MATHEMATICS 201-NYC-05 Vectors and Matrices Martin Huard Fall 2015 XV - Vector Spaces and Subspaces 1. Describe the zero vector (the additive identity) for the following vector spaces. a) 4 b) C , c) M 2,3 d) P3 e) V x, y : x, y , x 0 with the following operations : x1 , y1 x2 , y2 x1 x2 , y1 y2 k x1 , y1 x1k , ky1 2. Describe the additive inverse of a vector for the following vector spaces. a) 4 b) C , c) M 2,3 d) P3 e) V x, y : x, y , x 0 with the following operations : x1 , y1 x2 , y2 x1 x2 , y1 y2 k x1 , y1 x1k , ky1 3. Determine whether the given set, together with the indicated operations, is a vector space. If it is, prove that each axiom is satisfied, if it is not, identify the axioms that fail. a) M 2,3 with standard operation 3 b) with standard operation c) P3 with the standard operation d) The set x, y : x 0, y 0 with standard operations a 1 e) The set of all 2 2 matrices of the form with standard operations 1 b f) The set ax5 : a . g) 2 with the following operations : x1 , y1 x2 , y2 x1 x2 , y1 y2 x1 , y1 kx1 , y1 with the following operations : x1 , y1 x2 , y2 x1 , 0 k x1 , y1 kx1 , ky1 with the following operations : x1 , y1 x2 , y2 x1 x2 , y1 y2 k x1 , y1 kx1 , ky1 with the following operations : x1 , y1 x2 , y2 x1 x2 , y1 y2 k x1 , y1 k 2 x1 , k 2 y1 k h) 2 i) 2 j) 2 XV – Vector Spaces and Subspaces Math NYC 4. Consider the set V whose only element is moon, that is, V moon . Is this set a vector space under the following operations? moon moon = moon k (moon) = moon for every real number k 5. Determine whether the subset W of 3 , with the standard operations, is a vector space. Justify your answer. (Hint: Show that W is a subspace of 3 ). a) W a, b, 0 : a, b b) W a,1,1 : a c) W a, b, a b : a, b e) W a, b a, b : a, b d) W a, b, ab : a, b g) W x, y , z : 2 x y z 3 0 h) W x, y, z : x 2t , y t , z 5t , t i) W u 3 : u w 2, 1,5 6. Determine whether the subset W Justify your answer. a b a) W : a , b, c , d c d b) W c) W d) W e) W f) W x, y , z : x 2 y z 0 of M 2,2 with the standard operations is a vector space. is the set of 2 2 matrices A such that det( A) 0 is the set of 2 2 symmetric matrices A is the set of diagonal 2 2 matrices. a b : a , b, c 0 c a b : a b c d 0 f) W c d 7. Determine whether the subset W of C , is a subspace of C , . Justify your answer. a) The set of nonnegative functions: f x 0 b) The set of all even functions: f x f x c) The set of all odd functions: f x f x d) The set of all constant functions: f x c , c . e) The set of all functions such that f 0 0 f) The set of all functions such that f 0 1 Fall 2015 Martin Huard 2 XV – Vector Spaces and Subspaces Math NYC ANSWERS 1. a) 0, 0, 0, 0 0 0 0 c) 0 0 0 b) f ( x) 0 d) p( x) 0 0 x 0 x2 0 x3 e) (1,0) b) f x f x 2. a) u u1 , u2 , u3 , u4 -u u1 , u2 , u3 , u4 d) p x a0 a1 x a2 x 2 a3 x3 p x a0 a1 x a2 x 2 a3 x3 a11 3. a) Let A a21 e) u x1 , y1 -u 1 x1 , y1 a a13 a c) A 11 12 a21 a22 a23 a12 a13 a - A 11 a21 a22 a23 a13 b b c c b c , B 11 12 13 and C 11 12 13 a22 a23 b21 b22 b23 c21 c22 c23 a11 b11 a12 b12 a13 b13 1. A B is a 2 3 matrix a21 b21 a22 b22 a23 b23 a11 b11 a12 b12 a13 b13 b11 a11 b12 a12 b13 a13 2. A B b a B A a b a b a b b a b a 21 21 22 22 23 23 21 21 22 22 23 23 a12 a13 b11 c11 b12 c12 b13 c13 a 3. A B C 11 a21 a22 a23 b21 c21 b22 c22 b23 c23 a12 a11 b11 c11 a12 b12 c12 a13 b13 c13 a21 b21 c21 a22 b22 c22 a23 b23 c23 a11 b11 c11 a12 b12 c12 a13 b13 c13 = a21 b21 c21 a22 b22 c22 a23 b23 c23 a12 b12 a13 b13 c11 c12 c13 a b = 11 11 a21 b21 a22 b22 a23 b23 c21 c22 c23 = A B C a11 a12 a13 0 0 0 4. A 023 a21 a22 a23 0 0 0 a 0 a12 0 a13 0 a11 11 a21 0 a22 0 a23 0 a21 Fall 2015 Martin Huard a12 a22 a13 A a23 3 XV – Vector Spaces and Subspaces Math NYC a11 a12 a13 a11 a12 a13 5. A A a21 a22 a23 a21 a22 a23 a12 a12 a13 a13 0 0 0 a a 11 11 a21 a21 a22 a22 a23 a23 0 0 0 023 ka 6. kA 11 ka21 ka12 ka22 ka13 is a 2 3 matrix ka23 k a11 b11 k a12 b12 k a13 b13 7. k A B k a21 b21 k a22 b22 k a23 b23 ka kb11 ka12 kb12 ka13 kb13 11 ka21 kb21 ka22 ka22 ka23 ka23 kA kB k l a11 k l a12 k l a13 8. k l A k l a21 k l a22 k l a23 ka la11 ka12 la12 ka13 la13 11 ka21 la21 ka22 la22 ka23 la23 kA lA k la11 k la12 k la13 9. k lA k la21 k la22 k la23 kl a11 kl a21 kl A kl a12 kl a13 kl a22 kl a23 1a11 1a12 1a13 a11 10. 1A 1a21 1a22 1a23 a21 a13 =A a23 a12 a22 b) Let u u1 , u2 , u3 , v v1 , v2 , v3 and w w1 , w2 , w3 1. u v u1 v1 , u2 v2 , u3 v3 3 2. u v u1 v1 , u2 v2 , u3 v3 v1 u1 , v2 u2 , v3 u3 v u 3. u v w u1 v1 v1 , u2 v2 w2 , u3 v3 w3 u1 v1 w1 , u2 v2 w2 , u3 v3 w3 = u v w 4. u 0 u , u , u 0,0,0 u 0, u 0, u 0 u , u , u u 1 2 3 1 2 3 1 2 3 5. u + -u u , u , u u , u , u u u , u u , u u 0,0,0 0 1 Fall 2015 2 3 1 2 3 1 Martin Huard 1 2 2 3 3 4 XV – Vector Spaces and Subspaces Math NYC 6. ku ku1 , ku2 , ku3 3 7. k u v k u1 v1 , u2 v2 , u3 v3 k u1 v1 , k u2 v2 , k u3 v3 ku1 kv1 , ku2 kv2 , ku3 kv3 ku kv 8. k l u k l u1 , k l u2 , k l u3 ku1 lu1 , ku2 lu2 , ku3 lu3 ku lu 9. k lu k lu1 , lu2 , lu3 kl u1 , kl u2 , kl u3 kl u 10. 1u 1u1 ,1u2 ,1u3 u1 , u2 , u3 = u c) Let p( x) a3 x3 a2 x 2 a1 x a0 q( x) b3 x3 b2 x 2 b1 x b0 and r ( x) c3 x3 c2 x 2 c1 x c0 1. p( x) q( x) a3 b3 x 3 a2 b2 x 2 a1 b1 x a0 b0 is a 3rd degree polynomial 2. p( x) q( x) a3 b3 x3 a2 b2 x 2 a1 b1 x a0 b0 b3 a3 x3 b2 a2 x 2 b1 a1 x b0 a0 q( x) p( x) 3. p( x) q( x) r ( x) a3 x 3 a2 x 2 a1 x a0 b3 c3 x 3 b2 c2 x 2 b1 c1 x b0 c0 a3 b3 c3 x 3 a2 b2 c2 x 2 a1 b1 c1 x a0 b0 c0 a3 b3 c3 x3 a2 b2 c2 x 2 a1 b1 c1 x a0 b0 c0 = a3 b3 x3 a2 b2 x 2 a1 b1 x a0 b0 c3 x 3 c2 x 2 c1 x c0 = p( x) q( x) r( x) 4. p( x) 0 a3 0 x3 a2 0 x 2 a1 0 x a0 0 a3 x3 a2 x 2 a1 x a0 p( x ) 5. p( x) + -p( x) a3 a3 x3 a2 a2 x 2 a1 a1 x a0 a0 0 x3 0 x 2 0 x 0 0 6. kp( x) ka3 x ka2 x 2 ka1 x ka0 is a 3rd degree polynomial 3 Fall 2015 Martin Huard 5 XV – Vector Spaces and Subspaces Math NYC 7. k p( x) q( x) k a b x 3 a b x 2 a b x a b 3 3 2 2 1 1 0 0 ka3 kb3 x 3 ka2 kb2 x 2 ka1 kb1 x ka0 kb0 ka3 x 3 ka2 x 2 ka1 x ka0 kb3 x 3 kb2 x 2 kb1 x kb0 kp( x) kq( x) 8. k l p( x) k l a3 x3 k l a2 x 2 k l a1 x k l a0 ka3 x3 ka2 x 2 ka1 x ka0 la3 x3 la2 x 2 la1 x la0 kp( x) lp( x) 9. k lp( x) k la3 x3 la2 x 2 la1 x la0 kla3 x 3 kla2 x 2 kla1x kla0 kl p( x ) 10. 1p( x) 1a3 x3 1a2 x 2 1a1 x 1a0 a3 x 3 a2 x 2 a1x a0 = p( x) d) Axiom 5 is not satisfied, there is no -u in the set such that u + -u 0 because -u 1 u u1 , u2 is not in the set. Axiom 6 is not satisfied because if k 0 then ku ku1 , ku2 is not in the set, ku1 and ku2 being <0. a11 1 b11 1 a11 b11 e) Axiom 1 is not satisfied since A B 1 a22 1 b22 2 in the set. 0 0 Axiom 4 is not satisfied since is not in the set. 0 0 is not a22 b22 2 a11 1 Axiom 5 is not satisfied since - A is not in the set. 1 a22 k ka11 Axiom 6 in not satisfied since kA is not in the set if k 1 ka22 k f) Let p( x) ax5 , q( x) bx5 and r( x) cx5 . 1. p( x) q( x) ax 5 bx 5 a b x 5 is in the set 2. p( x) q( x) a b x 5 b a x 5 q( x) p( x) 3. p( x) q( x) r ( x) ax 5 b c x 5 a b c x 5 a b c x 5 a b x 5 cx 5 = p( x) q( x) r ( x) 4. p( x) 0 a 0 x 5 ax 5 p( x) 5. p( x) + -p( x) a a x 5 0 x 5 0 6. kp( x) kax5 is in the set 7. k p( x) q( x) k a b x5 ka kb x5 kax5 kbx5 kp( x) kq( x) Fall 2015 Martin Huard 6 XV – Vector Spaces and Subspaces Math NYC 8. 9. k l p( x) k l ax5 kax5 lax 5 kp( x) lp( x) k lp( x) k lax5 klax5 kl p( x) 10. 1p( x) 1ax5 ax5 = p( x) g) The set is not a vector space since axiom 8 fails. For example, let k 1, l 2 and u 1,1 . k l u 1 2 1,1 1 21,1 3,1 k u l u 1 1,1 2 1,1 1,1 2,1 3, 2 Thus k l u k u l u . Axioms 4 and 5 also fail. h) The set is not a vector space because axiom 2 fails. For example, let u 1, 2 and v 2,1 . u v 1, 2 2,1 1, 0 v u 2,1 1, 2 2, 0 Thus u v v u . Axioms 4, 5 and 8 also fail. i) Axiom 4 fails since u 0 u1 0, u2 0 0,0 u if u 0 Axiom 5 and 7 also fail. j) Axiom 8 fails k l u k l u1 , k l u2 , k l u3 2 2 2 k 2u1 2klu1 l 2u1 , k 2u2 2klu2 l 2u2 , k 2u3 2klu3 l 2u3 k u 2kl u l u k u l u Axiom 5 also fails. 4. Yes. It is similar to the vector space V 0 . 5. a) Yes 1. u v u1 , u2 , 0 v1 , v2 , 0 u1 v1 , u2 v2 , 0 W 2. ku k u1 , u2 , 0 ku1 , ku2 , 0 W Thus W is a subspace of 3 b) No 1. u v u1 ,1,1 v1 ,1,1 u1 v1 , 2, 2 W c) Yes 1. u v u1 , u2 , u1 u2 v1 , v2 , v1 v2 u1 v1 , u2 v2 , u1 v1 u2 v2 W 2. ku k u1 , u2 , u1 u2 ku1 , ku2 , ku1 ku2 W Thus W is a subspace of 3 d) No 2. ku k u1 , u2 , u1u2 ku1 , ku2 , ku1u2 W since ku1 ku2 k 2u1u2 ku1u2 if k 1. Fall 2015 Martin Huard 7 XV – Vector Spaces and Subspaces Math NYC e) Yes 1. u v u1 , u2 u1 , u2 v1 , v2 v1 , v2 u1 v1 , u2 v2 u1 v1 , u2 v2 W 2. ku k u1 , u2 u1 , u2 ku1 , ku2 ku1 , u2 W Thus W is a subspace of 3 f) Yes If u W then u1 2u2 u3 0 and if v W then v1 2v2 v3 0 . 1. u v u1 , u2 , u3 v1 , v2 , v3 u1 v1 , u2 v2 , u3 vv Since u1 v1 2 u2 v2 u3 v3 u1 2u2 u3 v1 2v2 v3 0 0 0 then u v W . 2. ku k u1 , u2 , u3 ku1 , ku2 , ku3 Since ku1 2ku2 ku3 k u1 2u2 u3 k 0 0 then ku W . Thus W is a subspace of 3 g) No If u W then 2u1 u2 u3 3 and if v W then 2v1 v2 v3 3 . 1. u v u1 , u2 , u3 v1 , v2 , v3 u1 v1 , u2 v2 , u3 vv Since 2 u1 v1 u2 v2 u3 v3 2u1 u2 u3 2v1 v2 v3 3 3 6 then u v W . h) Yes If u W then u 2t , t ,5t and if v W then v 2s, s,5s . 1. u v 2t , t ,5t 2s, s,5s 2t 2s, t s,5t 5s 2 t s , t s ,5 t s W 2. ku k 2t , t ,5t 2kt , kt ,5kt 2 kt , kt ,5 kt W Thus W is a subspace of 3 i) Yes If u , v W , then u w 0 and v w 0 1. u v W since u v w u w v w 0 0 0 2. ku W since ku w k u w k 0 0 Thus W is a subspace of 3 6. a) No. We do not always have closure under scalar multiplication. 1 1 12 1 1 1 1 For a example if k 2 and A= W , then 2 1 1 1 2 1 1 W 1 2 1 2 1 0 0 0 b) No. Let A= and B . Then det A det B 0 so A, B W . 0 0 0 1 1 0 Since det A B 1 , then A B W , so we do not have closure under 0 1 addition. c) Yes. Let A and B be symmetric matrices, AT A and BT B . T 1. A B AT BT A B , hence A B W Fall 2015 Martin Huard 8 XV – Vector Spaces and Subspaces Math NYC 2. kA kAT kA , hence kA W T Hence W is a subspace of M 2,2 . a11 0 b11 0 d) Yes. Let A= and B be in W. 0 a 22 0 b22 0 a11 b11 W 1. A B a22 b22 0 0 ka11 2. kA W 0 ka22 Hence W is a subspace of M 2,2 . a11 a12 b11 e) Yes 1. A B 0 a22 0 a11 a12 ka11 2. kA k 0 a22 0 Hence W is a subspace of M 2,2 . b12 a11 b11 b22 0 ka12 W ka22 a12 b12 W a22 b22 a11 a12 b11 b12 a11 b11 a12 b12 f) Yes 1. A B W since a21 a22 b21 b22 a21 b21 a22 b22 a11 b11 a12 b12 a21 b21 a22 b22 a11 a12 a21 a22 b11 b12 b21 b22 0 a11 a12 ka11 ka12 2. kA k W since a21 a22 ka22 ka22 ka11 ka12 ka21 ka22 k a11 a12 a21 a22 0 Hence W is a subspace of M 2,2 . 7. a) No. We do not always have closure under scalar multiplication. For a example if k 1 , then f ( x) W since f ( x) 0 f g x W since f g x f ( x) g( x) f ( x) g( x) f g x 2. kf ( x ) W since kf ( x) kf ( x) kf x kf x c) Yes. 1. f g x W since f g x f ( x) g ( x) f ( x) g ( x) f g x 2. kf ( x ) W since kf ( x) kf ( x) kf x kf x d) Yes. 1. f g x W since f g x f ( x) g ( x) c d is a constant. 2. kf ( x ) W since kf ( x ) kf ( x ) kc is a constant. e) Yes. 1. f g x W since f g 0 f (0) g (0) 0 0 0 . 2. kf ( x ) W since kf (0) kf (0) k 0 0 . f) No . 1. f g x W since f g 0 f (0) g (0) 1 1 2 . 2. kf ( x ) W since kf (0) k1 k 1 if k 1 . b) Yes. 1. Fall 2015 Martin Huard 9
© Copyright 2026 Paperzz