IM9AdvancedProblemSets ProblemSet1:LinearExpressions,Equations,andSystems 1)Thefiguretotherightshowsthegraphsoftwolines. a) Usethefiguretoestimatethecoordinatesofthepoint thatbelongstobothlines. Thesystemofequationsforthetwolinesis: 4𝑥 + 3𝑦 = 20 3𝑥 − 2𝑦 = −5 b) Whatisthebestwaytosolvethissystemandwhy? c)Solvethesystemusingthemethodyouchoseinparta) 2)Simplifytheexpression𝑘 − 2 𝑘 − 2 − 𝑘 − 2bywritingitwithoutusingparentheses. 3)Confirmthatthefivepointsinthetableontherightalllieonasingleline. Writeanequationfortheline. 4)Thefollowingiscalleda“DiamondProblem.”Thenumbersinsideeach diamondallobeythesamepatternorrule. a)Studythediamondsbelowandexplainwhatyouthinkthepatternis. b) Usethepatternyoudiscoveredinparta)tofillinthediamondsbelow. ProblemSet2:LinearExpressions,Equations,andSystems 1) Ineachofthefollowing,useappropriatealgebraicoperationstoremovetheparenthesesand combineliketerms.Leaveyouranswersinasimpleform. a) 𝑥 2𝑥 + 2(𝑥 + 5) b) 2𝑥 5𝑥 − 2 + 3(6𝑥 + 7) c) 5𝑚 3𝑚 − 2𝑛 + 4𝑛(3𝑚 − 2𝑛) IM9AdvancedProblemSets 2) Sketchagraphof𝒚 + 𝟐 = 𝟐(𝒙 − 𝟒). a) Whatformisthisequationwrittenin? b)Writetheequationinslope-interceptform. 3)Ahorsethiefridingat8mphhasa32-mileheadstart.Theposseinpursuitisridingat10mph. Inhowmanyhourswillthethiefbecaught? 4) Rememberingthepatternyoufoundlastclass,solvethefollowingdiamondproblems. ProblemSet3:LinearEquations,Area 1) Answerthefollowinginvolvinglinearfunctionsandrighttriangles. ! a) Graphtheline𝑦 = − ! 𝑥 + 6.Callthisline𝑙! . b) Findthexandy-interceptsof𝑙! . c) Atriangleisformedby𝑙! ,thex-axisandthey-axis.Findthelengthsofall3sidesofthis triangle. d) Findtheareaofthistriangle. e) Findanequationofthelineparallelto𝑙! thatpassesthroughthepoint 4, 6 .Callthisline 𝑙! .Hint:Usepointslopeform𝑦 − 𝑦! = 𝑚 𝑥 − 𝑥! . f) Findanequationofalineperpendicularto𝑙! thatpassesthroughtheorigin.Callthisline𝑙! . g) Graphlines𝑙! and 𝑙! onthesamegraphas𝑙! . 2) Solvethefollowingdiamondproblems. IM9AdvancedProblemSets ProblemSet4:LinearEquations,PythagoreanTheorem,andSA&V 1) Find the equation of the three lines that form the triangle shown on the right. 2) Solve the following diamond problems: 3)Usethefiguretotherighttoanswerthefollowingquestions aboutthepyramid. a)Findtheslantheight,s,ofthepyramid. b)Findtheheightofthefigureh. ! c)Findthevolumeofthefigure.Recallthat𝑉!"# = ! 𝐵ℎ,whereB istheareaofthebase. d)Thevolumeofthispyramidisone-thirdthevolumeofwhat figure?Drawthefigure. ProblemSet5:LinearFunctions,Equations,Inequalities 1) Whichofthefollowingrepresentlinearfunctionsandwhy? A x 0 3 4 6 y 3 5 7 9 B x -3 -1 1 3 y 10 20 30 40 C x 4 5 7 9 y 0 4 12 20 ! 2) Solve! 3𝑥 + 14 = 7𝑥 + 6byfirstmultiplyingbothsidesoftheequationby3,before applyingthedistributiveproperty.Isthisabetterwaytosolvetheequation?Explain. IM9AdvancedProblemSets 3) Recallthatthesymbol“>”means“greaterthan.Forexample,4 > 2.Ifwewrite𝑥 > 2this means“allnumbersxthataregreaterthan2.Theseareallcalledinequalities. Doesaninequalityoftheform𝑎𝑥 > 𝑏always,sometimesornevergiveasolutionofthe form𝑥 > 𝑐?Giveexamplestosupportyouranswer. 4) Solvethefollowingdiamondproblems: ProblemSet6:LinearFunctions,Domain&Range,andSurfaceArea 1) Ihave120cmofframingmaterialtomakeapictureframe.Theframewillbethemost pleasingtotheeyeifitsheightis2/3ofitswidth.WhatdimensionsshouldIuse? 2) ThefiguretotherightshowsaCUBEthathasbeenhollowed outinthemiddle(meaningyoucanputyourarmthrough themiddleportion,andthereisnotoporbottom).Answer thefollowing: a) Supposethefigurewasnothollowedout,wouldthe surfaceareaofthenon-hollowedoutfigurebelarger thanthesurfaceareaofthefiguretotheright?Explain b) Calculatethesurfaceareaofthefigureontheright. c) Aflyisbuzzingaroundthefigureandwilllandrandomly onthesurface.Whatistheprobabilitythatitwillland insidethehollowedoutmiddle? 3) Findthedomainandrangeofthefollowingfunctions. a. b. IM9AdvancedProblemSets ProblemSet7:Systems,Radicals,andFunctionEvaluation 1) Wheredothelinesx+y=5.5and4x+3.5y=20.75intersect? 2) SimplifythefollowingradicalexpressionsWITHOUTUSINGYOURCALCULATOR. a) 48b) 50 75 c) 72 + 128 3)Twofunctions,f(x)andg(x),aregivenbelow.Evaluateeachfunctionforthegivenvalues.If thefunctioncannotbeevaluated,giveareasonwhy.Recallthatf(2)meanstoplug2intothe equationwhereeveryouseeanx. 𝑥! + 𝑥 ! 𝑓 𝑥 = 𝑔 𝑥 = 𝑥! 𝑥! − 1 −𝑥 a)g(-1)g(0)g(1) b)f(-1)f(0)f(1) 4)SolvethefollowingDiamondProblems IM9AdvancedProblemSets Answers!
© Copyright 2026 Paperzz