Hansenula polymorpha as a new promising organism for high temperature alcoholic fermentation of lignocellulose sugars Andriy A. Sibirny1,2 1Institute of Cell Biology, NAS of Ukraine, Lviv, Ukraine 2Department of Metabolic Engineering, Rzeszow University, Poland Glucose and xylose are the main components of agricultural residues Corn fiber glucose Corn cobs xylose Soybean stalks galactose Peanut hulls arabinose mannose Sunflower stalk Wheat straw 0 10 20 30 40 50 60 Percentage of total dry weight 70 80 Agricultural and wood wastes can be major income sources Harvest residues are significant resources. Processing residues are particularly economical. Fermentation to ethanol is technically feasible. The conversion process is becoming economical. Bioconversion adds value to farm products. Reasons for research Xylose is a prevalent sugar in fast growing hardwoods and agricultural residues Its utilization is essential for the conversion of lignocellulosic residues to fuels and chemicals Yeasts are among the best organisms for producing ethanol and other products by fermentation Lignocelulose Preliminary treatment: grinding, steaming, weak acid treatment Simultaneous saccharification and fermentation (enzymatic hydrolysis and ethanol fermentation) 500С Acid hydrolysis Ethanol fermentation 300С Ethanol Reasons for study of the yeast Hansenula polymorpha as a fermenter of lignocellulose sugars H. polymorpha is a thermotolerant yeast. Its maximal growth temperature is 49 – 50O C. It is able to ferment xylose to ethanol at elevated temperatures. Efficient fermentation at high temperatures is important for development of the Simultaneous Saccharification and Fermentation (SSF) technology. H. polymorpha is among the best yeasts for producing ethanol from xylose Xylose Xylose is the second most abundant sugar in nature This yeasts have a complete xylose metabolic pathway They can convert xylose to ethanol XOR NAD(P)H [Xylitol] XDH NAD Xylulose XUK ATP Xylulose-5-P Glucose Xylose Hxk1, Hxk2 Glk1 G6pd Glucose-6-P 6-phosphoglucono-δ-lactone Xor Pgi1 Fructose-6-P Pfk1, Pfk2 Fbp1 Ribulose-5-P Rki1 Fba1 Ribose-5-P Glyceraldehyde-3-P G3pdh Glyceraldehyde-3-P Pgk Fructose-6-P + Gpm1 2-P-glycerate Eno1, Eno2 NAD NADH Phosphoenolpyruvate Glyceraldehyde-3-P Acetate Pdc1, Pdc5 Acetaldehyde Dha1 Xylulose-5-P Sedoheptulose-7-P Erythrose-4-P Tkl1,Tkl2 Pathways of glucose and xylose fermentation in yeasts Pyk1 Acs1, Acs2 Xks Tal1,Tal2 3-P-glycerate Acetyl-CoA Xylulose Rpe1 Tkl1,Tkl2 1,3-bisphospho glycerate Pyruvate Xid 6Pg1, 6Pg2 Fructose-1,6-dP Pdh Xylitol 6-phosphogluconate Adh1, Adh2 Ethanol Scheme of mixed culture alcoholic fermetation using pet- S. cerevisiae and gcr1 H. polymorpha Saccaromyces yeast culture Ethanol Fermenter Catalytic convertor Methylotrophic yeast culture Saccaromyces yeast Methylotrophic yeast Chemical catalysis Glucose Ethanol Acetaldehyde Acetaldehyde Ethanol Acetaldehyde Ethanol Medium Glucose Ethanol Selection of the H. polymorpha gcr1 mutants UVmutagenesis Selection 33 (gcr1) UVmutagenesis Selection 7-4A (gcr1 EAO) 33 (gcr1) 22 (leu10) 2-dGlc + Mth Staining of the colonies for a highest AO-activity in the presence of NaN3 Mutants H. polymorpha gcr1 defective in glucose repression of alcohol oxidase EAO2 Gcr1-GFP AO activity, U/mg 1 мкм 6 5 4 3 2 1 0 Glc Mth Glc Mth Glc 22 wt 7-4А C-105 H.pol. strains - growth substrate Concentration, g/l Ethanol and acetaldehyde formation during mixed cultivation of pet- S.cerevisiae and gcr1 H. polymorpha in glucose (2%) medium 20 Glucose 15 Ethanol in medium 10 Acetaldehyde in medium Evaporated ethanol Evaporated acetaldehyde 5 0 0 5 10 15 20 25 AOX activity i cells, u/mg Time, h. 1,5 1 0,5 0 0 5 10 15 20 25 Time, h. Acetaldehyde formation by Hansenula polymorpha gcr1 mutant 7-4A in the glucose (2%) containing medium 3 1 0,9 Concentration, g/l 0,7 Ethanol in medium 0,6 Acetaldehyde in medium 0,5 Evaporated ethanol Evaporated acetaldehyde 0,4 0,3 0,2 Concentration, g/l 2,5 0,8 Ethanol in medium 2 Acetaldehyd e in medium Evaporated ethanol 1,5 Evaporated acetaldehyde 1 0,5 0,1 0 0 0 10 20 300C 30 40 50 Time, h. 0 10 20 30 370C 40 50 Time, h. 2 0,5 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0 1,8 Ethanol in medium Acetaldehyde in medium Evaporated ethanol Evaporated acetaldehyde 1,6 Concentration, g/l Concenration, g/l Acetaldehyde formation by Hansenula polymorpha gcr1 mutant 7-4A in the xylose (2%) medium 1,4 Ethanol in medium 1,2 Acetaldehyde in medium 1 0,8 Evaporated ethanol 0,6 Evaporated acetaldehyde 0,4 0,2 0 0 10 20 300C 30 40 50 Time, h. 0 20 40 370C 60 Time, h. Ethanol formation by different Hansenula polymorpha strains (100h) 10 9 Glucose Xylose Maltose Mannose Cellobiose Galactose L-arabinose Ethanol, mg/ml 8 7 6 5 4 3 2 1 0 KT2 356 ML6 ML3 ML8 ML9 CBS 4732 N95 1,2 14 12 1 Biomass, mg/ml Productivity of fermentation, mg of ethanol/mg of biomass Growth and fermentation of glucose and xylose of riboflavin-deficient H. polymorpha strain 10 0,8 Glucose Xylose 0,6 0,4 0,2 0 0 20 40 60 80 100 Riboflavin concentration, mg/ml 8 Glucose Xylose 6 4 2 0 0 20 40 60 80 100 Riboflavin concentration, mg/ml Method of screening of mutants with enhanced fermentation activity S. cerevisiae UV-treated H. polymorpha or P. stipitis yeast colony Mineral medium with 0,53% of xylose S. cerevisiae suspension Maximal ethanol production in the medium with xylose (2%) of the H. polymorpha wild-type strain and the mutants producing elevated amounts of ethanol within 60 h. of incubation 2,5 Ethanol, mg/ml 2 1,5 1 0,5 0 WT S1 S2 S3 S4 S5 S6 S7 S8 S9 Yeast strain * WT – wild type CBS4732 Xylose fermentation rates by wild type strains of H. polymorpha and P. stipitis Ethanol, g/l 300C 370C 20 5 0 CBS6054 CBS6054 Pichia stipitis KT2 #356 CBS4732 Hansenula polymorpha ML3 Xylose fermentation by the Hansenula polymorpha and Pichia stipitis strains at high temperatures 0.04 0.035 480C 370C 300C 500C Hp – H. polymorpha NCYC495 leu1-1 0.03 Fermentation productivity, g ethanol/g biomass/hour. Ps – P. stipitis CBS6054 0.025 HpAAR - NCYC495 leu1-1 AllAlcRes 0.02 HpHSP - NCYC495 leu1-1(HSP104) 0.015 0.01 HpATH - - NCYC495 leu1-1(ΔATH1) 0.005 0 Ps Hp Ps Hp Ps Hp HpAAR Ps Hp HpHSP Hp ATH- Efficient fermentation at high temperatures is important for development of the Simultaneous Saccharification and Fermentation (SSF) technology. Linear schemes of constructs for deletions of the XYL1, XYL2-A and XYL2-B genes of H. polymorpha B Sm KSc RI Sp P H 5’-HpXYL1 K RI Sl 3’-HpXYL1 ScLEU2 ORI P Sc 5’-HpXYL2-A K ORI bla p19L2LRA (~7.5 kb) lacZ Sp H Sl 3’-HpXYL2-B lacZ CaADE2 bla pLV2 (~8.8 kb) Sm K ORI 5’-Hp XYL2-B Nt Nt ZeoR Sl H 3’- HpXYL2-B lacZ bla pLR-260-Z (~7 т.п.н.) Linear schemes of plasmids carrying bacterial xylA genes under the H. polymorpha GAP promoter B HpGAPpr ORI H H Sc Bg HpAOXtr Ec XylA ORF K RI LEU2 Err pScoel (9 kb) 1.3 kb 3.2 kb B ORI H H HpGAPpr Scoel XylA ORF 1.2 kb 3.1 kb Sc Bg HpAOXtr K RI LEU2 Err pEc ( 8.9 kb ) Linear scheme of the plasmid pGLG61_xylAEc for multicopy integration into H. polymorpha genome H H Xb RI B bla HpAOX tr Ec xylA ORF Hp GAP pr Sc LEU2 GAP pr P APH TEL188 ORI pGLG61_XylAEc ~ 9 т.п.н. S. cerevisiae genome fragment containing the LEU2 gene is shown as grey box; fragment containing the HpGAP promoter: yellow box; fragment containing the HpAOX terminator: blue box; fragment containing the ORF of E. coli xylA gene: red box; fragment containing the TEL188 telomeric fragment: black box; the APH gene of E. coli under control of the truncated GAP promoter of H. polymorpha are shown as violet and green boxes, respectively; the bacterial part: thin line. Restriction sites: H, Hind III;; RI, EcoR I; B, BamH I; Xb, XbaI; P, PstI. Growth and xylose isomerase activity of the H. polymorpha Δxyl1 transformants containing bacterial E. coli and S. coelicolor xylA genes 70 XI activity, U/mg prot. Biomass, mg/ml 3 2,5 2 1,5 1 0,5 0 1 2 3 4 5 6 Growth in the liquid minimal medium with 4% xylose as a sole carbon source: 1-Δxyl1 2, 3 - Δxyl1(pEc) 4,5 - Δxyl1(pScoel) 6 – CBS4732 leu2-2 60 50 40 30 20 10 0 1 2 3 4 5 Xylose isomerase activity: 1-Δxyl1 2, 3 - Δxyl1(pEc) 4,5 - Δxyl1(pScoel) 6 – E. coli 6 Growth and xylose isomerase activity of the H. polymorpha Δxyl1 Δxyl2-A transformants containing bacterial E. coli xylA gene 3,5 XI activity, U/mg prot. 35 Biomass, mg/ml 3 2,5 2 1,5 1 0,5 0 1 2 3 4 5 30 25 20 15 10 5 0 6 strain Growth in the liquid minimal medium with 4% xylose as a sole carbon source: 1 - Δxyl1, 2 - Δxyl1 Δxyl2А 3, 4, 5 - transformants Δxyl1Δxyl2А(pGLG_xylAEc) 6 - CBS 4732 leu2-2 1 2 3 4 5 The xylose isomerase activity: 1 - Δxyl1, 2 - Δxyl1 Δxyl2А 3, 4, 5 - transformants Δxyl1Δxyl2А(pGLG_xylAEc) 6 - E. coli strain Isolation of the spontaneous large colonies among the H. polymorpha transformants Δxyl1Δxyl2A(pGLG_xylAEc) Growth analysis of the large colonies in the liquid medium with 2 % xylose YNB + 1 % xylose Spontaneous large colonies of the transformants Δxyl1Δxyl2A(pGLG_xylAEc) Xylose isomerase activity assay Determination of ethanol production during xylose fermentation Growth of the H. polymorpha strains in the minimal medium with 2 % xylose at 37о С; 5 days Biomass, mg/ml 16 14 12 10 8 6 4 2 0 1 2 3 4 5 6 7 8 9 10 11 strain 1 - CBS 4732 leu2-2 2 - Δxyl1 Δxyl2-A 3 - transformant Δxyl1Δxyl2-A(pGLG61_xylAEc) 4 – 11 – large clones of the transformant Δxyl1Δxyl2-A(pGLG61_xylAEc) Alcoholic xylose fermentation by the H. polymorpha Δxyl1 Δxyl2-A(pGLG_xylAEc) strains at 370C CBS4732 leu2-2 0,6 Ethanol, g/l 0,5 Δxyl1Δxyl2-A 0,4 Δxyl1 Δxyl2-A/pGLG-xylAEc #4S 0,3 Δxyl1 Δxyl2A(pGLG_xylAEc) #4L3 0,2 0,1 Δxyl1 Δxyl2-A/pGLG-xylAEc #4L4 0 0 0,5 1 Days 1,5 2 Δxyl1 Δxyl2-A/pGLG-xylAEc #4L5 Xylitol dehydrogenase activities of the H. polymorpha Δxyl1 Δxy2-A and Δxyl1 Δxy2-A Δxy2-B mutants XDH activity, U/mg 0,3 0,25 0,2 0,15 0,1 0,05 0 1 2 3 1- СBS 4732 leu2-2 (control) 2- Δxyl1 3- Δxyl1 Δxy2-A 4,5- Δxyl1 Δxy2-A Δxy2-B 4 5 Xylose Glucose The aim: To clone the H.polymorpha PDC1 gene coding for pyruvate decarboxylase and put the gene under the strong constitutive promoter (HpGAPpr) Pyruvate PDH complex PDC Acetyl-CoA Acetaldehyde CO2 CO2 Ethanol Linear scheme of the plasmid carrying the HpPDC1 gene under the HpGAP promoter B Nt H Nd ORI HpGAP_pr HpPDC1_ORF HpAOX_tr ScBg K RI Er r ScLEU2 pKO8_prGAP_PDC1Hp ~8.6 kb The linear scheme of the plasmid pKO8_prGAP_PDC1Hp (~ 8.6 kb). The LEU2 gene of S. cerevisiae is shown as grey box; fragment containing the promoter of the HpGAPDH gene is shown as yellow box; fragment containing the terminator of the HpAOX gene: blue box; the ORF of the H. polymorpha PDC1 gene is shown as red box. Restriction sites: B, BamH I; K, Kpn I; RI, EcoR I; Bg, BglII; Sc, Sac I; Nd, NdeI; Nt, NotI; H, Hind III. Effect of the PDC1 gene overexpression on ethanol production during xylose fermentation of protein PDC activity, u/mg Specific activity of pyruvate decarboxylase (Pdc1p) and ethanol production 16 14 12 10 8 6 4 2 0 1-495-3Leu+ 1 2 2-495-PDC1Hp-4 1,2 Ethanol, g/l 1 0,8 YNB + 8 % xylose 0,6 37 ºC, 100 rpm 0,4 54 hours 0,2 0 1 2 The double replacement (Lys Arg Asn Asp) results in preference of the modified xylose reductase for NADH over NADPH Ctn 233 ALNTPTLFAHDTIKAIAAKYNKTPAEVLLRWAAQRGIAVIP K S N LPERLVQNRSFNTFDL Dhn 228 ALDTPTLFEHKTIKSIANKNKKTPAQVLLRWASQRNIAVIP K S N NPDRLLQNLEVNDFDL Hpl 300 AKNTVSLLKHDLINSIASAHKVTPAQVLLRWATQRDILVIP K S N QKERLVQNLKVNDFNL 341 K (Lys) R(Arg) 343 N(Asn) D(Asp) Ctn – Candida tenuis Dhn – Debaryomyces hansenii Hpl – Hansenula polymorpha 341 343 Linear scheme of the plasmid pX1M carrying the modified HpXYL1 gene under the HpGAP promoter APH B HpGAPpr lacZ MCS Sc ORF HpXYL1M HpAOXtr MCS lacZpr Ethanol production by the CBS 4732 strain and Δxyl1(pX1M) transformants; 2 day fermentation, min. medium, 370C 0,133 Ethanol production, mg/mg biomass 0,14 0,108 0,12 0,1 0,08 0,05 0,06 0,04 0,02 0 CBS4732 1a 1b Strain H. polymorpha Alcoholic xylose fermentation by the H. рolymorpha strains unable to utilize ethanol 3 Ethanol, g/l 2,5 2 NCYC495leu1-1 2Eth495 2-3Eth-(AllAlc) 495 2-4Eth-(AllAlc) NCYC495leu1-1 1,5 1 0,5 0 0 20 40 60 80 100 Time, h. Minimal medium 12 % xylose; 48ºС. The strains were selected as resistant to allyl alcohol (0.2мМ). Strategies for improvement of fermentation characteristics in H. polymorpha Overexpression of genes conferring ethanol and temperature tolerance HSP genes OLE1 OLE2 ATH1 Overexpression of genes for pentose metabolism Evolutionary engineering and direct selection of ethanol overproducers XYL3 RPE1 TAL1 TKL1 RKI1 Acknowledgement Dr. Andriy Voronovsky Dr. Oleh Stasyk Kostyantyn Dmutruk Olena Ryabova Olena Ishchuk Olena Verba Olga Rohulya Yuriy Dem’yanchuk Institute of Cell Biology, Nat. Acad. Sci., Lviv, UKRAINE Dr. Charles A. Abbas Archer Daniels Midland Company Research Center, Decatur, IL, USA. Thank you for your attention!
© Copyright 2026 Paperzz