Exam Practice Problems - Berkeley City College

Fall 2014 - Berkeley City College
Resources Allowed: 2.25 hours, calculator, 1 page of notes
Math 3B - Calculus II - Exam #1 PREP - Chapters 7
No iPods, cell phones, or other electronic devices
Name___________________________________
Please print your name as it appears on the class roster.
To receive full credit on each problem, you must write all steps to arrive at your answer. Please explain how you
got your answers.
Evaluate the definite integral.
0
1)
(4x2 + 6x +3)2(4x + 3) dx
-1
∫
2)
∫
2!
3 cos2x sin x dx
!/3
Find an approximate value for the integral, using the trapezoidal rule with n intervals. Round the
answer to the nearest tenth if necessary.
3
3)
(2x + 5) dx, n = 4
1
∫
4)
∫
2
9x2 dx, n = 2
0
Perform the integration.
1
4 x dx
5)
4 + 2x2
0
∫
6)
∫ ecot v csc2v dv
7)
∫
4ln x dx
x
8)
∫
9ln x dx
x
Instructor K. Pernell
1
9)
10)
∫
dx
1 + (7x + 6)2
∫ sin 2x sec x dx
Use integration by parts to evaluate the integral.
11)
∫ x4 ln 8x dx
12)
∫ (2x - 1) ln(6x) dx
13)
∫ (x2 - 6x) ex dx
Apply integration by parts more than once to evaluate the integral.
14)
∫ e2x x2 dx
Perform the integration.
15)
∫
16)
∫ 2 csc3 x cot x dx
17)
∫
sin 5x cos 2x dx
!/3
tan x sec4 x dx
0
dx
18)
∫
19)
∫
49 - x2 dx
20)
∫
x3
dx
x2 + 3
(x2 + 81)3/2
2
21)
∫x
x + 7 dx
Use the method of partial decomposition to perform the required integration.
5x + 43
22)
dx
x2 + 10x + 21
∫
23)
∫
5x - 7 dx
x2 - 4x - 5
24)
∫
9x + 20
dx
x3 + 4x2 + 4x
Evaluate the integral.
dx
25)
x (ln x)6
∫
26)
∫
dx
x2 + 4x + 8
Use a table of integrals, perhaps with a substitution, to evaluate the given integral.
dx
27)
2
x 2x - 7
∫
Evaluate the improper integral or state that it diverges.
∞ dx
28)
2
6 x - 25
∫
29)
30)
∫
∞
∫
-2
13x dx
2
-∞ (x2 - 1)
-∞
3 dx
x5
3
Use a finite approximation to estimate the area under the graph of the given function on the stated
interval as instructed.
31) f(x) = 1 between x = 3 and x = 8 using the midpoint sum with two rectangles of equal
x
width.
32) f(x) = x2 between x = 1 and x = 5 using the midpoint sum with four rectangles of equal
width.
Evaluate the integral.
33)
34)
∫ 8 cos3 5x dx
∫
!/2
cos 7t cos 6t dt
0
Express the integrand as a sum of partial fractions and evaluate the integral.
10x + 36
35)
dx
x3 + 6x2 + 9x
∫
Evaluate the integral.
2x2
36)
dx
2
25 - x
∫
Use the Trapezoidal Rule with n = 4 steps to estimate the integral.
1
37)
(x2 + 3) dx
-1
∫
Evaluate the improper integral or state that it is divergent.
∞
38)
15e-15x dx
0
∫
4
Answer Key
Testname: 14FALL_MATH3B_EXAMPREP_CH7
1)
13
3
Objective: (5.4) Evaluate Definite Integral Using Substitution
2) -
7
8
Objective: (5.4) Evaluate Definite Integral Using Substitution
3) 18
Objective: (5.6) Use Trapezoidal Rule to Approximate Integral
4) 27
Objective: (5.6) Use Trapezoidal Rule to Approximate Integral
5) 2
6-4
Objective: (7.1) Evaluate Integral By Substitution I
6) - ecot
v +C
Objective: (7.1) Evaluate Integral By Substitution III
7)
4ln x + C
ln 4
Objective: (7.1) Evaluate Integral By Substitution III
8)
9ln x + C
ln 9
Objective: (7.1) Evaluate Integral By Substitution III
9)
1 tan-1 (7x + 6) + C
7
Objective: (7.1) Evaluate Integral By Trigonometric Substitution
10) -2
cos x + C
Objective: (7.1) Evaluate Integral Using Trig Identities
11)
1 x5 ln 8x - 1 x5 + C
5
25
Objective: (7.2) Evaluate Integral Using Integration by Parts II
12) (x2
2
- x) ln 6x - x + x + C
2
Objective: (7.2) Evaluate Integral Using Integration by Parts II
13) ex[x2
- 8x + 8] + C
Objective: (7.2) Evaluate Integral Using Integration by Parts II
14)
1 x2e2x - 1 xe2x + 1 e2x + C
2
2
4
Objective: (7.2) Evaluate Integral Using Integration by Parts Multiple Times
15) -
1 cos 7x - 1 cos 3x + C
14
6
Objective: (7.3) Evaluate Integral (Sine and Cosine)
5
Answer Key
Testname: 14FALL_MATH3B_EXAMPREP_CH7
2 csc3 x + C
3
16) -
Objective: (7.3) Evaluate Integral (Tangent/Secant/Cotangent)
17)
15
4
Objective: (7.3) Evaluate Integral (Tangent/Secant/Cotangent)
18)
x
81 81 + x2
+C
Objective: (7.4) Integrate Using Trigonometric Substitution
19)
49 sin -1 x + x 49 - x2 + C
2
7
2
Objective: (7.4) Integrate Using Trigonometric Substitution
20)
1 (x2 + 3)3/2 - 3 x2 + 3 + C
3
Objective: (7.4) Integrate Using Trigonometric Substitution
21)
2 (x + 7)5/2 - 14 (x + 7)3/2 + C
3
5
Objective: (7.4) Integrate Using Trigonometric Substitution
22) ln
(x + 3)7 + C
(x + 7)2
Objective: (7.5) Evaluate Integral Using Partial Fractions I
23) 3
ln x - 5 + 2 ln x + 1 + C
Objective: (7.5) Evaluate Integral Using Partial Fractions I
24) 5
ln
x
+ 1 +C
x+2
x+2
Objective: (7.5) Evaluate Integral Using Partial Fractions II
25) -
1
+C
5(ln x)5
Objective: (7.6) Evaluate Integral
26)
1 tan-1 x + 2 + C
2
2
Objective: (7.6) Evaluate Integral
27)
2x - 7 + 2 tan-1
7x
7 7
2x - 7 + C
7
Objective: (7.6) Evaluate Integral Using Tables of Integrals
28)
1 ln 11
10
Objective: (8.3) Evaluate Improper Integral I
6
Answer Key
Testname: 14FALL_MATH3B_EXAMPREP_CH7
29) 0
Objective: (8.3) Evaluate Improper Integral I
30) -
3
64
Objective: (8.3) Evaluate Improper Integral I
31)
352
459
Objective: (5.1) Approximate Area Using Finite Sum
32) 41
Objective: (5.1) Approximate Area Using Finite Sum
33)
8 sin 5x - 8 sin 3 5x + C
5
15
Objective: (8.2) Evaluate Integral (Powers of Sines and Cosines)
34)
7
13
Objective: (8.2) Evaluate Integral (Product of Sines and Cosines)
35) 4
ln
x
+ 2 +C
x+3
x+3
Objective: (8.4) Evaluate Integral by Partial Fractions (Repeated Lin Factors)
36) 25
sin -1 x - x 25 - x2 + C
5
Objective: (8.5) Use Table To Evaluate Integral (Radical)
37)
27
4
Objective: (8.6) Use the Trapezoidal Rule
38) 1
Objective: (8.7) Evaluate Improper Integral (Infinite Limits of Integration) II
7