheexperimentalsetup.
(a)
(c1)
(b)
+V
(d)
(c2)
Ground
Fig.4Schematicofexperimentalsetup.(a)TektronixTDS2002BOscilloscope.(b)
SchecterC-1ElectricGuitar.(c1)ConnectionbetweenguitarcableandChannel1.
(c2)Expandeddiagramofconnection(d)Connectionbetweenguitarandguitar
cable.
TheTektronixTDS2002BOscilloscopeservedthepurposeofthisexperiment
wellbecauseofitsFastFourierTransform(FFT)andUSBfunctions.Three
parametersoftheFFTareadjustable:source,windowandzoom.Source
13
determineswhichchannelissampled.Onlyonechannelwasusedinthis
experiment.Threetypesofwindowsettingsdeterminedfrequencyresolutionand
amplitudeaccuracy.Bothmeasuringperiodicwaveforms,the“Hanning”and
“flattop”windowmodesmostaccuratelyjudgedfrequencyandamplitude,
respectively.Thethirdwindowoptionwas“rectangular”,lendingspecialattention
towaveformswithoutdiscontinuities.Cateringtothefocusoftheexperiment,
“Hanning”wastheoptimalchoice.Zoomdetermineshorizontalmagnificationofthe
datawithoptionsofX1,X2,X5,X10.Onceset,windowandzoomwereheldconstant
whereassamplingratewascycledthroughwhencollectingasetofdata.The
oscilloscope’srangewasbetween5.0samplespersecond(S/s)and2.0GS/sbutfor
thepurposesofmeasuringfrequenciesproducedbyaguitararangeof1.0kS/sto
50.0kS/swassufficient.Eachsamplingratescanned0Hz.totheNyquistfrequency,
whichishalfthesamplingrate,toavoidaliasing.Moredetailedinformationcanbe
foundintheoscilloscope’smanual.
Withtheoscilloscopetuned,specialattentionhadtobepaidtotheguitarand
howeachstringwasplucked.Astandard1.0mmguitarpickwasusedtoexcitethe
stringsduringtheexperiment.AsPolitzersuggests[11],theangleatwhichastringis
pluckedrelativetothefretboardaffectstheintensityofvibrationimmediatelyafter
itisplucked.Itturnsoutthatplucksparalleltothefretboardproducethehighest
intensityvibrationswiththeleastdecay.Thus,inordertostayconsistentwiththe
pluckinghandasbestaspossiblewithoutsomesortofautomatedprocess,the
experimenterdidentiresetsofdataatatimebeingcarefultomaintainsteadyhand
position,pluckingforceandpluckingpositionalongthestring.
14
Determiningthemomentatwhichthesamplewastakenrequiredsome
techniqueaswell.Immediatelyafterastringispluckedthereisa“twang,”asitis
referredto,thatistheaudiblypositiveshiftinfrequencyduetowhatErrede
suggestsistheextremeinitialamplitudegeneratedbythepluck[3].Becauseofthis
effect,whichlastslessthanatenthofasecond,thepropersampletotakewasjust
afterthepluck.Thisentailedsettingtheoscilloscopeautomatictriggerandpressing
STOPonthesecondorthirdsamplingdependingontherate.Fortheslowerrates,
suchasa1kS/sand2.5kS/s,thesamplingtimewastoolongtotakethesecond
framebecausebythentheintensityofthevibratingstringdecayedbeyond
measurement.
Withtheoscilloscopeandguitarpreparedfordata,samplescouldthenbe
taken.Aspreviouslydescribed,thesamplingoftheoscilloscopewaspausedjust
aftertheinitialpluckofastring.UtilizingtheUSBfunctionoftheoscilloscope,the
waveformdatawassavedontoaflashdrive.Organizationwascriticalduetothe
volumesofdatacollected.Datawasseparatedfirstintofoldersdifferentiatedby
stringthenintofoldersaccordingtofret.Datawasnotseparatedintotheirown
subfoldersbasedonsamplingratebecausesuchinformationwasincludedinthe
waveformfile.
TheoscilloscopesavedthedataasaCommaSeparatedDocument(CSD)
whereeachpointwasacoordinateoffrequencyandintensity.Thesedatawere
thenputintothecomputerprogram,Origin,inordertobetterfitthepoints.Excel
wasusedtokeepalistofthefittedpoints.Tobringitalltogether,Mathematica
15
provedusefulincalculatingtheoreticaldata,whichwascompareddirectlytothe
experimentaldata.Greaterdetailoftheanalysisisdescribedinthenextsection.
16
Results&Analysis
Inthisexperimentonlythethreethinneststringsontheguitar(G,B,HighE)
wereanalyzedbecausetheyweresolidsteelwhereastheotherthreestrings(LowE,
A,D)havecopperornickelwindingaroundsolidsteelcores.Thephysical
propertiesofthestringsusedareprovidedinTable1below.
Table1PhysicalpropertiesofG,B,andHighEstringsusedintheexperiment.Diameterwas
obtainedusingveneercalipers,Tensionthroughmanufacturerdata,andf0fromtheoscilloscope.
String
G
B
HighE
Diameter(mm)
0.406
0.279
0.228
EstimatedTension*(N)
65.3
49.0
58.4
Measuredf0(Hz.)
194.8
246.2
327.6
*Tensionwhileinstandardtuningandonfretzero,asperthemanufacturerofthestringsused,
D’AddarioXL120.
Eachsetofdatabeganasareadingfromtheoscilloscopeintheformof1024
pointsspanningatunablerangeoffrequency.Samplingratesusedinthis
experimentvariedfrom1.0kS/sto50.0kS/swithrespectiveintervalsbetweendata
of0.488Hz.to24.41Hz.Figure5isanexampleofrawdatacollectedfromthe
oscilloscope.Notethatalthoughtherearespikesinthedatatheyarenotreliable
duetothesamplinginterval.Generally,thepeaksclosetothemaximumthreshold
wereignoredbecausedatafromfastersamplingratessuggestedtheactualpeak
wasslightlybeyondthethreshold.
17
0
-10
Intensity (dB)
-20
-30
-40
-50
-60
-70
-80
0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
Frequency (Hz.)
Fig.5Rawdatacollectedfromtheoscilloscope.HighEString,fret1,10.0kS/s
BetteraccuracycouldbeobtainedfromtherawdatabyusingOrigintofit
Gaussiancurvestoeachpeak.Usingthe“FitMultiplePeaks”function,upto12
peaksatatimecouldbemodeled.Forsomeofthepeaksthatwereoflowintensity
buthigherthanthatofnoise,thefunction“FitSinglePeak”wasrequired.Figure6
showsasnapshotofbothamultiplepeakanalysisandsinglepeakanalysis.
Fig.6Experimentaldatafitted
usingOrigin.HighEString,fret1,
10.0kS/s
18
Aftereachfitoftherawdata,thevaluesofthepeakswererecordedinExcel
spreadsheets.Itwasthesedatathatweconsideredtobeourexperimentaldata.
Thefollowingfiguresexhibitexperimentaldataandaccompanying
theoreticalcurvescalculatedusingEq.(7)alongwiththeinformationfromTable1.
Foreachstring,resultsforfrets0,12,and24aregiven.Thethreefretswerechosen
becausetheycorrespondtothefirstthreeharmonics—𝑓! atthefulllength,𝑓! at
half-length,and𝑓! atone-thirdlength.Thex-axisisthemode,n,andthey-axisis
frequencyofmode,fn,dividedbythemode.Themotivationforpresentingthedata
insuchafashionisthatitmakesmorevisibleanincreasingshiftinharmonics,
whichiswhatwewouldexpecttoseeinastringwithhighbendingstiffness.Note
thatanidealstringwouldbeahorizontallinewiththeonlyy-valuebeingthe
fundamentalfrequency.ByEq.(7)wewouldexpecttoseethemostdrasticpositive
shiftsforfret24,thenfret12,thenfret0,regardlessofstring.Additionally,the
sameequationsuggeststhattherewouldbegreatershiftsinthethickerstringson
anygivenfret.Notethatinthediscussionofthesefiguresanyshiftinfrequency
describesadeviationfromthefundamentalfrequencywhendividedbythe
correspondingharmonicnumber,𝑛.Therefore,eachpointrepresentsafrequency
shifted𝑛timesawayfromwhatthefrequencywouldideallybeatmoden.Graphs
canbecomparedinthismannerbecausethex-scaleisthesameineverygraphfor
theFigs.7,8and9below.
19
Fig.7Deviationfrominteger-multiple
harmonicnatureoftheG-stringonfrets0,
12,and24.Dotsdenoteexperimentaldata,
dashedlinesdenoteidealpredictionsfrom
Eq.(6),andsolidlinesdenotepredictions
fromEq.(7).
FromFig.7wecanseethatasthestringlengthdecreases(fretnumberincreases)the
harmonicsshiftmoresignificantly.Onthe0thfretweseea+5Hz.shiftat𝑛 = 20.Forthe
12thand24thfretsweseea+5Hz.shiftreachedatroughly𝑛 = 8and𝑛 = 3respectively.
20
Fig.8Deviationfrominteger-multiple
harmonicnatureoftheB-stringonfrets0,
12,and24.Dotsdenoteexperimentaldata,
dashedlinesdenoteidealpredictionsfrom
Eq.(6),andsolidlinesdenotepredictions
fromEq.(7).
Figure8continuesthetrendobservedinFig.7butfortheB-string.Comparingthetwo,
weseethatineachcasebetweenthe0th,12thand24thfrets,thethickerG-stringdisplayed
amoredrasticshift.
21
Fig.9Deviationfrominteger-multiple
harmonicnatureoftheHighE-stringon
frets0,12,and24.Dotsdenote
experimentaldata,dashedlinesdenote
idealpredictionsfromEq.(6),andsolid
linesdenotepredictionsfromEq.(7).
Withthethirdandfinalsetofdata,Fig.9completesthetrendobservedintheprevious
twofigures.Asthethinnestofthestrings,theHighE-stringexhibitstheleastdrasticof
theshiftsforeachfret.Fromthesefiguresweobserveproportionalitybetween
nonlinearharmonicbehaviorandboththeinverseoflengthsquaredandcrosssectional
areaassuggestedbyEq.(7).Tohighlighttheinverseoflengthsquareddependencywe
canlookateachstringasanindividualcaseandseethatasthelengthofthestring
decreasesweseeagreaterpositiveshift.Asforthecrosssectionalareadependency,
wecanlookateachfretasanindividualcaseandcomparetheharmonicshiftsforeach
string.Indeed,weseethatforeachfrettheG-stringhadthemostsignificantshift,
22
followedbytheB-string,andlastlybytheHighE-string(descendingorderof
thickness).
Whenbothcontributingfactorsaretakenintoaccount,directcomparisons
betweenstringscanbemadeforagivennote.InFig.10,thesamenote(HighE)was
playedoneachofthethreestrings.Bothlengthandlineardensityarebeingvariedin
thisexample.
Fig.10Deviationfrominteger-multiple
harmonicnatureoftheG,B,andHighE
stringsplayedonthesamenote(roughly
thatoftheopenHighE-string).Dots
denoteexperimentaldata,dashedlines
denoteidealpredictionsfromEq.(6),and
solidlinesdenotepredictionsfromEq.(7).
Figure10concurswiththebehaviorsobservedinthepreviousthreefigures.
Theseresultssuggestthatonecanoptimizetheintonationoftheirplay,giventhe
optiontoplaythesamenoteondifferentstrings.
Errorinthedatastemsfromthepotentiallackinlow-frequencysensitivityof
theoscilloscopeaswellasthepossibilitythatthepickups[6]andcircuitryoftheelectric
23
guitararenotbuilttobesensitivetofrequenciesfarabovethethirdharmonicofthe
HighEstring(roughly1318Hz.).
24
Conclusion
NonlinearharmonicbehaviorwasobservedintheG,B,andHighEstringsofan
electricguitar.InaccordancewiththepredictionofEq.(7),resultsshowthatthe
degreeofnonlinearharmonicbehaviorisgreaterasstringthicknessincreasesand
lengthdecreases.OurobservationsagreewiththatofPolitzer[11].Fromtheresults,it
ispossiblethatobserveddeviationsinharmonicswouldbeperceivable(see[9]).
Furtherresearchcouldincludetestingwoundstringsforsimilarbehavior.
Sourcesoferrorinthisstudyvaryfromhumanmeasurementtoinstrumental
limitations.Itwasnotpossibletomaintainperfectconsistencyinpluckingthestrings
sotheremayhavebeenharmonicsthatweretoofainttoobserve.Betterequipment
couldhavebeenusedbecauseouroscilloscopewasonlyabletoachieveaprecisionof
+/-24.41Hz.at50.0kS/s.Thissortoferrorwasonlysignificantinlow-frequency
measurement,whichwascriticalbecausethetheoreticallinesinFigs.7,8,and9were
calculatedbasedonthefundamentalfrequency.Ideally,wewouldbeabletoscanthat
rangeofdatawithaprecisionofcloserto+/-0.5Hz.Becausewechosetoanalyzethe
vibrationofthestringsthroughelectronicmeans(guitarandpickupsystem),itmay
justbethatelectricguitarsarenotmadetoregisterharmonicsfarbeyondthefifthor
sixth.Itwouldbeinterestingtoreplicatetheexperimentwithanacousticanalysis
insteadandcompareresults.
Itisnottangibletoeliminatesteelasthemainmetalusedinguitarstringsbut
outofstudiessuchasthis,theremaydevelopnewtechniquesforcompensatingthis
effect.Perhapsstringsofnon-uniformdensitycouldbedesignedspecificallyto
minimizeskewinharmonicsallthroughoutthelengthofthefretboard.
25
Bibliography
[1]Boullosa,RicardoR.,“ANoteontheSoundRadiationfromtheClassicalGuitar:
InfluenceofEnergyInputViatheStringTerminationattheFret.”ActaAcustica
UnitedWithAcustica89.4,(2003):718-721.
[2]ConklinJr.,HaroldA.“Generationofpartialsduetononlinearpartialsina
stringedinstrument.”TheJournaloftheAcousticalSocietyofAmerica105(1999):
536-545.
[3]Errede,Steven.
https://courses.physics.illinois.edu/phys406/Lecture_Notes/Waves/PDF_FIles/Wa
ves_2.pdf
[4]Fleischer,H.,andT.Zwicker."InvestigatingDeadSpotsofElectricGuitars."
Acustica85.1(1999):128-35.
[5]Fletcher,NevilleH.,andRossing,ThomasD.ThePhysicsofMusicalInstruments.
2nded.NewYork:Springer,1998.Print.
[6]Horton,NicholasG.,andThomasR.Moore."ModelingtheMagneticPickupofan
ElectricGuitar."AmericanJournalOfPhysics77.2(2009):144-50.
[7]Järveläinen,Hanna,VesaVälimäki,andMattiKarjalainen."Audibilityofthe
TimbralEffectsofInharmonicityinStringedInstrumentTones."AcousticsResearch
LettersOnline2.3(2001):79-84.
[8]Johnston,IanD.MeasuredTones:TheInterplayofPhysicsandMusic.Bristol;
Philadelphia:InstituteofPhysics,1989.Print.
[9]Moore,BrianC.J.andPeters,RobertW.andGlasberg,BrianR.,“Thresholdsfor
thedetectionofinharmonicityincomplextones.”TheJournaloftheAcoustical
SocietyofAmerica77,(1985):1861-1867.
[10]Paté,Arthur,Jean-LoïcLeCarrou,andBenoîtFabre."PredictingTheDecay
TimeOfSolidBodyElectricGuitarTones."JournalOfTheAcousticalSocietyOf
America135.5(2014):3045-3055.
[11]Politzer,David."ThePluckedString:AnExampleOfNon-NormalDynamics."
AmericanJournalOfPhysics83.5(2015):395-402.
[12]Rowland,Dr."ParametricResonanceandNonlinearStringVibrations."
AmericanJournalOfPhysics72.6(2004):758-66.Web.
[13]Vareischi,GabrieleU.,andChristinaM.Gower."IntonationAndCompensation
OfFrettedStringInstruments."AmericanJournalOfPhysics78.1(2010):47-55.
26
[14]Woodhouse,J."PluckedGuitarTransients:ComparisonofMeasurementsand
Synthesis."ActaAcusticaUnitedWithAcustica90.5(2004):945-65.Web.
[15]Imagefromhttp://www.pulseonline.com/Schecter/Hellraiser_C1_WHT.jpg
27