S EMINAR NOTES 4 (2. 11. 2011) Compute the following limits. 1. 2n2 C n 3 ; n!1 n3 1 2n5 C 3n 2 ; n!1 n5 3n3 C 1 lim 2n3 C 6n : n!1 n3 7n C 7 lim lim 2. p f nC1 3. p p p p 1 C 2 C C n n ng; f. 1/ n. n C 1 n/g; nC2 2 3 1 C 22 C C n2 1 C 23 C C n3 ; : n3 n4 n ; n!1 2n lim lim 4. n!1 p n p n lim n!1 5. lim ! an C b n 6. lim . 1/n a > b > 0: for a2n C b 2n p 3 n3 C n lim p 3 n!1 n3 C 2n 7. 2n : n!1 nŠ p n 2n C 4n ; n!1 n ; 2 p 3 n3 C 1 : p 3 n3 C n p n3 n n p : n3 C 2n n .n C 4/100 .n C 3/100 : n!1 .n C 2/100 n100 lim 8. lim n!1 9. 3n C n5 ; n!1 n6 C nŠ lim 10. p n n2 C n3 C n4 C 2n C 3n C 4n : lim p 3 n!1 p 3 nC1 p 4 n; lim n!1 p lim .n2 C sin.n C 1//. n4 C 2 p n!1 nC2 p 3 nC3 p 4 nC1 : p 3 n n4 C 1/: 11? . 3 5 2n 1 1 C 2 C 3 C C ; lim n!1 2 2 2 2n 1 1 1 1 lim 1 1 1 1 : n!1 22 32 42 n2 12. p p 3 n2 C 7 3 n2 C 1 lim ; p p 3 3 n!1 n2 C 6 n2 r 13. Does limn!1 xn exist, where xn D s lim n n!1 ..n C 2/2 ..n C 1/3 q p 2 C ::: 2 ? 2C n square roots 1 .n C 1/2 /nC1 : n3 3n2 /n 1 2 2. S OLUTIONS 1. 0, 2, 2 2. 0, the limit does not exist, 1=2, 1=3, 1=4 3. 0, 4, 0 4. 1=a 5. First we write p 3 n3 C n p 3 n3 C 2n p 3 n3 C 1 p 3 n3 C n 1 D 1 .n3 C n/ 3 .n3 C 1/ 3 1 1 .n3 C 2n/ 3 .n3 C n/ 3 2 1 1 2 2 1 1 2 .n3 C n/ 3 C .n3 C n/ 3 .n3 C 1/ 3 C .n3 C 1/ 3 .n3 C n/ 3 C .n3 C n/ 3 .n3 C 1/ 3 C .n3 C 1/ 3 2 1 1 2 2 1 1 2 .n3 C 2n/ 3 C .n3 C 2n/ 3 .n3 C n/ 3 C .n3 C 1/ 3 (1) .n3 C 2n/ 3 C .n3 C 2n/ 3 .n3 C n/ 3 C .n3 C 1/ 3 D n 1 2 1 2 1 .n3 C 2n/ 3 C .n3 C 2n/ 3 .n3 C n/ 3 C .n3 C n/ 3 2 1 1 2 n .n3 C n/ 3 C .n3 C n/ 3 .n3 C 1/ 3 C .n3 C 1/ 3 2 1 1 2 2 1 1 2 1 .1 C n2 / 3 C .1 C n2 / 3 .1 C n2 / 3 C .1 C n2 / 3 D 2 1 1 2 n .1 C n12 / 3 C .1 C n12 / 3 .1 C n13 / 3 C .1 C n13 / 3 p p 3 n3 C n 3 n3 C 1 D 1: It follows lim p p 3 n!1 3 n3 C 2n n3 C n 6. We start with the following limit p n3 n n lim p : n!1 n3 C 2n n We have p p n n n3 n n lim 3 D lim p q np D 1: 2n n!1 n C n!1 n n 1C n6 p We used thorem on arithmetics of limit and limn!1 n n D 1. From above and from theorem on limit of subsequence we get p p .2n/3 2n 2n .2n C 1/3 2nC1 2n C 1 lim a lim D 1: p D1 p n!1 .2n/3 C 4n 2n n!1 .2n C 1/3 C 4nC2 2n C 1 p n3 n n This gives that lim . 1/n 3 p does not exist. n!1 n C 2n n 7. We have ! ! 100 100 X 100 100 j j X 100 100 j j 100 100 .n C 4/ .n C 3/ D n 4 n 3 j j j D0 j D0 ! 100 X (2) 100 100 j j D n .4 3j / D 100n99 C P1 .n/I j n j D0 100 .n C 2/ 100 n D 200n99 C P2 .n/; where P1 ; P2 are polynomials of degree less than 99. We have P1 .n/ D 0; n!1 n99 lim P2 .n/ D 0: n!1 n99 lim 3 We get 100 C .n C 4/100 .n C 3/100 D lim 100 100 n!1 n!1 .n C 2/ n 200 C lim P1 .n/ n99 P2 .n/ n99 D 1=2: 2n D C1. This implies that there exists n0 2 N such n!1 nk 8. We know that for each k 2 N it holds lim that 8n 2 N; n n0 W n2 n3 n4 2n 3n 4n : Thus we have p p n n 8n 2 N; n n0 W 4 n2 C n3 C n4 C 2n C 3n C 4n 4 6: p n We know that lim 6 D 1 and therefore according to sandwich theorem we get n!1 p n n2 C n3 C n4 C 2n C 3n C 4n D 4: lim n!C1 9. 0; 0; 0 10. We have p lim .n2 C sin.n C 1// . n4 C 2 n!1 p n4 C 1/ p p p n4 C 2 C n4 C 1 n4 C 1/ p p n!C1 n4 C 2 C n4 C 1 1 C sin.nC1/ n2 C sin.n C 1/ n2 D lim p : D lim q q p n!C1 n!C1 2 n4 C 2 C n4 C 1 1 C n4 C 1 C n14 p D lim .n2 C sin.n C 1// . n4 C 2 We have 8n 2 N W j sin.n C 1/j 1, limn!1 n12 D 0, p is continuous on its domain. D 0. This, (3) and arithmetics of limit we get From (1) and (2) it follows limn!1 sin.nC1/ n2 p p 1 lim .n2 C sin.n C 1// n4 C 2 n4 C 1 D : n!1 2 11. 3, 1=2 12. 1, 2=3 13. 2 (3)
© Copyright 2026 Paperzz