Ans-1 Answers to Odd-Numbered Exercises APPENDIX D Section D.1 (page D8) 1. Rational Section D.2 (page D15) 1. d 5 2!5 3. Irrational 9. Rational 4 11 11. 15. (a) True 5. Rational 13. (b) False (e) False 7. Rational 11 37 (c) True (d) False 1 2 3 −4 1 2 3 4 5 21. y ≥ 4, f4, `d 1 25. x ≥ 2 0 2 4 5 y 6 23. 0.03 < r ≤ 0.07, s0.03, 0.07g 1 7 27. 2 2 < x < 2 1 3 5. 8!8 2 2!3 3 (1, 2 ( 1, 1) x −1 3 , 2 x 7 2 3) 0,, 1 3 2 x −2 2 0 2 x 2 4 1 1 2 1 31. 21 < x < 1 29. x > 6 x 4 6 −2 8 33. x ≥ 13, x ≤ 27 −7 −1 0 1 2 35. a 2 b < x < a 1 b 13 0 y x x − 10 7. Right triangle: d1 5 !45, d2 5 !5 d3 5 !50 sd1d2 1 sd2d2 5 sd3d2 x a b a a b 2 10 37. 23 < x < 2 39. 0 < x < 3 (2, 1) d2 −2 x d1 2 2 x −2 0 −2 2 41. 23 ≤ x ≤ 1 0 2 4 43. 23 ≤ x ≤ 2 ( 1, x −4 45. 49. 55. 59. 63. 67. 68. 72. 79. 81. −2 0 x −4 2 −2 0 | | | | || | | | | | || | || || | 5) 9. Rhombus: the length of each side is !5. 2 4, 24, 4 47. (a) 251, 51, 51 (b) 51, 251, 51 1 51. (a) 14 (b) 10 53. x ≤ 2 x22 > 2 57. (a) x 2 12 ≤ 10 (b) x 2 12 ≥ 10 61. x ≤ 41 or x ≥ 59 x ≥ 36 units 22 (a) 355 (b) 65. b > p 112 7 > p False: the reciprocal of 2 is 12 , which is not an integer. True 69. True 70. False: 0 5 0. 71. True True 73. Proof 75. Proof 77. Proof Proof 23 2 1 > 23 2 1 321 5 3 2 1 || (4, 0) d3 x | y (3, 3) 3 (1, 2) 2 1 (2, 1) x (0, 0) 1 2 3 11. Quadrant II 13. Quadrants I and III 15. x 5 0 ↔ 1990 y 2000 Number of Wal-Mart stores −4 2 2 (2, 1) 1 The interval is unbounded. 1 2 1 , 1 2 x −2 1 , 2 2 1 1 2 −2 (3, 3) 4 x 0 (4, 5) 3 19. x is no more than 5. −1 y 2 4 17. x is greater than 23 and less than 3. The interval is bounded. x 0 y 5 (f) False −4 −3 −2 −1 3. d 5 2!10 1500 500 −2 x 2 4 Year (0 ↔ 1990) 6 5 6 4 Ans-2 Answers to Odd-Numbered Exercises 17. d1 5 2!5, d2 5 !5, d3 5 3!5 Collinear, because d1 1 d2 5 d3 19. d1 5 !2, d2 5 !13, d3 5 5 Not collinear, because d1 1 d2 > d3 21. x 5 ± 3 23. y 5 ± !55 3x1 1 x2 3y1 1 y2 x1 1 x2 y1 1 y2 25. , , 4 4 2 2 2 1 1 1 x1 1 3x2 y1 1 3y2 , 4 4 27. c 28. b 7. (a) 2708 r 8 ft 15 in. 85 cm 24 in. s 12 ft 24 in. 63.75p cm 96 in. 1.6 3p 4 4 u 2 1.5 csc u 5 54 5 (b) sin u 5 2 13 csc u 5 2 13 5 5 3 3 4 2 12 13 5 12 sec u 5 2 13 12 tan u 5 31. x 2 1 y 2 2 9 5 0 sec u 5 cot u 5 13. (a) Quadrant III 35. x 2 1 y 2 1 2x 2 4y 5 0 15. 41. sx 2 1d 1 sy 1 3d 5 4 2 2 39. x 2 1 y 2 5 26,0002 43. sx 2 1d2 1 s y 1 3d2 5 0 y x 2 1 1 2 (1, 2 1 −1 1 2 3 −3 (1, 3) 1 1 45. s x 2 2 d 1 s y 2 2 d 5 2 2 2 1 5 9 47. s x 1 2 d 1 s y 1 4 d 5 4 2 2 y y 1 1 , 2 2 2 1 1 −3 −2 1 2 3 5 4 51. −9 9 y x −1 −2 1 3 (2, 23. (a) 0.1736 −4 57. True | | 56. False: the distance is 2b . 58. True 59. Proof Section D.3 (page D25) 1. (a) 3968, 23248 (b) 2408, 24808 19p 17p 3. (a) ,2 9 9 10p 2p (b) ,2 3 3 5. (a) (c) p , 0.524 6 7p , 5.498 4 (b) (d) 5p , 2.618 6 2p , 2.094 3 61. Proof 5 1) −3 55. True !2 (b) sins22258d 5 2 !2 29. (a) u 5 2 !2 2 tans22258d 5 21 11p 1 52 6 2 11p !3 5 cos 6 2 !3 11p tan 52 6 3 (d) sin (b) 5.759 p 7p 27. (a) u 5 , 4 4 !2 coss22258d 5 2 2 !3 5p 52 3 2 5p 1 cos 5 3 2 5p tan 5 2 !3 3 1 53. Proof !2 5p 52 4 2 !2 5p cos 52 4 2 5p 51 tan 4 (c) sin 2 −9 tan 1208 5 2 !3 tan 2258 5 1 −3 !3 (d) sin cos 2258 5 2 −2 1 , 2 (b) sin 1208 5 2 1 cos 1208 5 2 2 1 2 1 49. 21. (a) sin 2258 5 2 x −1 x −1 2 !3 (c) sin −5 cot u 5 12 5 4 3 p !2 5 4 2 p !2 cos 5 4 2 p tan 5 1 4 −4 −5 tan u 5 tan 608 5 !3 −2 3) 17. 2 cos u 5 (b) Quadrant IV 2 1 cos 608 5 2 x 3 !3 19. (a) sin 608 5 y 2p 3 3 5 4 3 33. x 2 1 y 2 2 4x 1 2y 2 11 5 0 37. x 2 1 y 2 2 6x 2 4y 1 3 5 0 12,963 mi p 8642 mi 11. (a) sin u 5 45 cos u 5 30. d (d) 2135.68 9. 2 29. a (c) 21058 (b) 2108 25. (a) 0.3640 (b) 0.3640 3p 5p (b) u 5 , 4 4 p 5p , 4 4 (b) u 5 31. u 5 p 3p 5p 7p , , , 4 4 4 4 35. u 5 p 5p , 3 3 5p 11p , 6 6 p 5p 33. u 5 0, , p, 4 4 p 37. u 5 0, , p 2 39. 5099 feet Ans-3 Answers to Odd-Numbered Exercises 41. (a) Period: p 43. Period: 12 (b) Period: 2 Amplitude: 2 p 45. Period: 2 Amplitude: 1 2 65. y Amplitude: 3 y f )x) 2 2p 47. Period: 5 sin x 2 2.5 −3.14 x 2 2 (b) Change in period 1 2 1 c = −2 c = ±2 c = −1 c=1 sin x x 2 49. (a) Change in amplitude g)x) 1 3.14 2 c = ±1 −3.14 y 3.14 h )x) 2 c=2 − 2.5 sin x −1 x (c) Horizontal translation 2 1 1.5 c = −2 c=2 −1.57 2 | 1.57 c = −1 c=1 − 1.5 51. 53. y | The graph of f sxd will reflect any parts of the graph of f sxd below the x-axis about the x-axis. The graph of f s x d will reflect the part of the graph of f sxd left of the y-axis about the x-axis. || y 67. 100 1 1 x 3 x 3 2 1 0 3 12 0 1 January, November, December 55. 57. y 69. f sxd 5 y 1 4 1 1 sin px 1 sin 3px 1 sin 5px 1 . . . p 3 5 2 3 2 2 1 1 −1 x 3 x 1 3 3 2 2 −2 59. 61. y APPENDIX E (page E6) y 2 1. 1 sy9d2 sx9d2 2 51 2 2 x 2 y y 2 2 3 2 y x y 2 1 p 63. a 5 3, b 5 , c 5 2 2 sx9d2 sy9d2 2 51 1y4 1y6 x 2 1 3. 45 x 2 x 2 θ 2 4 θ 45 2 4 x Ans-4 5. Answers to Odd-Numbered Exercises s x9 2 3!2d 2 2 s y9 2 !2 d2 5 1 16 31. Two lines 33. Proof y 16 3 y x 2 8 1 y 4 45 4 8 1 2 3 −1 x 4 x −1 θ 4 7. APPENDIX F (page F10) sx9d2 sy9d2 1 51 3 2 9. x9 5 2 sy9d2 1. 11 2 i 9. y y y x y 2 45 4 60 2 x 2 11. 22!3 25. 34 x θ 6 2 4 35. 16 41 1 20 41 i 41. 9 2 1681 13. u 5 458 1 −2 −1 −1 −6 6 y θ 53.13 2 57. 25i 45. 62 949 1 297 949 i 5 3 51. 2 2 , 2 2 1 !11 ± i 8 8 53. 59. 2375!3i 61. i Imaginary axis 1 2 3 4 Real axis 5 −4 + 4i 4 −2 3 −3 2 −4 −4 1 −5i −5 x 4 39. 27 2 6i 1 5 43. 2 2 2 2 i 1 49. 22 ± 2 i 23. 210 33. 26i 31. 8 Imaginary axis 6 2 15. 5 1 i 65. 4!2 4 x 1 45 i 63. 5 y 4 3 5 37. 55. 21 1 6i sx9d2 x9 11. y9 5 2 6 3 29. 400 40 1681 i 7. 214 1 20i 13. 210 21. 29 1 40i 19. 24 27. 9 47. 1 ± i 2 5. 3 2 3!2i 3. 4 1 76 i 17. 12 1 30i x θ 2 1 6 −5 −4 −3 −2 −1 −1 −6 4 1 Real axis 2 15. u < 26.578 1 67. !85 17. u < 31.728 69. 3!2 cos 4 4 Imaginary axis −6 6 −6 6 Imaginary axis 2 4 6 Real axis 8 −2 21. Ellipse 23. Hyperbola 25. Parabola y 1 y 6 − 7i 71. 2 cos 2 −3 3 − 3i 2 3 2 1 73. 4 cos 4p 4p 1 i sin 3 3 2 1 1 2 2 −4 1 −3 −2 Real axis −1 3+i 1 3 2 −2 −1 1 −1 2 Imaginary axis x x 1 p p 1 i sin 6 6 Imaginary axis 1 1 Real axis −2 −8 2 2 3 29. Two parallel lines 3 3 2 −1 −6 27. Two lines 1 −4 −4 −4 19. Parabola 7p 7p 1 i sin 4 4 2 Real axis −3 −2 (1 + 3i) −4 2 Ans-5 Answers to Odd-Numbered Exercises p p 1 i sin 2 2 1 75. 6 cos 2 3 Imaginary axis Imaginary axis 8 1 −3 2 2 −2 4 −2 Real axis 6 −1 Real axis 1 (c) 1 1 !3i, 2 !3 1 i, 21 2 !3i, !3 2 i −1 Imaginary axis Imaginary axis 3.75 cos 34π + i sin 34π ( 1 −1 1 1 87. 24 2 4i 2 −4 6 4 2 −6 4 −2 Real axis 6 −4 −6 −3 −2 Real axis −1 −1 85. 89. 232i 10 scos 2008 1 i sin 2008d 9 91. 2128!3 2 128i 95. (a) !5 scos 608 1 i sin 608d !5 scos 2408 1 i sin 2408d 93. i p p 1 i sin 8 8 5p 5p cos 1 i sin 8 8 9p 9p cos 1 i sin 8 8 13p 13p cos 1 i sin 8 8 1 p5 1 i sin p5 2 3p 3p 31cos 1 i sin 2 5 5 103. 3 cos 101. cos 3scos p 1 i sin pd 1 75p 1 i sin 75p2 9p 9p 31cos 1 i sin 2 5 5 3 cos Imaginary axis Imaginary axis (b) Imaginary axis 1 3 (cos 300° + i sin 300°) 2 p p 1 i sin 2 2 (b) 2 Real axis 2 ( −1 83. 12 cos 1 49p 1 i sin 49p2 10p 10p 1 i sin 51cos 9 9 2 16p 16p 1 i sin 51cos 9 9 2 99. (a) 5 cos 215!2 15!2 1 i 81. 8 8 3 3!3 i 79. 2 4 4 −2 Real axis −3 2 −2 3 1 4 −4 −1 2(cos 150 ° + i sin 150°) 6i 6 Imaginary axis (b) 77. 2 !3 1 i 2 Imaginary axis 3 4 Real axis 1 −3 −1 1 3 −2 Real axis 2 −2 −4 −2 2 4 Real axis −3 −4 (c) !5 2 1 !15 2 i, 2 !5 2 p p 97. (a) 2 cos 1 i sin 3 3 1 2 2 1 4p 4p 1 i sin 3 3 2 1 11p 11p 1 i sin 6 6 1 2 cos 2 2 5p 5p 2 cos 1 i sin 6 6 2 cos !15 i 1 p2 1 i sin p2 2 7p 7p 41cos 1 i sin 2 6 6 11p 11p 41cos 1 i sin 6 6 2 105. 4 cos 6 2 scos 1058 1 i sin 1058d 107. ! 6 2 scos 2258 1 i sin 2258d ! 6 2 scos 3458 1 i sin 3458d ! Imaginary axis 2 Imaginary axis 2 5 −2 3 2 1 −5 3 −2 −3 −5 5 Real axis 2 −2 Real axis
© Copyright 2026 Paperzz