Parabolas Find the vertex, focus, directrix, and focal width of the parabola. 1) x2 = 28y A) Vertex: (0, 0); Focus: (0, 7); Directrix: y = -7; Focal width: 28 B) Vertex: (0, 0); Focus: (0, -7); Directrix: x = -7; Focal width: 112 C) Vertex: (0, 0); Focus: (7, 0); Directrix: x = 7; Focal width: 7 D) Vertex: (0, 0); Focus: (7, 0); Directrix: y = 7; Focal width: 112 2) - 1 2 x = y 40 A) Vertex: (0, 0); Focus: (0, -10); Directrix: y = 10; Focal width: 40 B) Vertex: (0, 0); Focus: (-20, 0); Directrix: x = 10; Focal width: 160 C) Vertex: (0, 0); Focus: (0, 10); Directrix: y = -10; Focal width: 10 D) Vertex: (0, 0); Focus: (0, -10); Directrix: y = 10; Focal width: 160 3) x = 8y2 A) Vertex: (0, 0); Focus: 0, 1 1 ; Directrix: y = - ; Focal width: 32 32 32 B) Vertex: (0, 0); Focus: 1 1 , 0 ; Directrix: x = ; Focal width: 32 32 32 C) Vertex: (0, 0); Focus: 1 1 , 0 ; Directrix: x = - ; Focal width: 0.13 8 8 D) Vertex: (0, 0); Focus: 1 1 , 0 ; Directrix: x = - ; Focal width: 0.13 32 32 4) y2 = 8x A) Vertex: (0, 0); Focus: (0, 2); Directrix: y = -2; Focal width: 2 B) Vertex: (0, 0); Focus: (2, 0); Directrix: x = -2; Focal width: 8 C) Vertex: (0, 0); Focus: (2, 0); Directrix: x = -2; Focal width: 32 D) Vertex: (0, 0); Focus: (2, 2); Directrix: x = 2; Focal width: 32 5) (y - 8)2 = 16(x - 2) A) Vertex: (2, 8); Focus: (6, 8); Directrix: x = -2; Focal width: 16 B) Vertex: (8, 2); Focus: (8, 18; Directrix: y = -14; Focal width: 16 C) Vertex: (2, 8); Focus: (18, 8); Directrix: x = -14; Focal width: 16 D) Vertex: (8, 2); Focus: (8, 6); Directrix: y = -2; Focal width: 4 6) (x - 8)2 = 16(y - 6) A) Vertex: (6, 8); Focus: (10, 8); Directrix: x = 4; Focal width: 4 B) Vertex: (6, 8); Focus: (22, 8); Directrix: x = -8; Focal width: 16 C) Vertex: (8, 6); Focus: (8, 10); Directrix: y = 2; Focal width: 16 D) Vertex: (-8, -6); Focus: (-8, 10); Directrix: y = -22; Focal width: 16 Find the standard form of the equation of the parabola. 7) Vertex at the origin, focus at (0, 9) 1 A) y = x2 B) y2 = 36x 9 C) y2 = 9x D) y = 1 2 x 36 PreCalculus 8) Focus at (0, 4), directrix y = -4 1 B) y = x2 4 A) y2 = 4x C) y = 1 2 x 16 D) y2 = 16x 9) Vertex at the origin, focus at (2, 0) 1 B) x = y2 8 1 C) y = x2 8 D) x2 = 8y C) y2 = -8x 1 D) y = - x2 8 11) Focus at (-3, 2), directrix x = -11 A) (y - 2)2 = 16(x + 3) B) (x + 3)2 = 16(y - 2) C) (x - 2)2 = 16(y + 7) D) (y - 2)2 = 16(x + 7) 12) Focus at (6, -2), directrix y = -8 A) (y + 2)2 = 12(x - 6) B) (x - 6)2 = 12(y + 2) C) (x - 6)2 = 12(y + 5) D) (x + 2)2 = 12(y + 5) 13) Vertex at the origin, opens to the right, focal width = 14 A) y2 = 14x B) y2 = -14x C) x2 = 14y D) y2 = 3.5x A) y2 = 8x 10) Focus at (-2, 0), directrix x = 2 1 B) -8y = x2 A) x = - y2 8 Graph the parabola. 14) 8y = x2 y 10 5 -10 -5 5 10 x -5 -10 Calin M. Agut - 2012 PreCalculus 15) 4y = -x2 y 10 5 -10 -5 5 10 x 10 x 10 x -5 -10 16) (y - 3)2 = 4(x + 2) y 10 -10 -10 17) y = -6(x + 4)2 + 4 y 10 5 -10 -5 5 -5 -10 Calin M. Agut - 2012 PreCalculus 4 18) y = (x + 4)2 - 3 7 y 10 5 -10 -5 5 10 x 5 10 x -5 -10 19) x = -3(y + 2)2 - 1 y 10 5 -10 -5 -5 -10 Find the vertex, the focus, and the directrix of the parabola. 20) x2 + 2x - 8y - 39 = 0 A) Vertex: -1, 1 ; Focus: (-1, 3); Directrix: y = 13 B) Vertex: -1, - 5 ; Focus: (-1, -3); Directrix: y = -7 C) Vertex: -1, - 4 ; Focus: (-1, -7); Directrix: y = -3 41 39 ; Focus: (-1, 3); Directrix: y = - D) Vertex: -1, - 8 8 21) 3x2 - 30x - y + 77 = 0 24 23 25 A) Vertex: 5, ; Focus: 5, ; Directrix: x = 83 12 12 C) Vertex: 5, 5 ; Focus: (5, 5); Directrix: x = -1 B) Vertex: 5, 2 ; Focus: 5, D) Vertex: 5, 25 23 ; Directrix: y = 12 12 19 ; Focus: (5, 14); Directrix: x = 10 2 22) y2 - 8x - 6y + 17 = 0 A) Vertex: 5, 1 ; Focus: (9, 1); Directrix: y = 7 C) Vertex: - 4, 3 ; Focus: 9 7 , 3 ; Directrix: y = 8 8 B) Vertex: 0, 1 ; Focus: (-1, 1); Directrix: y = 3 D) Vertex: 1, 3 ; Focus: (3, 3); Directrix: x = -1 Calin M. Agut - 2012 Answer Key Testname: 10_PARABOLAS 1) A 2) A 3) D 4) B 5) A 6) C 7) D 8) C 9) B 10) A 11) D 12) C 13) A 14) y 10 5 -10 -5 5 10 x 5 10 x -5 -10 15) y 10 5 -10 -5 -5 -10 Calin M. Agut - 2012 Answer Key Testname: 10_PARABOLAS 16) y 10 10 x 5 10 x 5 10 x -10 -10 17) y 10 5 -10 -5 -5 -10 18) y 10 5 -10 -5 -5 -10 Calin M. Agut - 2012 Answer Key Testname: 10_PARABOLAS 19) y 10 5 -10 -5 5 10 x -5 -10 20) B 21) B 22) D Calin M. Agut - 2012
© Copyright 2026 Paperzz