Linfield College DigitalCommons@Linfield Senior Theses Student Scholarship & Creative Works 5-24-2016 Nonlinear Harmonic Modes of Steel Strings on an Electric Guitar Joel Wenrich Linfield College Follow this and additional works at: http://digitalcommons.linfield.edu/physstud_theses Part of the Harmonic Analysis and Representation Commons, Music Commons, Non-linear Dynamics Commons, and the Physics Commons Recommended Citation Wenrich, Joel, "Nonlinear Harmonic Modes of Steel Strings on an Electric Guitar" (2016). Senior Theses. Paper 21. This Thesis (Open Access) is brought to you for free via open access, courtesy of DigitalCommons@Linfield. For more information, please contact [email protected]. NonlinearHarmonicModesofSteelStringsonanElectric Guitar JoelWenrich ATHESIS PresentedtotheDepartmentofPhysics LinfieldCollege McMinnville,Oregon Inpartialfulfillmentoftherequirements fortheDegreeof BACHELOROFSCIENCE May,2016 1 THESIS COPYRIGHT PERMISSIONS Please read this document carefully before signing. If you have questions about any of these permissions, please contact the DigitalCommons Coordinator. Title of the Thesis: ( , Author's Name: (Last name, first name) l Advisor's Name { DigitalCommons@Linfield is our web-based, open access-compliant institutional repository for digital content produced by Linfield faculty, students, staff, and their collaborators. It is a permanent archive. By placing your thesis in DigitalCommons@Linfield, it will be discoverable via Google Scholar and other search engines. Materials that are located in DigitalCommons@Linfield are freely accessible to the world; however, your copyright protects against unauthorized use of the content. Although you have certain rights and privileges with your copyright, there are also responsibilities. Please review the following statements and identify that you have read them by signing below. Some departments may choose to protect the work of their students because of continuing research. In these cases, the project is still posted in the repository but content will only be accessible by individuals who are part of the Linfield community. CHOOSE THE STATEMENT BELOW THAT DEFINES HOW YOU WANT TO SHARE YOUR THESIS. THE FIRST STATEMENT PROVIDES THE MOST ACCESS TO YOUR WORK; THE LAST STATEMENT PROVIDES THE LEAST ACCESS. agree to make my thesis available to the Linfield College community and to the larger scholarly community upon its deposit in our permanent digital archive, DigitalCommons@Linfield, or its successor technology. My thesis will also be available in print at Nicholson Library and can be shared via interlibrary loan. OR _ _ I agree to make my thesis available only to the Linfield College community upon its deposit in our permanent digital archive, DigitalCommons@Linfield, or its successor technology. My thesis will also be available in print at Nicholson Library and can be shared via interlibrary loan. OR _ _ I agree to make my thesis available in print at Nicholson Library, including access for interlibrary loan. OR _ _ I agree to make my thesis available in print at Nicholson Library only. Updated April 2, 2012 NOTICE OF ORIGINAL WORK AND USE OF COPYRIGHT-PROTECTED MATERIALS: If your work includes images that are not original works by you, you must include permissions from original content provider or the images will not be included in the repository. If your work includes videos, music, data sets, or other accompanying material that is not original work by you, the same copyright stipulations apply. If your work includes interviews, you must include a statement that you have the permission from the interviewees to make their interviews public. For information about obtaining permissions and sample forms, see http://copyright. col um bia. edu/copyright/perm issions/. NOTICE OF APPROVAL TO USE HUMAN SUBJECTS BY THE LINFIELD COLLEGE INSTITUTIONAL RESEARCH BOARD {IRB): If your research includes human subjects, you must include a letter of approval from the Linfield IRB. For more information, see http://www.linfield.edu/irb/. NOTICE OF SUBMITTED WORK AS POTENTIALLY CONSTITUTING AN EDUCATIONAL RECORD UNDER FERPA: Under FERPA (20 U.S.C. § 1232g), this work may constitute an educational record. By signing below, you acknowledge this fact and expressly consent to the use of this work according to the terms of this agreement. BY SIGNING THIS FORM, I ACKNOWLEDGE THAT ALL WORK CONTAINED IN THIS PAPER IS ORIGINAL WORK BY ME OR INCLUDES APPROPRIATE CITATIONS AND/OR PERMISSIONS WHEN CITING OR INCLUDING EXCERPTS OF WORK{S) BY OTHERS. DAN APPROVAL LETTER FROM THE IRB TO USE Printed Name J Approved by Faculty Advisor Updated April 2, 2012 . _ A / { Date J/ Thesis Acceptance Linfield College Thesis Title: Title of Thesis Submitted by: Student Name Date Submitted: May 2016 ThesisAdvisor: 0 F LK D H & OR UV V H U Physics Departme Physics Department: Dr. %LOO v 2 Abstract NonlinearHarmonicModesofSteelStringsonanElectricGuitar Steelstringsusedonelectricandacousticguitarsarenon-ideal oscillatorsthatcanproduceimperfectintonation.Accordingtotheory, thisintonationshouldbeafunctionofthebendingstiffnessofthestring, whichisrelatedtothedimensionsoflengthandthicknessofthestring. Totestthistheory,solidsteelstringsofthreedifferentlineardensities wereanalyzedusinganoscilloscopeandaFastFourierTransform function.Wefoundthatstringsexhibitedmoredrasticnonlinear harmonicbehaviorastheireffectivelengthwasshortenedandaslinear densityincreased. 3 Contents: Introduction....................................................................................................5 Theory...............................................................................................................8 TheIdealString.........................................................................................................8 BendingStiffness...................................................................................................10 MusicTheory...........................................................................................................11 ExperimentalMethods..............................................................................13 Results&Analysis......................................................................................17 Conclusion.....................................................................................................25 Bibliography.................................................................................................26 4 Introduction Theguitarisastringedinstrumentthatcanbeusedtoproduceawiderange ofnotesbyeffectivelychangingthelengthofthesetofstrings,eachofadifferent lineardensity.Thestringsarestretchedoverastrongpieceofwoodwithoneside roundandtheotherflat,calledtheneckandfretboardrespectively,withstripsof metalwiresetintothefretboard,calledfrets.Onanelectricguitar,vibrationsofthe metalstringsaresensedbypickupcoils,amplifiedbyasimplecircuit,andfinally outputted.Belowisadiagramhighlightingthebasicpartsofanelectricguitar.(See Fig.1) Fig. 1: Labeled diagram of an electric guitar [15]. Likeanymusicalinstrument,guitarsmustbekeptintunesothattheycanbe usedtoproducethequalityofsoundforwhichtheyweredesigned.Possible contributingfactorstopoorintonationhavebeenstudiedsuchasdeadspots[5],tone decay[10],andfret-stringinteractions[1][13].Otherfactorsincludetheharmonic 5 behaviorofthevibratingstrings[3][11][12][14].Inthispaper,wewillcontinuetobuild offoftheworkdonewithharmonics.Harmonicsareparticularfrequenciesthat yieldzero-amplitudepointsalongavibratingstring.Theyareoftenanalyzedasa standingwave(asnapshotofthewaveatitsgreatestamplitude). Westudytheharmonicvibrationsofguitarstringsandwebelievethereisa relationshipbetweenthenonlinearnatureofharmonicsonastringanditsbending stiffness.Thismatterstoguitarplayersandlistenersalikebecausethepresenceof sharpeningharmonicmodesmaybecomeaudiblysharporflatwhenplayedin conjunctionwithothernotes[7]. Thisisastudyofsteelstrings.Whilemostsetsofstringsaremadeofsteel, otheralloyssuchasbronze,copper,andnickelareusedintheindustryforthe varietyoftonalqualitiestheyoffer.Thethickerstringsresponsibleforproducing lowerfrequencynotesarenotmadefromasinglecoreofsteel;rather,theyconsist ofasoftermetal–usuallynickelorcopper–woundaroundasteelcore.Fig.2shows SEMimagesofthesetofguitarstringsusedinthisexperiment: Fig.2:SEMimagesofastandardsetofguitarstrings. 6 Usinganelectricguitarandadigitaloscilloscopewetesttheharmonic behaviorofdifferentsteelstringsandcompareittotheoreticalresultsyielded throughknownrelationshipsbetweenharmonicsandbendingstiffness.Because woundstrings(seeFig.2:LowE,A,D)werenotcomprisedofasinglematerial,they wereexcludedfromthisstudytoavoidfurthercomplexity. 7 Theory TheIdealString Toanalyzethevibrationofasteelstringwemustfirstunderstandthesimplestcase, anidealstring.Anidealstringisinfinitelythin(withoutbendingstiffness)andhas uniformlineardensity.Whenplucked,twowavetrainspropagateinopposite directions,reflectingoffofthetwofixedends,whichisthebridgeandeitherthefret orthenut.Thesetwowavetrainscontinuetoreflectbackandforth,creatingan interferencecalledastandingwave.BythePrincipleofSuperposition,the interferingwavesarethesum 𝑦 𝑥, 𝑡 = sin 𝑘𝑥 − 𝜔𝑡 + sin 𝑘𝑥 + 𝜔𝑡 (1) 2𝜋 Here,𝑦isthewaveamplitude,𝜔 = 2𝜋𝑓isangularvelocity,and𝑘 = 𝜆 isthewave numberwith𝜆beingwavelength.Bywayoftrigonometricidentities,Eq.(1)canbe simplifiedto y x, t = 2sin 𝑘𝑥 cos 𝜔𝑡 (2) Ifwedefinethefixedendstobeat𝑥 = 0 and 𝑥 = 𝐿,whenastringisplucked,the onlywavesthatcontinueanylongerthanafractionofasecondaretheoneswhich yieldanamplitudeofzeroatthosepositions.NotethatinEq.(2)thefirstterm describesamplitudeandthesecondtermdescribesfrequency.Here,itisimportant tonotethattheresultofEq.(2)iszeroatbothfixedends,say𝑥 = 0, 𝑥 = 𝐿.What 8 arisesisaninfiniteamountofparticularfrequenciesthatyieldpositionsalongthe string,𝑥,thatexperienceanamplitudeofzeroatalltimes;thesepointsarecalled nodes.The𝑛!" harmonic,denoted𝑓! , isafrequencythatproduces𝑛numberof nodes.Oftenindiscussionofthistopic,theterm“harmonic”issynonymouswith “mode.”Thefirstthreeharmonicsforanidealstringfixedatbothendsareshownin thefigurebelow.Alsointhefigureisthesumofthefirstthreeharmonicswhereitis importanttonotethattheamplitudesaredescendingfromthefirsttothird harmonic.(SeeFig.3) Figure3:Standingwavesofthefirst,second,andthirdharmonics(left);sumofthe firstthreeharmonicsforonefullwavelengthplottedontimevs.amplitude(right). Motivatedtogeneratearelationshipbetweenharmonicsandtheircorresponding modes,recallthespeedofatransversewavetravelingonastring[4], 𝑣= 𝑇 𝜇 (3) where𝑣iswavespeed,𝑇istensionforce,and𝜇isthestring’slineardensity.For suchastringstretchedbetweentwoendsupports,naturalmodesofvibrationare givenby 𝜆! = 2𝐿 𝑛 9 𝑛 = 1,2,3 … (4) where𝜆! iswavelengthofmode𝑛withstringlength𝐿.Fromfigure3andEq.(4)a criticalconceptarises:allharmonicsoccurwhenastringisinitiallyplucked.Again, thereareinfinitelymanyfrequenciesthatappearwhenastringisfirstpluckedbut mostofthemaredampedbythebridge–fret/nutinteraction.Speedandwavelength arebothrelatedtofrequency, 𝑓,through 𝑓! = 𝑣 𝜆! 𝑛 = 1,2,3 … (5) BysubstitutionofEqs.(3)and(4)into(5), 𝑛 𝑇 𝑓! = 2𝐿 𝜇 = 𝑛𝑓! 𝑛 = 1,2,3 … (6) Herewehaveawayofcalculatingthefrequencyofeachmodeofvibrationfora stringwithspecificproperties.Wereferto𝑓! asthefundamentalfrequency.Notice thepositivelinearrelationshipbetweenfrequencyandmode.Intheidealcase length,tension,andlineardensityareassumedtobeconstant. BendingStiffness Theidealstringmodelbreaksdownwhenwenolongermaketheassumptionthat thestringisinfinitelythin.Asaresult,harmonicsdonotaddtogethertoproducea wavethatisconsistent.Complicationensueswhenweincorporatethicknessand materialpropertiesofthestring[4]: (7) 10 𝑓! = 𝑛𝑓! 1 + 𝐵𝑛! 1 + with 2 4 𝐵+ 𝐵 𝜋 𝜋 𝐵 = 𝐸𝑆𝐾 ! 𝑇𝐿! (8) beingbendingstiffness.Here,bendingstiffnessisapropertyofastringofgiven materialwith𝐸,modulusofelasticity,𝑆,cross-sectionalareaandradiusofgyration, whichforacylinderofradius𝑎is𝐾 = 𝑎 2.Clearly,Eq.(7)isadeparturefromthe linearrelationshipbetweenfrequencyandmode.Itisthisnonlinearequationthat wewilluselatertocomparewithresultsobtainedfromourexperiment. MusicTheory Wecareaboutthesharpeningofharmonicsbecausetherearepotential ramificationsforthepurityofnotesastheyareplayedtogether.Considertwo separatestringsoflengthLfixedatbothends.Ifwetakeonestringandstopit halfwaysothatitsnewlengthis1/2L,wewouldbeabletoproduceanotethatis twicethefrequencyofthenoteproducedbyastringoflengthL.Thisnoteiscalled an‘octave.’Noticethatthefrequencyoftheoctaveisthefirstharmonicofthe originalnote.Ifweweretotakeastringofthesamelengthandstopitat2/3Lwe wouldproduceanotethatiscalleda‘fifth.’ Octavesarenotesseparatedbyanintervaloftwelvehalfsteps.Theinterval ofperfectfifths,asit’scalled,consistsofnotesseparatedbysevenhalfsteps.Using thisinterval,chordscanbemadebyplayingtwoormoreofthesefifthstogether. Hence,itiscrucialthatchordsarecomprisedofnotesthatareintuneortheywill 11 sufferabeatfrequency,whichistheperiodicoscillationintotalamplitudeofa compoundwavecomprisedofmultiplecomponentfrequencies[8]. 12 ExperimentalMethods Inthisexperiment,themeasurementprocedureconsistedofpluckingaguitarstring andobtainingthecomponentfrequenciesofthesignalusingtheTektronixTDS 2002Boscilloscope.Figure4showsaschematicoftheexperimentalsetup. (a) (c1) (b) +V (d) (c2) Ground Fig.4Schematicofexperimentalsetup.(a)TektronixTDS2002BOscilloscope.(b) SchecterC-1ElectricGuitar.(c1)ConnectionbetweenguitarcableandChannel1. (c2)Expandeddiagramofconnection(d)Connectionbetweenguitarandguitar cable. TheTektronixTDS2002BOscilloscopeservedthepurposeofthisexperiment wellbecauseofitsFastFourierTransform(FFT)andUSBfunctions.Three parametersoftheFFTareadjustable:source,windowandzoom.Source 13 determineswhichchannelissampled.Onlyonechannelwasusedinthis experiment.Threetypesofwindowsettingsdeterminedfrequencyresolutionand amplitudeaccuracy.Bothmeasuringperiodicwaveforms,the“Hanning”and “flattop”windowmodesmostaccuratelyjudgedfrequencyandamplitude, respectively.Thethirdwindowoptionwas“rectangular”,lendingspecialattention towaveformswithoutdiscontinuities.Cateringtothefocusoftheexperiment, “Hanning”wastheoptimalchoice.Zoomdetermineshorizontalmagnificationofthe datawithoptionsofX1,X2,X5,X10.Onceset,windowandzoomwereheldconstant whereassamplingratewascycledthroughwhencollectingasetofdata.The oscilloscope’srangewasbetween5.0samplespersecond(S/s)and2.0GS/sbutfor thepurposesofmeasuringfrequenciesproducedbyaguitararangeof1.0kS/sto 50.0kS/swassufficient.Eachsamplingratescanned0Hz.totheNyquistfrequency, whichishalfthesamplingrate,toavoidaliasing.Moredetailedinformationcanbe foundintheoscilloscope’smanual. Withtheoscilloscopetuned,specialattentionhadtobepaidtotheguitarand howeachstringwasplucked.Astandard1.0mmguitarpickwasusedtoexcitethe stringsduringtheexperiment.AsPolitzersuggests[11],theangleatwhichastringis pluckedrelativetothefretboardaffectstheintensityofvibrationimmediatelyafter itisplucked.Itturnsoutthatplucksparalleltothefretboardproducethehighest intensityvibrationswiththeleastdecay.Thus,inordertostayconsistentwiththe pluckinghandasbestaspossiblewithoutsomesortofautomatedprocess,the experimenterdidentiresetsofdataatatimebeingcarefultomaintainsteadyhand position,pluckingforceandpluckingpositionalongthestring. 14 Determiningthemomentatwhichthesamplewastakenrequiredsome techniqueaswell.Immediatelyafterastringispluckedthereisa“twang,”asitis referredto,thatistheaudiblypositiveshiftinfrequencyduetowhatErrede suggestsistheextremeinitialamplitudegeneratedbythepluck[3].Becauseofthis effect,whichlastslessthanatenthofasecond,thepropersampletotakewasjust afterthepluck.Thisentailedsettingtheoscilloscopeautomatictriggerandpressing STOPonthesecondorthirdsamplingdependingontherate.Fortheslowerrates, suchasa1kS/sand2.5kS/s,thesamplingtimewastoolongtotakethesecond framebecausebythentheintensityofthevibratingstringdecayedbeyond measurement. Withtheoscilloscopeandguitarpreparedfordata,samplescouldthenbe taken.Aspreviouslydescribed,thesamplingoftheoscilloscopewaspausedjust aftertheinitialpluckofastring.UtilizingtheUSBfunctionoftheoscilloscope,the waveformdatawassavedontoaflashdrive.Organizationwascriticalduetothe volumesofdatacollected.Datawasseparatedfirstintofoldersdifferentiatedby stringthenintofoldersaccordingtofret.Datawasnotseparatedintotheirown subfoldersbasedonsamplingratebecausesuchinformationwasincludedinthe waveformfile. TheoscilloscopesavedthedataasaCommaSeparatedDocument(CSD) whereeachpointwasacoordinateoffrequencyandintensity.Thesedatawere thenputintothecomputerprogram,Origin,inordertobetterfitthepoints.Excel wasusedtokeepalistofthefittedpoints.Tobringitalltogether,Mathematica 15 provedusefulincalculatingtheoreticaldata,whichwascompareddirectlytothe experimentaldata.Greaterdetailoftheanalysisisdescribedinthenextsection. 16 Results&Analysis Inthisexperimentonlythethreethinneststringsontheguitar(G,B,HighE) wereanalyzedbecausetheyweresolidsteelwhereastheotherthreestrings(LowE, A,D)havecopperornickelwindingaroundsolidsteelcores.Thephysical propertiesofthestringsusedareprovidedinTable1below. Table1PhysicalpropertiesofG,B,andHighEstringsusedintheexperiment.Diameterwas obtainedusingveneercalipers,Tensionthroughmanufacturerdata,andf0fromtheoscilloscope. String G B HighE Diameter(mm) 0.406 0.279 0.228 EstimatedTension*(N) 65.3 49.0 58.4 Measuredf0(Hz.) 194.8 246.2 327.6 *Tensionwhileinstandardtuningandonfretzero,asperthemanufacturerofthestringsused, D’AddarioXL120. Eachsetofdatabeganasareadingfromtheoscilloscopeintheformof1024 pointsspanningatunablerangeoffrequency.Samplingratesusedinthis experimentvariedfrom1.0kS/sto50.0kS/swithrespectiveintervalsbetweendata of0.488Hz.to24.41Hz.Figure5isanexampleofrawdatacollectedfromthe oscilloscope.Notethatalthoughtherearespikesinthedatatheyarenotreliable duetothesamplinginterval.Generally,thepeaksclosetothemaximumthreshold wereignoredbecausedatafromfastersamplingratessuggestedtheactualpeak wasslightlybeyondthethreshold. 17 0 -10 Intensity (dB) -20 -30 -40 -50 -60 -70 -80 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Frequency (Hz.) Fig.5Rawdatacollectedfromtheoscilloscope.HighEString,fret1,10.0kS/s BetteraccuracycouldbeobtainedfromtherawdatabyusingOrigintofit Gaussiancurvestoeachpeak.Usingthe“FitMultiplePeaks”function,upto12 peaksatatimecouldbemodeled.Forsomeofthepeaksthatwereoflowintensity buthigherthanthatofnoise,thefunction“FitSinglePeak”wasrequired.Figure6 showsasnapshotofbothamultiplepeakanalysisandsinglepeakanalysis. Fig.6Experimentaldatafitted usingOrigin.HighEString,fret1, 10.0kS/s 18 Aftereachfitoftherawdata,thevaluesofthepeakswererecordedinExcel spreadsheets.Itwasthesedatathatweconsideredtobeourexperimentaldata. Thefollowingfiguresexhibitexperimentaldataandaccompanying theoreticalcurvescalculatedusingEq.(7)alongwiththeinformationfromTable1. Foreachstring,resultsforfrets0,12,and24aregiven.Thethreefretswerechosen becausetheycorrespondtothefirstthreeharmonics—𝑓! atthefulllength,𝑓! at half-length,and𝑓! atone-thirdlength.Thex-axisisthemode,n,andthey-axisis frequencyofmode,fn,dividedbythemode.Themotivationforpresentingthedata insuchafashionisthatitmakesmorevisibleanincreasingshiftinharmonics, whichiswhatwewouldexpecttoseeinastringwithhighbendingstiffness.Note thatanidealstringwouldbeahorizontallinewiththeonlyy-valuebeingthe fundamentalfrequency.ByEq.(7)wewouldexpecttoseethemostdrasticpositive shiftsforfret24,thenfret12,thenfret0,regardlessofstring.Additionally,the sameequationsuggeststhattherewouldbegreatershiftsinthethickerstringson anygivenfret.Notethatinthediscussionofthesefiguresanyshiftinfrequency describesadeviationfromthefundamentalfrequencywhendividedbythe correspondingharmonicnumber,𝑛.Therefore,eachpointrepresentsafrequency shifted𝑛timesawayfromwhatthefrequencywouldideallybeatmoden.Graphs canbecomparedinthismannerbecausethex-scaleisthesameineverygraphfor theFigs.7,8and9below. 19 Fig.7Deviationfrominteger-multiple harmonicnatureoftheG-stringonfrets0, 12,and24.Dotsdenoteexperimentaldata, dashedlinesdenoteidealpredictionsfrom Eq.(6),andsolidlinesdenotepredictions fromEq.(7). FromFig.7wecanseethatasthestringlengthdecreases(fretnumberincreases)the harmonicsshiftmoresignificantly.Onthe0thfretweseea+5Hz.shiftat𝑛 = 20.Forthe 12thand24thfretsweseea+5Hz.shiftreachedatroughly𝑛 = 8and𝑛 = 3respectively. 20 Fig.8Deviationfrominteger-multiple harmonicnatureoftheB-stringonfrets0, 12,and24.Dotsdenoteexperimentaldata, dashedlinesdenoteidealpredictionsfrom Eq.(6),andsolidlinesdenotepredictions fromEq.(7). Figure8continuesthetrendobservedinFig.7butfortheB-string.Comparingthetwo, weseethatineachcasebetweenthe0th,12thand24thfrets,thethickerG-stringdisplayed amoredrasticshift. 21 Fig.9Deviationfrominteger-multiple harmonicnatureoftheHighE-stringon frets0,12,and24.Dotsdenote experimentaldata,dashedlinesdenote idealpredictionsfromEq.(6),andsolid linesdenotepredictionsfromEq.(7). Withthethirdandfinalsetofdata,Fig.9completesthetrendobservedintheprevious twofigures.Asthethinnestofthestrings,theHighE-stringexhibitstheleastdrasticof theshiftsforeachfret.Fromthesefiguresweobserveproportionalitybetween nonlinearharmonicbehaviorandboththeinverseoflengthsquaredandcrosssectional areaassuggestedbyEq.(7).Tohighlighttheinverseoflengthsquareddependencywe canlookateachstringasanindividualcaseandseethatasthelengthofthestring decreasesweseeagreaterpositiveshift.Asforthecrosssectionalareadependency, wecanlookateachfretasanindividualcaseandcomparetheharmonicshiftsforeach string.Indeed,weseethatforeachfrettheG-stringhadthemostsignificantshift, 22 followedbytheB-string,andlastlybytheHighE-string(descendingorderof thickness). Whenbothcontributingfactorsaretakenintoaccount,directcomparisons betweenstringscanbemadeforagivennote.InFig.10,thesamenote(HighE)was playedoneachofthethreestrings.Bothlengthandlineardensityarebeingvariedin thisexample. Fig.10Deviationfrominteger-multiple harmonicnatureoftheG,B,andHighE stringsplayedonthesamenote(roughly thatoftheopenHighE-string).Dots denoteexperimentaldata,dashedlines denoteidealpredictionsfromEq.(6),and solidlinesdenotepredictionsfromEq.(7). Figure10concurswiththebehaviorsobservedinthepreviousthreefigures. Theseresultssuggestthatonecanoptimizetheintonationoftheirplay,giventhe optiontoplaythesamenoteondifferentstrings. Errorinthedatastemsfromthepotentiallackinlow-frequencysensitivityof theoscilloscopeaswellasthepossibilitythatthepickups[6]andcircuitryoftheelectric 23 guitararenotbuilttobesensitivetofrequenciesfarabovethethirdharmonicofthe HighEstring(roughly1318Hz.). 24 Conclusion NonlinearharmonicbehaviorwasobservedintheG,B,andHighEstringsofan electricguitar.InaccordancewiththepredictionofEq.(7),resultsshowthatthe degreeofnonlinearharmonicbehaviorisgreaterasstringthicknessincreasesand lengthdecreases.OurobservationsagreewiththatofPolitzer[11].Fromtheresults,it ispossiblethatobserveddeviationsinharmonicswouldbeperceivable(see[9]). Furtherresearchcouldincludetestingwoundstringsforsimilarbehavior. Sourcesoferrorinthisstudyvaryfromhumanmeasurementtoinstrumental limitations.Itwasnotpossibletomaintainperfectconsistencyinpluckingthestrings sotheremayhavebeenharmonicsthatweretoofainttoobserve.Betterequipment couldhavebeenusedbecauseouroscilloscopewasonlyabletoachieveaprecisionof +/-24.41Hz.at50.0kS/s.Thissortoferrorwasonlysignificantinlow-frequency measurement,whichwascriticalbecausethetheoreticallinesinFigs.7,8,and9were calculatedbasedonthefundamentalfrequency.Ideally,wewouldbeabletoscanthat rangeofdatawithaprecisionofcloserto+/-0.5Hz.Becausewechosetoanalyzethe vibrationofthestringsthroughelectronicmeans(guitarandpickupsystem),itmay justbethatelectricguitarsarenotmadetoregisterharmonicsfarbeyondthefifthor sixth.Itwouldbeinterestingtoreplicatetheexperimentwithanacousticanalysis insteadandcompareresults. Itisnottangibletoeliminatesteelasthemainmetalusedinguitarstringsbut outofstudiessuchasthis,theremaydevelopnewtechniquesforcompensatingthis effect.Perhapsstringsofnon-uniformdensitycouldbedesignedspecificallyto minimizeskewinharmonicsallthroughoutthelengthofthefretboard. 25 Bibliography [1]Boullosa,RicardoR.,“ANoteontheSoundRadiationfromtheClassicalGuitar: InfluenceofEnergyInputViatheStringTerminationattheFret.”ActaAcustica UnitedWithAcustica89.4,(2003):718-721. [2]ConklinJr.,HaroldA.“Generationofpartialsduetononlinearpartialsina stringedinstrument.”TheJournaloftheAcousticalSocietyofAmerica105(1999): 536-545. [3]Errede,Steven. https://courses.physics.illinois.edu/phys406/Lecture_Notes/Waves/PDF_FIles/Wa ves_2.pdf [4]Fleischer,H.,andT.Zwicker."InvestigatingDeadSpotsofElectricGuitars." Acustica85.1(1999):128-35. [5]Fletcher,NevilleH.,andRossing,ThomasD.ThePhysicsofMusicalInstruments. 2nded.NewYork:Springer,1998.Print. [6]Horton,NicholasG.,andThomasR.Moore."ModelingtheMagneticPickupofan ElectricGuitar."AmericanJournalOfPhysics77.2(2009):144-50. [7]Järveläinen,Hanna,VesaVälimäki,andMattiKarjalainen."Audibilityofthe TimbralEffectsofInharmonicityinStringedInstrumentTones."AcousticsResearch LettersOnline2.3(2001):79-84. [8]Johnston,IanD.MeasuredTones:TheInterplayofPhysicsandMusic.Bristol; Philadelphia:InstituteofPhysics,1989.Print. [9]Moore,BrianC.J.andPeters,RobertW.andGlasberg,BrianR.,“Thresholdsfor thedetectionofinharmonicityincomplextones.”TheJournaloftheAcoustical SocietyofAmerica77,(1985):1861-1867. [10]Paté,Arthur,Jean-LoïcLeCarrou,andBenoîtFabre."PredictingTheDecay TimeOfSolidBodyElectricGuitarTones."JournalOfTheAcousticalSocietyOf America135.5(2014):3045-3055. [11]Politzer,David."ThePluckedString:AnExampleOfNon-NormalDynamics." AmericanJournalOfPhysics83.5(2015):395-402. [12]Rowland,Dr."ParametricResonanceandNonlinearStringVibrations." AmericanJournalOfPhysics72.6(2004):758-66.Web. [13]Vareischi,GabrieleU.,andChristinaM.Gower."IntonationAndCompensation OfFrettedStringInstruments."AmericanJournalOfPhysics78.1(2010):47-55. 26 [14]Woodhouse,J."PluckedGuitarTransients:ComparisonofMeasurementsand Synthesis."ActaAcusticaUnitedWithAcustica90.5(2004):945-65.Web. [15]Imagefromhttp://www.pulseonline.com/Schecter/Hellraiser_C1_WHT.jpg 27
© Copyright 2026 Paperzz