Author's Accepted Manuscript Investigations on synthesis, growth and physical characterization of Lithium selenoindate single crystals P. Vijayakumar, M. Magesh, A. Arunkumar, G. Anandha Babu, P. Ramasamy, K.G.M. Nair www.elsevier.com/locate/jcrysgro PII: DOI: Reference: S0022-0248(13)00884-1 http://dx.doi.org/10.1016/j.jcrysgro.2013.12.026 CRYS21970 To appear in: Journal of Crystal Growth Received date: 22 September 2013 Revised date: 11 December 2013 Accepted date: 16 December 2013 Cite this article as: P. Vijayakumar, M. Magesh, A. Arunkumar, G. Anandha Babu, P. Ramasamy, K.G.M. Nair, Investigations on synthesis, growth and physical characterization of Lithium selenoindate single crystals, Journal of Crystal Growth, http://dx.doi.org/10.1016/j.jcrysgro.2013.12.026 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Investigations on synthesis, growth and physical characterization of Lithium selenoindate single crystals P. Vijayakumar a, M. Magesh a, A. Arunkumar a, G. Anandha Babu a, P. Ramasamy a,*, K.G.M. Nair b a Centre for Crystal Growth, SSN College of Engineering, Kalavakkam-603110, Tamilnadu, India. b Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam- 603102, Tamilnadu, India. Abstract Crack free LiInSe2 single crystal with bottom dimension of 8 mm diameter and 10 mm length and top dimension of 12 mm diameter and 22 mm length was grown using modified vertical Bridgman-Stockbarger method with steady ampoule rotation. The grown LiInSe2 crystal was characterized by X-ray diffraction pattern, Rutherford backscattering spectroscopy (RBS) analysis, Thermogravimetric-Differential thermal (TG-DTA) analysis, Optical Transmission and Microhardness measurements. X-ray diffraction pattern gives the orientation of the crystal as <002>. RBS analysis confirms that the composition of the grown crystal is Li0.8In1.16Se2.04. TGDTA analysis confirms that the melting point of the grown crystal is 897.5 ºC. Optical behavior has been assessed by ultraviolet-visible-Near infrared spectroscopy and Fourier transform infrared analysis. LiInSe2 optical band gap energy is 2.72 eV and the cut off wave length is 450 nm. Mechanical behavior has been studied using Vickers Microhardness measurements. Keywords: A1. Characterization; A1. Solidification; A2. Bridgman technique; B1. Lithium compounds; B2. Semiconducting ternary compounds. *Corresponding author Phone: +91-9283105760, +91-44-27475166 E-mail address: [email protected], [email protected] 1. Introduction Crystalmaterialswhichcanworkefficientlyonthewidelytunablecoherentmidinfrared lasersourcesintherangeof320m,speciallyinthebandof35mand814mofthe threeatmospherictransparentwindows,aspectralrangeofimportanceforinfrared(IR)laser technology[1],remainsacontinuingchallenge.Ternarychalcogenideswiththegeneralformula AIBIIICVI2(A=Li,Na,Cu,Ag;B=Al,Ga,In;C=S,Se,Te)areofconsiderableinterestbecauseof theirpotentialoptoelectronicapplicationsaslightemittingdiodes(LED),nonlinearoptical (NLO)devices,detectorsandsolarenergyconverters[2].ThelithiumcontainingAIBIIICVI2type semiconductorsarelittleknownbecauseofdifficultiesofcrystalgrowthcausedbythechemical activitiesoflithiumandvolatilityofthechalcogens.However,lithiumalkalimetalternary semiconductorsareofinterestbecausetheyhavelargerbandgapsthanthecorresponding noblemetalcompounds.ThereisareasonthatmakestheLibasedcrystalsveryattractivefor nonlinearoptics,AgionreplacedbylighterLiionresultsintheincreaseinthefrequenciesin thecrystallatticevibrationsandonDebyetemperature.Itincreasesthethermalconductivity, whichinturn,isaccompaniedbyanincreaseinopticaldamagethreshold.Particularly,LiInSe2 hasexcellentproperties,suchaswidetransparencyrange(0.4513μm),Lowerbandgap(2.86 eV),highNLOcoefficients(11.7pm/V),nearlyisotropicthermalexpansionbehaviorandbeing phasematchableoveralargewavelengthrange[3].Mostrecently,nuclearradiationdetection devicewasfabricatedusingverticalBridgmanmethodgrownLiInSe2singlecrystal[4].Many authors[56]haveinvestigatedtheconditionsofgrowthofthesecrystalsbydirectional solidificationtechnique[79]. Manyreportsareavailableforsynthesis,growthandcharacterizationofLiInSe2crystal, howeverthereisnoreportavailableonthebasicpropertiesandcompositionalanalysis.Cecily J.Smithet.alreportedthecompositionofreddishLiInSe2crystalpowder,howeverthe compositiongaveastrangevariation[10]andthereisnootherreportavailableonthe compositionsofLiInSe2.MeltandTemperatureoscillationmethod(MTOM)resultsin homogeneouspolycrystallinematerial[1114].Basedonthese,LiInSe2polycrystallinematerial wassynthesizedandsinglecrystalwasgrownusingmodifiedverticalBridgmanStockbarger methodwithsteadyampoulerotation.Wehavecharacterizedthegrowncrystalforits composition.Inthisinvestigation,wediscussthesynthesis,crystalgrowthandphysical characterizationslikeXRaydiffractionpattern(XRD),ThermogravimetricDifferentialthermal (TGDTA)analysis,Rutherfordbackscatteringspectroscopy(RBS)analysis,Ultravioletvisible Nearinfrared(UVVisNIR),Fouriertransforminfrared(FTIR)spectroscopyandVickers MicrohardnessmeasurementsofLiInSe2singlecrystals. 2. ExperimentalSection 2.1 Synthesis 4NpurityLithium(Li),6NpurityIndium(In)and5NpuritySelenium(Se)elementswere weighedinaccordancewiththestoichiometriccompositionof1:1:2andanexcessof5wt%Li and1wt%SeweretakenforthecompensationofhighchemicalactivityofLiandevaporation lossofSe.ForavoidingtheinteractionofLiwiththequartzampoule,synthesiswasperformed inaspeciallydesignedpyrolyticcarboncoatedgraphitecrucible,havinganinsidediameter12 mmandlength140mm.Thedesignofthesynthesisandgrowthgraphitecruciblesareshownin Fig.1(a).Thestartingmaterialswereloadedintoagraphitecrucibleusingahomemadeglove boxunderargonatmosphere,whichwassubsequentlyloadedintoaquartzampoule.Ampoule wassealedundervacuumat2×106millibar.Itwasthenplacedintoahorizontalfurnace, wherethecomponentswerereacted.Duringtheheatingcycletheampoulegetsexploded,to avoidtheampouleexplodingweincreasetheampoulevolumeandstepwisetemperature procedurewasdesigned.Finallyweoptimisedthedimensionoftheouterampouleas19mm innerdiameterand35mmlength.Duringsynthesis,ampouleisrotatedcontinuouslyinone directionwith3rpmspeed.Thetemperaturegradientofthesynthesisfurnaceis8ºC/cmand oneendoftheampouleisplacedinmaximumtemperatureof940ºCandthetemperatureof theotherendisabout500ºC.Thetemperaturewasraisedfromroomtemperatureto680ºCat arateof55ºC/hourandmaintainedfor12hours.Themaximumtemperatureof940ºCwas reachedatarateof8ºC/hourandmaintainedfor24hourandreducedto800ºCatarateof 13ºC/hour.Temperatureoscillationbetween800ºCand900ºCwasexecuted.Homogenization ofsynthesizedLiInSe2polycrystallinematerialincreaseswithincreasingnumberofoscillations. Thetemperatureoscillationwasexecuted8times,eachoscillationhas14hoursandthenthe meltwasslowlycooledatarateof9ºC/hourto680ºC,thentoroomtemperatureatarateof 60ºC/hour.ThesynthesizedLiInSe2polycrystallinematerialwasharvestedandnoreaction betweenpolycrystallinematerialandgraphitecruciblewasobserved. 2.2.CrystalGrowth Forthecrystalgrowthprocess,thepresynthesizedLiInSe2polycrystallinematerialwas loadedintoaspeciallydesignedpyrolyticcarboncoatedconicallytaperedgraphitecrucible, whichwasinsertedintoaquartzampoule.Ampoulewassealedundervacuumat2×106milli bar.LiInSe2singlecrystalsweregrownbythemodiedverticalBridgmanStockbargermethod inatwozonetubularresistiveheatedfurnace.Inordertogetthedesiredtemperature gradient,theceramicpadwasintroducedinthemuffleandthethicknessofthepadwas adjusted.Basedonourpreviousresultsimprovementhasbeendone.Inthisgrowthrun 12ºC/cmtemperaturegradientwasadopted.Themaximumtemperatureofthefurnacewas slowlyraisedfromroomtemperatureto930ºCatarateof15ºC/h,andthenmaintainedfor completegrowthrun.Theampoulewasrotatingatasteadyrateof10rpmandtheampoule wasmechanicallydescendedatarateof12mm/dayusingsteppermotor.Whenthewhole LiInSe2meltwassolidied,thefurnacetemperaturewasslowlycooledatarateof13ºC/hto 800ºCandthenattherateof2ºC/mintoroomtemperature.Asinglecrystalwithbottom dimension8mmdiameterand10mmlengthandtopdimension12mmdiameterand22mm lengthwasgrownusingagraphitecruciblewithspontaneousnucleation.ThegrownLiInSe2 singlecrystalwascutusingahomemadediamondwheelcrystalcutterandpolishedwitha1 mparticlesizealuminapowderandapastemadefromamixtureofaluminapowderand ethyleneglycolsolution.Fig.1(b)showstemperatureprofileandinsetsshowgraphitecrucible inevacuatedquartzampoule,grownsinglecrystalandcut&polishedwafer. 2.3. Instrumentationforcharacterization The LiInSe2 material phase formation and orientation of the grown crystal were identified by X-ray diffraction (XRD) pattern using a XPERT- PRO diffractometer system. The basic parameters are Step Size (2) 0.05°, scan step time 10.16s, scan type continuous, fixed divergence slit type, divergence slit size 0.4785°, generator settings 30mA, 40kV, goniometer radius 91mm, X-ray wavelength of 1.54 Å (Cu-K) along the gonio scan axis and 2 values scanning from 10 to 80° at room temperature. Thermogravimetric-Differential thermal analysis was carried out using a Perkin-Elmer Diamond TG-DTA instrument between the temperature range of 30-1000ºC at a heating rate of 10ºC/min in nitrogen atmosphere. Samples were weighed in Al2O3 crucible. The composition of LiInSe2 was determined using RBS analysis. The 1.7 MV tandetron accelerator at IGCAR was used for carrying out RBS analysis. The RBS analysis was carried out using both helium ions (1500 keV) and protons (1700 keV) to get the composition information of the sample containing both light (Li) and heavy (Se, In) elements. The RBS spectra were analyzed by SIMNRA software to obtain the composition of the sample [15]. The optical studies were measured by Perkin-Elmer Lambda-35 spectrophotometer for the wavelength range 200–1100 nm with slit width 2 nm and scan speed 240 nm/min, which covers near ultra violet, visible and higher energy part of near IR region. Low energy part of near IR, mid-IR and far-IR region was covered by the ALPHA-BRUKER spectrophotometer for the wavenumber range 500–6000 cm-1 with an accuracy of 0.01 cm-1. Mechanical properties of the grown crystal were studied by making indentations using MMT-X. MATSUZAWA hardness tester fitted with a diamond pyramidal indenter and the indentation time was fixed as 5 sec. 3. ResultandDiscussion 3.1. XRDpattern The X-ray diffraction pattern was done using the polycrystalline LiInSe2 which is shown in Fig. 2 (a). The peak positions are in good agreement with the powder diffraction le (PDF card no.04-009-0089). The Cut and polished wafer, fabricated out of the grown LiInSe2 single crystal was subjected to X-ray diffraction analysis. The recorded spectrum (Fig. 2 (b)) confirms the growth orientation to be <002>. Full width at half maximum of (002) peak is about 0.234º. It indicates that the grown crystal’s perfection is reasonably good. 3.2. TGDTAanalysis Thethermalpropertiesofanonlinearopticalmaterialarecrucialinassessingitspotential inrealnonlinearconversiondevicespumpedbyhighpowercontinuouswave(CW)orpulsed lasers.TheperformanceofdevicesbasedonmidIRchalcogenidesisoftenlimitedby deleteriousthermaleffects.TGDTAhasbeenreportedbyT.Kamijohet.alandL.Isaenkoet.al [5,8].Howevertheyhavenotmentionedthecompositionofthecrystal.Thermalbehaviorof thegrownLiInSe2singlecrystalhasbeenidentifiedfromTGDTAanalysisasshowninFig.3.In theDTAcurveobtainedduringheating,anendothermicpeakstartsat881ºCandcomplete meltingoccursat897.5ºC.Thepeakat897.5ºCcorrespondstothemeltingpointofLiInSe2.The areaunderpeak(meltingcurve)is554.66mJandenthalpy(H)ofmeltingis51.94J/g estimatedfromDTAanalysis.TGanalysisshowsthatthereasonableweightlossstartsat950ºC whichindicatesthatthecompoundmeltwasstableupto950ºC. 3.3. RBSmeasurements RBStechniqueisapowerfultoolfortheaccuratedeterminationofcompositionofsolid samplesanditisavaluabletoolfornondestructiveelementalanalysis.Theconcentrationsand depthprofilesoflithium,indiumandseleniuminthegrowncrystalwereevaluatedusingthe RBStechnique.TheRBSspectraweretakenusingprotonsandbyusingheliumbeams. Backscatteredparticleswereobservedatascatteringangleof165ºusingasiliconbarrier detector.Fig.4(a)andFig.4(b)showboththeexperimentalandsimulatedRBSspectrausing SIMNRA.ThecompositioninatompercentageisLi20%,In29%andSe51%withinthe experimentalaccuracyof±1%.ItisseenfromRBSmeasurementsthatthecrystalislithium deficient,indiumandseleniumrich.RBSmeasurementsgivethecompositionofgrowncrystal asLi0.8In1.16Se2.04.ThesizeofthetrivalentIndium(0.66Å)andmonovalentLithium(0.59Å)ions areclose;thecationcationreplacementwithSeshiftintothepositionwhichisclosertothe centeroftheemptytetrahedranispossible.InLiInSe2suchantisitedefectsareInionsintheLi position,InLi.TheirformationiscausedbyLideficiencyaswellasbyitsstrongshiftinthe tetrahedran.L.Isaenkoet.al.hadreportedthesameantisitedefects(InLi)inLiInS2singlecrystal [16].Therefore,itisdeducedthatintrinsicdefectssuchasSeinterstitials(Sei)andIndiumatom intheLithiumsites(InLi)existintheLiInSe2crystal.Thedeviationbetweenstartingcomposition andcrystalcompositionisduetoLivapourspenetratingintothepyrolyticcarboncoated graphitewallsandreactingwiththequartzampoulewalls.ThusLideficiencyleadsto stiochiometricdeviation,eventhoughexcessofLiwastaken.LiInSe2singlecrystalhasLi vacancysitesbutitwasreplacedbyindium,becauselithiummightparticipateonlyweaklyin thecovalentbonding[17]. 3.4. UVVisNIRandFTIRspectroscopy Thetransmissionspectrumplaysavitalroleinidentifyingthepotentialofnonlinearoptical (NLO)materials,becauseaspecificNLOmaterialcanbeofutilityonlyifithasawide transparencywindowwithnoabsorptionatthefundamentalandsecondharmonic wavelengths.The2mmthickcutandpolishedLiInSe2singlecrystalswereusedfor transmittanceandabsorptionstudiesinbothUVVisNIRandFTIRstudies.TheLiInSe2single crystalhas22%transparencyinvisibleregionandmaximumof80%transparencyinmidIR region.Thecutoffwavelengthisabout450nmatroomtemperature.Fig.5(a)showstheUV VisNIRtransmittanceand(inset)absorptionspectraofLiInSe2singlecrystal.Thevalueofthe opticalbandgapwasobtainedusingthefollowingrelationship[18]: (h)2=k(hEg)...................(1) whereEgistheopticalbandgap,kisaconstantandisabsorptioncoefficient.Theoptical bandgapisdeterminedbyapplyingtheTaucmodelandtheDavisandMottmodelandisfound tobe2.72eV.Theobtainedopticalbandgapenergyisingoodagreementwiththeprevious report[18,19].Fig.5(b)showstheFTIRtransmittancespectrumofLiInSe2crystal. 3.5. VickersMicrohardnessmeasurements Indeterminingthefabricationandpossiblepracticalapplicationsthemechanicalproperties ofmaterialsareofvitalrole[20].Hardnesstestsarecommonlyusedtodeterminethe mechanicalpropertyofthegrowncrystals.Thisisanondestructivetestandwillquicklyyield quantitativeinformationaboutthestrengthofthematerials.VickersMicrohardness indentationsweremadeonthe(002)planeofthecutandpolishedwaferswiththeload rangingfrom5gramsto100gramsusingLeitzWetzlerhardnesstester.TheVickers Microhardnessnumberisevaluatedusingtheformula Hv=1854P/d2(GPa)...................(2) whereHvistheVickershardnessnumberinGPa,Pistheappliedloadinganddisthediagonal lengthoftheindentationimpressioninμmand1854isaconstantofageometricalfactorfor thediamondpyramid. FromFig.6(a)itisobservedthatinitiallythehardnessincreaseswithincreaseofload.At theselowloadstheindenterpiercesonlytopsurfacelayersresultinginincreaseofhardness andthereafterbecomesloadindependent.Beyondtheloadof100g,asignificantcrack developedaroundtheindentationmark,whichmaybeduetothereleaseofinternalstresses generatedatthecornersoftheindentation.Theinitialincreaseinmicrohardness(Hv)with increasingloadisinagreementwiththereverseindentationsizeeffect(RISE).TheRISEcanbe causedbytherelativepredominanceofnucleationandmultiplicationofdislocations[21]. VariousmodelslikeMayer’slaw,HaysandKendall’sapproach,Elastic/Plasticdeformation modelandProportionalspecimenresistancemodel(PSR)havebeenproposedtoexplain indentationsizeeffectphenomenon.UsingPSRmodel,severalresearchers[2223]have proposedthatthenormalISEbehaviormaybedescribedbytherelation P=ad+bd2..................(3) wheretheparameteracharacterizestheloaddependenceofhardnessandbisaload independentconstant.TheloadindependencehardnessHv=1854b(GPa).ApplyingthePSR modelforLiInSe2singlecrystal,weobservedthataplotofP/dagainstdgivesstraightline(Fig. 6.(b)).ThislinearrelationshipconfirmsthatthePSRmodelisalsoapplicableforexplainingthe RISEbehaviorofLiInSe2singlecrystal.TheconstantsaandbareobtainedfromtheplotofP/d againstdforLiInSe2singlecrystal.ThevalueofafortheLiInSe2singlecrystalindentedatlow loadsis0.303g/μm.Thevalueofthecorrectionfactorisnegative.Thismeansthatinthecase oftheRISEaspecimendoesnotofferresistanceorundergoelasticrecoveryaspostulatedin thePSRmodel,butundergoesrelaxationinvolvingareleaseoftheindentationstressaway fromtheindentationsite.Thisleadstoalargerindentationsizeandhencetoalowerhardness atlowloads[21]. 4. Conclusion MTOMwasusedtosynthesiseLiInSe2polycrystallinematerial.CrackfreeLiInSe2single crystalwithbottomdimensionof8mmdiameterand10mmlengthandtopdimensionof12 mmdiameterand22mmlengthhasbeengrownusingasteadyampoulerotationbymodified verticalBridgmanStockbargermethod.TheLiInSe2crystalisgrownalongthe<002>direction. TGDTAanalysisconfirmsthatthemeltingpointofthegrowncrystalis897.5ºC.RBSanalysis confirmsthegrowncrystalcompositionasLi0.8In1.16Se2.04.TheresultshowedthatLiInSe2crystal grownusingtheMTOMsynthesizedpolycrystallinematerialshadreasonablygood stoichiometriccomposition.Opticalstudiesrevealthatthetransmissionregionisstartingfrom 450nmandopticalbandgapenergyis2.72eV.FTIRanalysisgivesthemaximumof80% transparencyinmidIRregion.Themocrohardnessmeasurementson(002)planeshowreverse indentationsizeeffectinLiInSe2singlecrystal. Acknowledgements ThisworkwassupportedbyDRDONRBunderGrantno.NRD/05/4003/NRB/185. References [1].S.Wang,Z.Gao,X.Yin,G.Liu,H.Ruan,G.Zhang,Q.Shi,C.Dong,X.Tao,Crystalgrowthand piezoelectric,elasticanddielectricpropertiesofnovelLiInS2crystal,JournalofCrystalGrowth, 362(2013)308. [2].L.HuaLi,J.QianLi,L.MingWu,Electronicstructuresandopticalpropertiesofwurtizite typeLiBSe2(B=Al,Ga,In):Afirsrtprinciplesstudy,JournalofSolidStateChemistry,181(2008) 2462. [3].V.Petrov,J.JZondy,O.Bidault,L.Isaenko,V.Vedenyapin,A.Yelisseyev,W.Chen, A.Tyazhev,S.Lobanov,G.Marchev,D.Kolker,Optical,thermal,electrical,damageandphase matchingpropertiesoflithiumselenoindate,JournalofOpticalSocietyofAmerica.B,27(2010) 1902. [4].E.Tupitsyn,P.Bhattacharya,E.Rowe,L.Matei,M.Groza,B.Wiggins,A.BurgerandA. Stowe,SinglecrystalofLiInSe2semiconductorforneutrondetector,Appliedphysicsletters,101 (2012)202101. [5]L.Isaenko,I.Vasilyeva,A.Merkulov,A.YelisseyevandS.Lobanov,Growthofnewnonlinear crystalsLiMX2(M=Al,In,Ga;X=S,Se,Te)forthemidIRoptics,JournalofCrystalGrowth,275 (2005)217. [6]V.V.Badikov,V.I.Chizhikov,V.V.Emenko,T.D.Emenko,V.L.Panyutin, G.S.ShevyrdyaevaandS.I.Scherbakov,OpticalpropertiesofLithiumIndiumSelenide,Optical Materials,23(2003)575. [7]T.J.Negran,H.M.Kasper,A.M.Glass,PyroelectricandelectroopticeffectsinLiInS2and LiInSe2,MaterialsResearchBulletin,8(1973)743. [8]T.KamijohandK.Kuriyama,SinglecrystalgrowthandcharacterizationofLiInSe2, JournalofCrystalGrowth,51(1981)6. [9]S.WeiseandV.Krämer,PhasestudyofthesystemLi2SeIn2Se3,JournalofThermalAnalysis andCalorimetry,71(2003)1035. [10]CecilyJ.Smith,CalvinW.Lowe,StoichiometriceffectsontheopticalpropertiesofLiInSe2, 66(1989)5102. [11]Y.Huang,B.J.Zhao,S.F.Zhu,W.L.Zhu,C.F.Xu,S.Q.Wan,andZ.Y.He,Propertiesof AgGa1xInxSe2singlecrystalsgrownbyBridgmanMethod,CrystalResearchTechnollogy,42 (2007)227. [12]S.Wan,S.Zhu,B.Zhao,B.Chen,Z.He,J.Xu,Growthandcharacterizationof AgGa1xInxSe2crystalswithhighindiumcontents,JournalofCrystalGrowth,318(2011)713. [13]P.G.Schunemann,S.D.Setzler,T.M.Pollak,PhasematchedcrystalgrowthofAgGaSe2 andAgGa1xInxSe2,JournalofCrystalGrowth211(2000)257. [14]G.Zhao,S.Zhu,B.Zhao,B.Chen,Z.He,S.Wan,Improvedgrowthandcharacterizationof AgGa1xInxSe2crystals,JournalofCrystalGrowth,311(2009)368. [15]W.EkstienandM.Mayer,Rutherfordbackscatteringfromlayeredstructuresbeyondthe singlescatteringmodel,NuclearInstrumentsandMethodsinPhysicsResesarchsectionB,153 (1999)337. [16]L.Isaenko,I.Vasilyeva,A.Elisseyev,S.Lobanov,V.Malakhov,L.Dovlitova, J.J.Zondy,L.Kavun,GrowthandcharacterizationofLiInS2singlecrystals,J.Cryst.Growth,218 (2000)313. [17]T.Kamijoh,K.Kuriyama,AnnealingeffectsonelectricalpropertiesofLiInSe2,Journalof AppliedPhysics,52(1981)1102. [18]L.Isaenko,A.Yelisseyev,J.J.Zondy,G.Knippels,I.Thenot,S.Lobanov,Optoelectronics review,9(2001)135. [19]L.Isaenko,A.YelisseyevandS.Lobanov,V.Petrov,F.Rotermund,G.Slekys,J.J.Zondy, LiInSe2:Abiaxialternarychalcogenidecrystalfornonlinearopticalapplicationsinthemid infrared,JournalofAppliedPhysics,91(2002)9475. [20]S.L.Kakani,A.Kakani,Materialsscience,Newageinternationalpublishers,2004. [21]K.Sangwal,Onthereverseindentationsizeeffectandmicrohardnessmeasurementof solids,MaterialsChemistryandPhysics,63(2000)145. [22]H.Li,R.C.Bradt,Themicrohardnessindentationload/sizeeffectinrutileandcassiterite singlecrystals,JournalofMaterialsScience,28(1993)917. [23]Q.Ma,D.R.Clarke,Sizedependenthardnessofsilversinglecrystals,JournalofMaterials Research,10(1995)853. Figure captions Fig. 1. (a) Graphite crucible design for (i) Synthesis & (ii) Growth, (b) Temperature profile for growth and (inset) graphite crucible in evacuated quartz ampoule, grown single crystal and cut & polished wafer of LiInSe2 Fig. 2. PXRD pattern of the polycrystalline and (inset) grown LiInSe2 single crystal Fig. 3. TG-DTA spectrum of the grown LiInSe2 single crystal Fig. 4. RBS experimental and simulated spectrum of the LiInSe2 wafer using (a) 1500 keV helium ions and (b) 1700 keV protons. Fig. 5. (a). UV-Vis-NIR Transmittance and (inset) absorbance spectrum and (b) FTIR Transmittance spectrum of the LiInSe2 wafer. Fig. 6. Plot of Load (P) Vs Microhardness (Hv) and inset plot of d Vs P/d for LiInSe2 crystal (002) plane. Research highlights ¾ Melt and Temperature Oscillation Method was adopted for synthesizing LiInSe2 ¾ The large LiInSe2 crystal of high integrity was grown by the modified VerticalBridgman- Stockbarger method ¾ RBS measurement confirms the composition of the LiInSe2 ¾ PSR model is applied for hardness measurements (a) (b) 15 100 10 20 30 2 T (degree) 40 16 10 50 20 30 60 40 (053) (113) Intensity (a.u) (123) 450 (333) (322) (231) 400 (431) (013) (130) (122) (212) (210) 200 (112) (120) 300 (002) (011) 500 (111) (110) Intensity (a.u) 600 (002) 400 350 300 250 200 150 100 2 T (degree) 50 60 70 70 80 0 80 10.8 5 10.7 0 10.6 -5 Weight (mg) 10.5 -10 10.4 -15 10.3 10.2 -20 10.1 o 897.5 ( C) -25 10.0 0 100 200 300 400 500 600 o Temperature ( C) 17 700 800 900 1000 Microvolt endodown (PV) TG DTA (a) (b) 18 25 95 (a) (b) 90 20 Transmittance (%) 4 10 3 Absorbance % Transmittance (%) 85 15 5 65 400 500 600 700 800 900 1000 1100 Wavelength (nm) 200 300 400 500 600 75 70 2 1 0 80 700 800 900 60 1000 1100 1000 2000 3000 4000 5000 -1 Wavelength (nm) Wave Number (cm ) 19 6000 1.1 25 20 0.9 15 -3 P/d (x10 N/ Pm) Hv (GPa) 1.0 0.8 10 5 0.7 10 15 20 25 30 35 40 d (Pm) 0 20 40 60 Load P (g) 20 80 100
© Copyright 2026 Paperzz