2.1 Trigonometric Definition: For any acute angle f), (00 Hyp < f) < Functions of Acute Angles 900), in standard position Opp f) Adj 1. sinB =Opp 2. Hyp cscB= Hyp Adj 4. Ad' cosB=-lJHyp 3. tanB= Opp Adj 5.secB= Hyp Adj 6. cotB Ad" = _lJ_ Opp Examples. be a right triangle with b 1. Let~ABC trigonometric = 7 and c = 12, labeled in the usual manner. Find the six function values of angle A. B c=12 AF-- -----'C b=7 Solution: a 2 + b2 = c' a2 +72 =122 a2 +49 = 144 c a2 =144-49 = 12 a2 =95 a=J95 b=7 . A .Opp J95 =--=-Hyp 12 SIn cscA= Hyp =~= Opp J95 Adj cosA=--=Hyp 12J95 95 7 12 secA = Hyp = 12 Adj 7 _ Opp _ J95 tan A -----Adj 7 cot A = Adj Opp =_7_= 7J95 J95 95 2. Let6ABC be a right triangle with trigonometric a = 5 and b = 9, labeled in the usual manner. Find the six function values of angle B. B c a=S A C b=9 2 2 Solution: a + b = c' 52 + 92 = c2 25+81 = c2 c =~106 sinA= Opp =_9_= Hyp ~106 9M6 106 cosA = Adj = _5_ = 5M6 Hyp ~106 106 cscA = Hyp = ~106 = 12../95 Opp 9 95 tan A see A = Hyp = ~106 Adj 5 0 Derivation of the Trigonometric Function Values of 30 , 450, and 600 Suppose h2 + 12 tJ. ABC is an equilateral triangle with sides of length 2. = 22 h2 + 1 = 4 h2 =3 h=J3 sin 60° = ° 1 cos600 =-, 2 J3 2 ' 2 csc60 =-=-- J3 . 300 =1 Sill 2' 2J3 3' tan600 = ° sec60 =2 J3 cos300 =-, 2 csc300 = 2, see 30° = ~ J3 = 2J3 3' J3 cot 600 = _1_ = , J3 J3 3 = Opp = 2. Adj 5 Adj cotA=--=Opp 5 9 SupposeD ABC is an isosceles right triangle with legs of length B oM.=1 A~C b=l a2 +b2 e+ 12 =c = c2 2 c2 =2 c=J2 sin 450 = _1_ csc45° J2 = J2, = J2 cos-l S" = _1_ = J2 see 45° = J2, 2' J2 tan450 = 1 2' cot 45° = 1 3. Find the lengths of the unknown sides of the given figure . . 450 =a Solution: Sill q J2 a --- 2 7 7-13 -13 3 qJ2 =2a m=-=-sin600 2 =2 q=-a J2 a -13 7 2 a -=- 2J2 q=--a 2 -I3a = 14 14-13 a=-- q q=J2a q = J214-13 = 14.J6 3 3 14-13 n=a=-- 3 3 Cofunction Identities: For any acute angle A B c sin A = a and cos(900 - A) c =!!.c so sin A = cos (90° - A) = cos (90° - A) cos A = sin (90° - A) tan A = cot (90° - A) cscA = sec(900 - A) see A = csc(900 cot A = tan (90° - A) sin A sin 27° in terms of its cofunction. 4. Write sin 27° = cos (90° - 27° ) Solution: = cos63° 5. Solve sec( B + 10°) = csc( 2B + 20°) for B B + 10° + 2B + 20° = 90° 3B+300 =90° 3B = 60° B=20o 6. Solve sin (B - 20° ) = cos ( 2B + 5° ) B-200 +2B+5° =90° 3B-15° = 90° 3B = 105° B=35° - A)
© Copyright 2026 Paperzz