HIPPOCAMPUS 6:294-305 (1996) Physiological Properties of Anatomically Identified Basket and Bistratified Cells in the CAl Area of the Rat Hippocampus In Vitro Eberhard H. BuhV Tibor Szilagyi,l,2 Katalin Halasy,1,3 and Peter Somogyi 1 IMRC Anatomical Neuropharmacology Unit, Oxford University, Oxford, England; 2Department of Physiology, University of Medicine and Pharmacy, Tirgu Mures, Romania; 3Department of Zoology and Cell Biolog1j, f6zsef Attila University, Szeged, Hungary ABSTRACT: Basket and bistratified cells form two anatomically distinct classes of GABAergic local-circuit neurons in the CA 1 region of the rat hippocampus. A physiological comparison was made of intracellularly recorded basket (n = 13) and bistratified neurons (n = 6), all of which had been anatomically defined by their efferent target profile (Halasy et al., 1996). Basket cells had an average resting membrane potential of -64.2 ± 7.2 vs. -69.2 ± 4.6 mV in bistratified cells. The latter had considerably higher mean input resistances (60.2 ± 42 .1 vs. 31.3 ± 10.9 MU) and longer membrane time constants (18.6 ± 8.1 vs. 9.8 ± 4.5 ms) than basket cells. Differences were also apparent in the duration of action potentials, those of basket cells being 364 ± 77 and those of bistratified cells being 527 ± 138 p.s at half-amplitude. Action potentials were generally followed by prominent, fast afterhyperpolarizing potentia Is which in basket cells were 13.5 ± 6.7 mV in amplitude vs. 10.5 ± 5.1 in bistratified cells. The differences in membrane time constant, resting membrane potential, and action potential duration reached statistical significance (P < 0.05). Extracellular stimulation of Schaffer collateral/commissural afferents elicited short-latency ex citatory postsynaptic potentials (EPSPs) in both cell types. The average 10-90% rise time and duration (at half-amplitude) of subthreshold EPSPs in basket cells were 1.9 ± 0.5 and 10.7 ± 5.6 ms, compared to 3.3 ± 1.3 and 20.1 ± 9.7 ms in bistratified cells, the difference in EPSP rise times being statistically significant. Basket and bistratified EPSPs were highly sensitive to a bath applied antagonist of non-N-methyl-D-aspartate (NMDA) receptors, whereas the remaining slow-rise EPSP could be abolished by an NMDA receptor antagonist. Increasing stimulation intensity elicited biphasic inhibitory postsynaptic potentials (IPSPs) in both basket and bistratified cells. In conclusion, basket and bistratified cells in the CA 1 area show prominent differences in several of their membrane and firing properties. Both cell classes are activated by Schaffer collateral/commissural axons in a feedforward manner and receive inhibitory input from other, as yet unidentified, local-circuit neurons. © 1996 Wiley-Liss, Inc. KEY WORDS: ward GABA, interneuron, inhibition, postsynaptic, feed for- Accepted for pub li catio n May 1, 1996. Address correspondence and reprint requests to E.H. Buhl, MRC Anatomica l Neuropharmaco logy Un it, Oxford Un iversi ty, Ma nsfield Rd ., Oxford OX 1 3TH, UK . © 1996 WlLEY-LISS, [Ne. INTRODUCTION Hippocampal interneurons, or non-principal cells, share two co mmon properties. First, they have a dense local axonal arbor whi ch may either target princi pal cells, other local-ci tcuit neurons, or a mixture of both (Somogyi et aI., 1983.; Schw.rrLkroin and Kunkel , 1985; G ulyas et al. , 1993b; Halasy and Somogyi, 1993; H an et al., 1993; Buhl et al., 1994a,b). Second , it appears that most interneurons investigated to date store the inhibitory neurotransmittet l'-aminoburytic acid (GABA) in their tetminals (Somogyi et al ., 1983b, 1984, 1985; Sotiano and Frotschet, 1989; Halasy and Somogyi, 1993; Halasy et al., 1996). Apart from these common characteristics, however, interneurons must be tegatded as a conglom erate of heterogeneous, albeit distinct, cell classes. With respect to their anato mi cal properties, non-ptincipal cells may be segregated into several categories, differing with respect ro their content of peptide neurotransmittets (Somogyi et al. , 1984; Kosab et al ., 1985; Sloviter and Nilavet, 1987), calcium-binding proteins (N itsch et al ., 1990; G ulyas et al ., 1991), and/or efferent target profile (So mogyi et al ., 1983a, 1985; Gulyas et al., 1993b; Halasy and Somogyi, 1993; Buh/ et al., 1994a,b; Sik et al., 1995). However, these features are not necessarily mutually exclusive; on the contrary, for example, neurons sllch as the dentate gyrus hilat perforant pathway-associated (HIPP) cells (H an et al ., 1993) ptesumably correspond to the class of somatostatin-positive hilar neurons. With respect to their physiological properties, however, distinctions berween diffetent classes of GABAergic neuron are either blurred or are yet to be established. As yet, there is some degtee of general consensus that interneurons per se may differ from ptincipal cells in many of theit inttinsic properties, such as short-duration ac- INTERNEURON PROPERTIES IN RAT HIPPOCAMPUS Don potentials. the absence of spike frequency adaptation. a largeamplitude fast afrerhyperpolarizing potential (fAHP). or prominent outward rectification (Schwarrzkroin and Mathers. 1978; Ashwood et al .. 1984; Schwarrzkroin and Kunkel, 1985; Misgeld and Frotseher. 1986; Lacaille and Williams, 1990; Scharfman et al .. 1990; Scharfman 1992). Moreover, (some) interneurons have also been hown to differ from principal cells with respect to their glutamate =eptor expression (Baude et al., 1993; M cBain et al., 1994; Poncer et al ., 1995) and the kinetic properties of their glutamate receptors (uvsey et al. , 1993; McBain and Dingledine, 1993; Perouansky and Yaari, 1993) as well as their synaptic currents (Livsey and Vicini, 1992). T here are, however. considerably fewer data available for the correlatio n of anatomical classes of interneurons with their physiological properties. because of the requirement for a stringent morphological or immunoeyrochemical identification of recorded neurons. By usi ng such a muhidisciplinary approach, it was, for example. possible to establish that fast-spiking basket cells contain the calciumbinding protein parvalbumin (Kawaguchi et al., 1987 ; Srk et al. , 1995), whereas a bistratified cell has been shown to be calbindin immunoreactive (Srk et al. , 1995). The physiological properties of interneurons have also been com pared with respect to their laminar position (Kawaguchi and Hama, 1988; Lac.1.i.lle and Schwartzkroin . 1988; Lacaille and W illiams, 1990; Lacaille, 1991). Although these studies provided compelling ~"Vid ence for the physiological heterogeneiry of hippoc.1mpal non-principal cells. the relationship between me variabiliry in physiological properties and the patterns of synaptic connections of interneurons remained elusive, largely because the hippocampal laminae are fur from homogeneous with regard to meir complement of GABAergic interneurons (Lac.1.i.lIe and Sch\varrzkroin, 1988; Kawaguchi and H ama. 1988; G ulyas et al .• 1993b; Han et al., 1993; Buhl et al. . 1994.1; McBain et al ., 1994) . With hippocampal layering being a relatively poor indicator of interneuronal diversiry, the co ncept of grouping non-principal cells with respect to their efferent con nectiviry appears to be a more suitable approach toward ca tegorizing GABAergic neurons (Somogyi et al., 1983a.b; Gulyas et al. , 1993b; Halasy and Somogyi, 1993; Buhl er aI. , 1994a.b). Moreover, the advent of routin ely combinmg in vitro intracellular recording techniques with correlated light and electron microscopy has now provided the opportuniry to define the physiological properties and synaptic effects of interneurons which have been characterized wirh respect to their target sekcciviry (Buhl et al. , 1994a.b; Buh l et al. . 1995). T his study will provide such a physiological comparison between twO classes of GABAergic hippocampal interneurons in the pyramidal cell layer of the CAI area. The data presented in the accompanying article (Halasy et al. , 1996) demonstrate nOt only the GABAergic nature of basket and bistratified cells. but also distinct differences in the pattern of their afferent and efferent con nections. MATERIALS AND METHODS lice Preparation Young adult female Wistar rats (> 150 g) were deeply anesmetized with intramuscularly inj ected ketamine (lOO mg/kg) and 295 xyl3""line (1O mg/kg). Then the animals were perfused with ~ 30 ml of chilled artificial cerebrospinal fluid (ACS F). and their brains were removed and immersed in chilled ACSF. Using a Vibrosli ce (Cam pden Instruments, Loughborough. UK) . 400-/Lm-thick slices were cut in the horizontal plane. The sli ces were transferred co a recording chamber and maintain ed at 34-35°C at the interface between oxygenated ACSF and a humidified atmosphere saturated with 95% 0 2 /5% C O 2. Th e flow rate was adjusted co 1.5 rnI /min. and the slices were allowed co recover for > 1 h . During the initial part of the experiment (perfusion, cutting, 30-45 min incubation). the ACSF waS composed of (in mM) 256 sucrose, 3 .0 KCI. ] .25 NH2P04. 24 NaH C0 4 , 2.0 MgS0 4 • 2.0 CaClz and 10 gl ucose. Subsequently, the sucrose in the ACSF was replaced by equiosmolar NaCI (I26 mM). All drugs were kept as concentrated scocks. which were diluted in ACSF and then bath applied. T he excitatory amino acid blockers 6-cyano-7-nitroquinoxal inc2,3-dione (CNQX) and DL-2-am ino-5-phosphonopenta noic acid (AP5) were obtai ned from Tocris Cookson (Bristol , UK) and bicuculline hydrochloride was purchased from Sigma, (Poole, UK). Intracellular Recordings and Data Analysis Micropipettes were pulled from standard wal l borosilicate capillaries, filled with 2% bioeyrin in 1. 5 M KCH 3S0 4• and usually beveled co a D C resistance of 80- 150 MO. Neurons were impaled in or close co the cell body layer of the hippocampal CA 1 area. Putative interneurons were identified by their distinct physiological properties (see below). Recordings were made in bridge mode using Axoclamp or modified Axoprobe (both Axon Instruments, Foster Ciry. CA) intracellular amplifiers. Postsynaptic potentials were elicited with a fine-tipped bipolar tungsten stimulation electrode with a tip separation of ~5 0 /Lm. Data were acquired using PCM instrumentatio n recorders and stored on videotapes. Experimental data were redigitized at 10-20 kH1. with a 12 Bit NO board (RC Electronics C omputerscope, Santa Barbara, CA) and analyzed with co mm ercially available sofrware (Axograph. Axon Instrum ents. Foster C ity. CA) . All data are expressed as mean :!: SO. Statistical analysis was performed using a non-parametric statistic.-u test (Mann-Whirney U-test). Resting membrane potentials were taken as the difference between surFace D C potential following electrode withd rawal and the steady-state membrane potential without the injection of bias current. M embrane time co nstants were determined by fitting single exponentials co the decay of small-anlplitude «5 m V) hyperpolarizing current pulses. Simi larly, input resistances were ca lculated from the maximum voltage deflection of small hyperpolarizing current pulses. Using rheobasic current pulses. spike amplitudes were taken from the baseline to the peak of the action potenti als, whi le spike duration was measured at half-anlplitude. The ampl itudes of fAH Ps were measured from the shoulder of the preceding action potentials. Whenever late AHPs were seen to fo ll ow trains of action potentials, single exponential fun ctions were fitted to determine their decay characteristics. Variations in the rate of firing were calculated From rhe respective interspike intervals and numericall y expressed as percent changes of the initial discharge rate. The rise time o f excitarory 296 RUHL ET A L. postsynaptic potentials (EPSPs) was determi ned as the interval between 10 and 90% of their respective peak ampli tudes, and EPSP duratio n was taken at half-amplitude, excludin g events that were apparencly curtailed by inhibitory postsynaptic potentials (IPSPs). T he time-to-peak of IPSPs was determined at depolarized membrane po tentials and extrapolated from the preceding stimulus artifac t. RESULTS All cells included in the analys is had resting membrane potentials of min imally - 55 mV witho ut requiring hyperpolarizing bias current. Moreover, the cells remained stable fo r at least 30 min reco rding tim e and , upo n depolarizatio n, co uld fire sustained trains of high-frequency action potentials. Furtherm ore, onl y those cells were included for analysis which co uld be recovered for light microscopic analysis, followed by the post hoc c1ecrron microscopic scrutiny of their synaptic target profi le (for full an atomical description, see accompan ying article). In this regard, it has been previously established that, with respect to their efferent output, CA l pyramidal cell layer interneurons predom inancly faU into three distinct categories: axo-axonic, basket, and bistratifled cells (Buhl et al ., 1994a). Below, we summarize and co mpare the physiological properties of two types of stringently identified in terneuro ns, basket cells (n = 13) and bistratifled cel ls (n = 6). Membrane and Firing Properties In co mparison, basket cells (n = 13) had significantly more depolarized resting membrane potenti als (- 64.2 ::':: 7.2 m V) than bistratifled cells (n = 6; - 69.2 ::'::4.6 mY; P < 0.05). Likewise, basket cells had significantly fas ter membrane time constants (9 .9::':: 4.6 ms) when compared to bistratifled cells (18 .6 ::':: 8.1 ms). However, altho ugh basket cells had, on average, considerably lower input impedances (3 1.3 ::':: 10.9 vs. 60.2 ::':: 42 Mo' in bistratified cells), this difference was not staristicall y signifi ca nt (P = 0.056) . O nly basket cells at membrane potentials more de- polarized than approximately - 60 m V tended to fi re spo ntaneous actio n po tentials, although it sho uld be emphasized that the sampling of neurones with extensive labeling and therefo re prolo nged recording periods may have biased these data toward the inclusio n of cells with relatively hyperpolarized membrane potentials and, accordingly, little spo ntaneous activity. Bo th types of interneuron had non-overshooting action potentials, the mean s for basket and bimatifled cells being 63.6 ( ::':: 12.7) mV and 69.8 ::'::5.0) mV (P > 0.05), respectively. Action po tentials were generally brief due to a rapid rate of fall (Fig. 1) and were found to be significa ntly faster in basket cells (0.4 1 ::':: 0.09 vs. 0.53 ::':: 0.14 ms in bistratifled cells). In response to depolarizing current pulses, both groups of ncuron could display a variery of different firin g patterns. O nly a mino riry of cells fi red non-accommodating trains of action potentials (Fig. 2A, D ; n = I each; adaptation rate < 10%; note: the widely used terms spike frequency acco mmodation and adaptatio n are here regarded as syno nymous) , although this firing pattern has commonly been associated with GABAergic interneurons (Connors and G utnick, 1990; Scharfman, 1992). Although the majority of cells assumed a tegular firing pattern, they revealed varying degrees of spike frequency adaptation, the respective changes in the rate of firin g ranging from 14 to 88% (Fig. 2B; mean for all cells 42 ::':: 3 1%; n = 12) in basket cells and 20-88% (Fig. 2E; mean for all cells 54 ::':: 34%; n = 6) in bistratified cells. Finally, three basket (Fig. 2C) and twO bimatified cells (Fig. 2F) showed a burst-like fi ring pattern in response to a depolarizing current pulse. Interestingly, different firing patterns may not be mutually exclusive, as they could be observed within individual cells. Accordingly, it was possible to switch cells from bursting into regular firing mode by means of a constant depolarizing current injection (Fig. 2E,F), although this property was no t systematically investigated. W hen the firin g freq uency of basket (n = 4) and bistratifled (n = 3) neurons was determined from the fi rst in terspike in terval, all cells revealed a linear current-frequency relationship (Fi g. 3A, D ). Differences, however, were apparent with respect to the slope of the individual curves; i.e., across cells, the same increment in current intensity could affect the respective fi ring rates to a variable degree. W hen current- frequency plots were determined from C, 0 : Bistratlfied cell A, B: Basket cell A c B D ~ A, C : 1 ms S, D: 30ms FIGURE 1. Action potential. in both basket (A) and bistratified cells (C) are characterized by their short duration which, when measured at half-amplitude, is generally less than 600 /LS. In both types of interneurons action potentials have a rapid rate of fall , which is in the same range as their rate of rise. Action potentials of basket (8) and bisteatified (D) ceUs are foUowed by a short-latency fast afterhyperpolacization. I INTERNEURON PROPERTIES IN RAT HIPPOCAMPUS 297 D·E Bistratified cells A-C Basket cells D A 0.5 nA 0.4 nA E B 0.1 nA 0.5nA c F 0.1 nA 0.5 nA FIGURE 2. Intrinsic firing patterns of three basket (A-C) and two bistratificd cells (D-F). Within the same group of cells the firing pattern and the degree of spike frequency adaptation could vary significandy. Both basket (A) and bistratified cells (D) could discharge with a train of non-accommodating action potentials in re- sponse to a depolarizing current injection, thus corresponding to the firing pattern which is generally assumed to be associated with fastspiking interneurons in cortical areas. Interestingly, a large proportion of both basket (B) and bistratified cells (E) showed a marked me first and last interspike interval of 200 ms depolarizing current pulses, differences were apparent in the respective slo pes of cells which exhib ited marked spike frequency adaptation (Fig. 3 B,E; solid symbols). Towards the end of a current pulse, these cells showed a linear, but disproportionally smaller in crease in their firi ng rates in response to regular increases in current intensity (F ig. 3 B,E; solid symbols con nected by broken lines). The regularity of neuronal discharge was assessed by plotting me respective fi ring frequencies, again taken as me recip rocal val ue of successive interspike intervals, during the injection of a constant depolarizi ng current pulse (Fig. 3C,F). It was clear that cells with no apparent accom modatio n of meir firing rate maintained remarkably constant interspike intervals or discharge rates, respecri,'e1y (Fig. 3C,F; open symbols). Both basket and bimatified cells which revealed marked reductions of their firing rate had relatively uniform patterns of adaptation. Thus, a sharp drop of firin g rate occurred during the first 50-70 ms of the pulse, and then cells resumed discharging at a rela tively co nstant frequency during the re- degree of spike frequency adaptation. Moreover some basket (C) and bi-stratified cells (F) were also capable of firing a burst of action potentials, which were riding on a depolarizing envelope. Note, however, that in one instance d,e firing mode of a bistratified cell could be changed from bursting (F) to a regular firing/adapting behavior (E) hy depolarizing the cell from - 62 mY (F) to - 57 mY (E) . The cells in A and C are also illustrated in Figures 4 and 3 of the accompanying article. mainder of the pu lse. Occasional ly the regular firing pattern of basket (n = I) and bimatifled cells (n = \) could be d isru pted by sp ike doublets or triplets (Figs. 3C, 4A,O), here defined as an action potential following anomer with very short latency. Afterpotentials W ithout exceptio n, action potentia Is in basket an d bistratified cells were followed by a short-latency fAHP (F igs. \ , 2, 4A,O). Although, on average, basket ceUs had more pronounced fAHPs than bistratified cells (13.5 :t 6.7 [n = 12] vs. 10. 5:t 5. 1 mV [n = 6]) , this difference did not reach statistical signifi can ce. Both basket and bistratified cells co uld reveal prom inenr depo larizing afterpotentials (OAPs; Fig. 4 B, E; arrows). T hese were most promi nent during the period of strongest spike frequency adaptation and could be of sufficient amplitude to trigger spike doublets and triplets (for more derail, see Buhl et al. , 1994b) . Only a fraction of basket cells (5113; 39%) displayed OAPs, thus dif- 298 BUHL ET AL. A A~C : Basket cells D 'so D-F: Bistratified cells 300 02 0.4 O.B 0.8 current increment [nl\) current increment [nAI B 2SO . 0 E 200 ~ ~ >- >- u u c ,~ I I , ~ 100 '" '"c c ·c § ~ SO so • e- · - ... . 01 0.2 0.3 0.4 0.5 06 ... -0.2 07 • • -tI _ .... . 0.6 0.8 current increment (nAI 0.'1 current Increment [nAI C F :lOO •..-.. 1.2 1.4 200 2SO i;' c , ~ ,.:;r f 1902922 o,~~--~--~--~--~,,~~~ so 100 ISO 200 time (ms] FIGURE 3. Firing characteristics of basket (A- C; open and solid circles) and bistratified cells (D-F; open and solid squares). The instantaneous firing frequency (expressed as the inverse of the first interspike interval [ISI]) of both basket (A) and bistratihed cells (D) increased linearly with the amount of injected depolarizing current (in A,B,D,E expressed as current increment above threshold intensity) . The respective slopes, i.e., the rate of frequency increase per current step, of individual cells showed great variability. In basket and bist.ratified cells which exhibited spike frequency adaptation (B,E: solid symbols), the respective cnerent/frequency slopes differed markedly when taken from the first and last ISI (first ISIs connected by continuous line, last ISTs linked by broken line) of a 200-ms depolarizing current pulse. In contrast, the slopes of first and last interspike intervals in non-adapting or weakly adapting ceUs (B: open circles) remained relatively constant. T he regularity and pattern of firing in basket (C) and bistratihed ceUs (F) was assessed by plot- o SO 100 ISO 200 time [ms] ri ng the inverse of successive intcrspike intervals (as a measure of firing frequency) against time. It is apparent that non-adapting cells (open symbols; two sweeps in each celJ at sanle intensity) assume a regular firing pattern, whereas adapting cells (solid symbols; in C four sweeps at variable intensities, in F two sweeps with identical Clurent intensity) decelerate markedly during the first 50- to 70-ms interva1 of the current puJse and then resume firing at near-steadystate levels. Intersweep variability was relatively minor. Only infrequently occnering doublets (C) preseoted a minor disruption in the overall regularity of firing patterns. When comparing two sweeps which contained doublets with two successive sweeps which were without doublets, it is, however, obvious that despite the dramatic increase in firing frequency (i.e., a very short inlerspike interval) , the overall firing pattern remains remarkably unaffected. Cell codes correspond to Table I of the accompanying article. INTERNEURON PROPERTIES IN RAT HIPPOCAMPUS A·C: Basket cells 299 D·F: Bistratified cells o A -=J A: 40ms D:1OOms 1 B ~w \~ 1.0 nA E ~ 20 ms c F 1.0 nA 0.7 nA ~ 200 ms FIGURE 4. Both basket (A-C) and bisttatificd cells (D-F) could sbow complex afterpotentials resembling those of hippocampal principal cells. In these instances a fast afterhyperpolarizing potential (see also Fig. IB,D) was followed by a depolarizing afterpotential (OAP; B,E arrows). Occasionally DAPs were of sufficient amplitude lO trigger spike doublets (D,E) or even triplets (A,B). Prominent DAPs were frequently observed in conjunction with marked fre- quency adaptation (A,D). Moreover, in these cells, trains of action feri ng from bistratified cells where OAPs appear to be a more regular feature (5/6; 83%). Similarly, following occasionally single (Fig. I D), but more frequently bursts of action potentials, both basket and bisrratified cells could reveal prominent late afterhyperpolarizing potentials (IAHPs; Fig. 4C,F), although this feature was considerably less prominent in basket cells (n = 2/13; 15%) when co mpared to bisrratified cells (5/6; 83%). Generally, the amplitude of iAHPs was positively correlated with the burst duratio n and number of action potentials. A1IIAHPs decayed slowly (> 1 s) back to baseline, and their decay could be well fitted with a si ngle exponential function. With respect to their respective mean time constants of decay, basket (1.24 :!: 0.20 s) and bistratified cells (0.96 :!: 0.97) appeared to be relatively similar. Final ly, it is noteworthy that, with the exception of one bistratified cell, the occurrence of IAHPs predominantly coincided with prominent DAPs (617 cells). Postsynaptic Responses potentials were often followed by a long-lasting afterhyperpolarization (C,F; clipping of depolarizing response indicated by stippled line; the cell in F is different from that shown in D and E). Note the clipping of action potentials in B and E. Broken lines in A indicate off-line adjustment of bridge balance. The cell in D and E is also iIIusttated in Figure 9 of the accompanying article. Using low stimulation intensities, which were invariably subthreshold for concomitantly recorded pyramidal cells (data not shown), basket as well as bisrratified cells could be orthodromically activated at very short latencies «4 ms), thus minimizing the likelihood of polysynaptic pathways contributing to the early part of EPSPs. Although synaptic responses could be elicited from several stimulation sites, such as stratum lacunosum-moleculare, the data reported here resulted from placing the stimulation electrode into stratum radiatum, usually at the CA1/CA3 border region, thus presumably stimulating predominantly Schaffer collateral/commissural input fibers . Afferent stimulation at the threshold for synaptic responses (Fig. SA,G) invariably elicited EPSPs in basket as well as bistratified cells. The analysis of single sweeps revealed that small-amplitude 300 BUHL ET AL. EPS Ps in both types of interneuro ns frequently had a fragmented, mul ti-peaked appearance (Fig. 5G, H ), the latter feature generally smoothin g out in averaged traces (Fig. 5A- E). Subthreshold EPSPs in basket cel ls (n = 9) had an average rise-ti me of 1.9 ± 0 .5 ms, whereas that of bistratified cells (n = 4) was determined to be 3.3 ± 1.3 ms. T his d ifference was statistically significant (P < 0.05) . Likewise, th e mea n duration of EPSPs in basket cells A-F: Basket cell ~ , ----------~------------------ (10.7 ± 5.7 ms) was considerably shorter than that of bistratifiecl cells (20.1 ± 9.7 ms), although this difference did nOt reach statisti cal significa nce (P = 0 .09). When stimulating Schaffer collateral /comm issural afferents with maximal intensity, all cells reached fi ring threshold . Suprathreshold EPSPs general ly elicited one (Fig. 5E) an d occasio nally two action potentials. W ithout exception, stimulation intensities had to be adjusted G-L: Bistratified cell G 4 Volts B,~ H -J ~_ ~~~ C, threshold _- -, "---____---------.J---.r----'" ---.JI'\. 7 Volts low intenSity medium intensity _ _- 12 Volts D ~.....:.~ ________ hi9_hin_ten_Sity 36 Volts E K G-J : superimposed A-D superimposed L JlOmv 20 ms F -67 mV 11 Volts FIGURE 5. Synaptic responses in basket (A-F) and bistratifled ceUs (G-L) foUowing extraceUnlar stimnlation of the Schaffer collateral/commissural pathway (arrowheads dellote stimnlus artifacts). Low stimulus intensities (A,G) usually resulted in excitatory postsynaptic potentials (EPSPs) without apparent inhibitory postsynaptic potentials (IPSPs) _ Increasing the stimnlation intensity frequendy recruited short-latency IPSPs (G-£, I-K; asterisks), which curtailed the duration of the EPSPs_Late IPSPs (D,1; solid squares) were only apparent at higher stimnlation intensities. Traces A-F and L represent averages of four to 30 trials, G-K represent single sweeps. Note the characteristic "fragmented" appearance of EPSPs (G,H) . In all tested basket (F) and bistratifled cells (L) the EPSP amplitude increased with membrane hyperpolarization. Fast IPSPs (asterisks) reversed in the range of the presumed chloride equilibrium potential. The cell in A-F is also illustrated in Figure 5 of the accompanying article. TNTERNEURON PROPERTIES IN RAT HIPPOCAMPUS A A, B: Basket cell 301 C, 0 : Bistratified cell c Slim. Schalfer coIL D B ~ 20 m, 0.9 nA -69mV control FIGURE 6. Inhibitory responses in inhibitory cells. Schaffer colIatuallcommissural pathway- evoked IPSPs suppress repetitive firing in CA I basket (A,B) and bistratified cells (C,D) . Strong stimuli rttntited short-latency IPSPs (asterisks) in both basket (A) and bistr.l1ified (C) cells. The resulting hyperpolarization was effective i11 suppressing current-induced firing for periods greater than 50 ms and frequently reducing the rate of firing during the remainder of the pulse (data not shown). The control traces (B,D) ilhL"rate that in the absence of the synaptic stimulus, the cells fired throughout the current pulse. Note that some reduction of the firing rate of the cell shown in C aod 0 is due to spike frequency adaptation. Arrowheads denote stimulation artifacts. considerably higher rhan response threshold (0 evoke fast IPS Ps (Fig. 56-0, H- J). Increasing rhe srimularion strength resulted in an amplirude increase of rhe fasr IPSP and eventually, ar high inu:nsiries, the appearance of a lare IPSP (Fig. 50-E, J-K). The peak latency of the fast JPSP in basker cells was 2 1.4 :t 4.2 ms (n = 6) , which did nor d iffer significantly from thar of bisrrarified cells (25.7 :t 7.8 ms; n = 4). Likewise, rhe response reversal of the fasr IPSPs in basker and bisrrarified cells was very similar E-H : Bistratified cell 5mv I A-D: Basket cell 20 ms A control E - B -----1----------------------------------10jiM CNOX ~ 1 48V --I 7V F 10jiM CNOX 1 7V 16V c co ntrol G -----j~-----------------------1 20V H D r-. 1 48V FIGURE 7. Excitatory amino acid receptor pharmacology of Schaffer collateral/commissural pathway-evoked EPSPs in a CAl bask", (A-D) and a bistratified cell (E-H) . At lower stimulation intcnsities, bath application of the non-NMDA receptor antagonist CNQX (1 0 I'M) resulted in a dramatic reduction of Schaffer colIa.uallcommissural EPSPs (A,B,E,F). In the presence of CNQX, higher stimulation intensities uncovered a CNQX-resistant EPSP with slower rise and decay kinetics (C,G). This CNQX-insensitive ~-------------------------------20V EPSP could be largely blocked by bath application of the NMDA receptor antagonist AP5 (D,H; 30 f'M)- Note that all traces in A-H were obtained in a low concentration of bicuculJine (l I'M) to reduce polysynaptic IPSPs_ Membrane potential in A -71 mY, in B -64 mY, in C and 0 -67 mY, in E and F -88 mY, and in G and H -77 mY. Arrowheads denote stimulation artifacts. The cell in A-D is also illustrated in Figure 3 of the accompanying article. 302 BUHL ET AL. c A 2 ~M bicuculline control ~ 10mv 100 ms ·62 mV / 2 ~M bicuculline " control FIGURE 8. Short-latency IPSPs in basket cells are mediated by GABAA receptors. In this basket cell the Schaffer collateral/commissural compound postsynaptic potential comprised a short-latency EPSP, which was followed by a fast IPSP (asterisks) and a late IPSP (solid square). The fast IPSP reversed around -66 mV (A), suggesting that chloride is the major charge carrier. (B) Addition of initially 1 I'M (middle trace) , followed by 2 I'M of the GABAA recep- tor antagonist bicuculline methochloride to the bath, resulted in a reduction of the early IPSP and a concomitant increase of the late IPSP amplitude. Subsequently, the voltage dependency of the predominating late LPSP (C; solid square) was explored. Whereas the reversal of the small remaining early IPSP remained unchanged (C; asterisk) , the late IPSP reversed around -99 mY, indicating the involvement of GABA s receptors. (Fig. 5F,L; - 69.0 ::':: 2.S vs. -72.0 ::':: 2.0 mY). T he peak latency of the late component of the compound rpsp was 135 ::':: 29 ms in basket cells and 137 ::':: 17 ms in bistratified cells. T he reversal of the late rpsp appeared to be at rather hyperpolarized membrane pote ntials (approx. - 90 m y), although this parameter was difficul t to determine unless its amplitude was enhanced fo llowing the pharmacological blockade of GABAA receptors (Fig. SC). The efficacy of rps ps to inhibit firing of inhibitory neurons wa., tested by delivering a shock to the Schaffer/collatera l co mmissural pathway during depolarization-induced repetitive firi ng in bo th basket and bistratified cells (F ig. 6A,C). Initially all cells responded with one to twO short-latency action potentials, followed by a hyperpolarizing IPSP, wh ich was effective in suppress ing fir ing for periods exceed ing 100 ms. Control responses at the same current intensity (Fig. 6B,0) were also a.nalyzed to ascertain that the quiescent period was not due to a prolonged AHP followi ng a burst-li ke discharge. duce or completely elimi nate the evoked EPSp (Fig. 7 B,F). In the presence of CNQX, a substantial increase of the stimulation intensity in conj unction with membrane depolarization could serve to uncover a residual EPSp with slower kinetics (Fig. 7C,G) . T his residual co mpo nent proved ro be sens itive to bath application of the NMDA receptor a.ntagonist M 5 (30 JLM ; Fig. 70 ,H). Both the time course a.nd reversal potential of the early phase of Scha.ffer collateral/commissural pathway-evoked rpsps suggest that at least part of the compo und postsynaptic response is med iated by GABAA reccprors (Fig. SA). This notio n, however, could only be adequately verified in basket cells (n = 2) . In the illustrated example, bath applicatio n of initially I JLM of the GABAA receptor a.ntagonist bicuculline resulted in a substantial reduction of the fast IPSP, whereas 2 JLM diminished mOSt of the early hyperpolarization (Fig. SB). Interestingly, the late IPSP nOt only remained, but also grew in amplitude co ncomitant with increasing GABA A receptor blockade. Further hyperpolarization revealed that the bicucuIli ne-resistant IpSP reversed around - 99 mV (Fig. 8C). Amino Acid Receptor Pharmacology Scha.ffer collateral/commissural pathway-evoked EpSPs in both cell classes invariably showed a conventio nal voltage dependence (Fig. 5F,L), with their amplitudes increasing at more hyperpolarized membrane potentials. Such EpSPs were pharmacologically explored in th ree basket and three bistratifi ed cells using subthreshold stimulatio n intensities (Fig. 7 A and E). After monitoring the control responses for > I 0 min, the slices were superfused with 10 JLM of the non-N-methyl-D-aspartate (NMDA) receptor a.ntagonist CNQX, which could either substantially re- DISCUSSION Comparative Physiology of Hippocampal and Cortical Interneurons T here is general agreement that, in principle, it is possible to physiologically d istinguish a substantial fraction of hi ppocampal interneurons from principal cells by virtue of their distinct membrane and firing properties. Differences from principal cells were INTERNEURON PROPERTIES IN RAT HiPPOCAMPUS reported with respect to membrane time constants, membrane rectification. action potential duration, spike frequency adaptation , as well as afterpotentials (Ashwood et al .. 1984; Schwartzkroin and Kunkcl , 1985; Misge1d and Frotscher, 1986; Lacaille and Williams. 1990; Scharfman et a1., 1990; Buhl et al., 1994a,b; 1995). Moreover. it was also noted that interneurons as st/ch may be physiologically heterogeneous (Kawaguchi and Hama . 1988; Lacaille and Schwarrzkroin, 1988). However, since the sample in these studies presumably originated from an anatomically heterogeneous pool of local-circuit neurons. it has remained unresolved whether the noted differences were due to variabiliry within or across classes of interneurons. Indeed, recent observations on hippocampal axo-axonic cells, defined by their efferent connectiviry, indicated a surprising variery of firing patterns and afterpotentials in response to depolarizing current pulses (Buhl et al. , 1994b) . T he present study corroborated this finding by revealing a similar degree of inter-individual heterogeneiry within the basket and bistratifled cell classes. The majoriry of neurons do not correspond to the rather firm ly established concept of most interneurons being non-adapting, wide-band transformators of in co ming excitation , generally lacking complex afterpotentials (Connors and Gutnick, 1990; Hamill et al. . 1991; Scharfman, 1992). Only a fraction of basket and bimatifled cells in our sample displayed such properties. With regard to the remainder, the app31'ent discrepan cies to previous studies may be resolved, since, in the absence of detailed morphological verification, the sanl pling of putative local-circuit neurons in earlier studies could have been heavil y biased toward those displaying properties traditionall y associated with interneurons. Despite th e aforementioned variabiliry of physiological properties within given classes of hippocampal interneurons, a statistica l comparison berween basket and bistratified cells revealed a number of differences, among which spike duration and membran e time constant reached the level of statistical signifi cance. In this respect, very similar parameters were recently found to segregate rwo populations of rat neocortical layer V interneurons, referred to as "fast-spiking" and "low-threshold spike (LTS)" cells, showing prominent differences in their membr311e time co nstants, action potential duration , and input resist311ce (Kawaguchi, 1993; Deuchars and T homson, 1995). In a similar way to cortical "fastspiking" cell s, their hippocampal equivalents have been also shown to contain the calcium-binding protein parvalbumin (Kawaguchi et .1.1., 1987; Kawaguchi and Kubota, 1993). the latter being a marker for hippocampal basket 311d axo-axonic cells (Kosaka et al., 1987) . Regarding their membr311e and firing properties. the group of bistratified cells may correspond to cortical "LTS cells. " This notion is further supported by the observation that, like the bisrratified cell illustrated in Figure 2E 311d F, LTS cells consistently fire low-threshold spikes at hyperpolarized membr311e potenti als (Kawagucl1i, 1993) and contain the calcium binding protein calbindinD28k (Kawaguchi and Kubota. 1993), the latter being a marker for cortical interneurons with an efferent target profile enriched in dendritic shafts 311d spines (DeFelipe et al. . 1989). Finally, further similarities berween co rtical LTS cells and hippocampal bisrratifled cells were noted by S,k et al. (1995), who demonstrated calbindin D28k immunoreacriviry in a bistratifled cell labeled in vivo. However. the degree of homology 303 berween these rwo classes of local-circuit neurons requires furth er assessment, owing to the recent discovery of other cortical interneurons. such as regular spiking non-pyramidal cells. with an overlapping spectrum of physiological properties (Kawaguchi, 1995). Schaffer Collateral/Commissural Activation of Basket and Bistratified Cells Previous studies predicted that certain hippocampal interneurons, such as the dentate MaPI' cell (Han et al ., 1993), are predominantly activated in a feedforward manner, because of the complete spatial segregation of their dendrites from the recurrent axon collaterals of principal cells. In contrast, another distinct rype of hippocampal interneuron , irnmunopositive for mGluR 1Cl' as well as so matostatin and projecting to the stratum lacunosummoleculare in rhe CA1 area (Baude et al., 1993; McBain et al., 1994). has been shown to receive mainly recurrent pyramidal cell input (Blasco-Ibanez and Freund. 1995; Maccaferri and McBain, 1995). Although basket cells in the CA3 and CA 1 regions of Ammon 's horn are known to be involved in tecurrent microcircuits (Gulyas et aI. , 1993a.b; Buhl et aI., 1994.1.). data presented above provide clear evidence that CA 1 basket cells are also activated by at least one of the major extrinsic excitatory inputs. the Schaffer collateral/commissural pathway. Likewise. bistratifled an d axo-axonic cells (Buhl et aI., 1994b) are also in volved in fcedforward mi crocircuits. Although the latter classes of pyra midal cell layer interneurons possess a relatively l31'ge proportion of their dendrites deeply invading the oriens-alveus border regio n. where they mingle with the bulk of pyramidal cell axon collaterals (Buhl et aI., 1994b; Halasy et al .• 1996), unequi vocal evidence is as yet missing as to whether these neurons also partici pate in recurrent . . . micrOCirCUits. Both the voltage dependence and rhe fast kinetics of compound EPSPs resulting from the bulk stimularion of Schaffer collateral/co mmissural afferents indicate that these responses are largely medi ated by AMI'A-rype glutamate receptors. And indeed, orthodromically elicited EI'SPs in both basket and bistratified cells were sensitive to the action of a bath applied non-NMDA glutamate receptOr antagonist. Moreover. ir is reasonable to assume that much of the early AMI'A receptor-mediated EPSP was of monosynaptic origin, owing to the considerably longer latency of disynaptically (recurrent) elicited EI'SPS in CA1 interneurons (Maccaferri 311d McBain. 1995). However, it also appears that some of the response may have been mediated by NMDA receptors. as indicated by the slow kinetics as well as the sensitiviry of the residual EI'SP to a bath-applied NMDA receptor antagonist. T hese results thus complement previous work providing pharmacological evidence for the presence of NMDA receptors on anatomically identified CA 1 axo-axo nic cells (Buhl et al. . 1994b). Moreover, data on hippocampal interneurons in general have repeatedly prompted very simi lar conclusions (Sa], et al. , 1990; Lacai lle, 1991 ; McBain and Dingledine, 1993; Perouansky and Yaari, 1993). Interestingly, basket and bistratifled cells showed a significant difference in the rise time of Schaffer collateral/co mmissurally elicited EPSPs. Quite conceivably this EPSP par31Jlerer may have 304 BUHL ET AL. been, at least in part, determined by the equally prominent di fference in the membrane time constants of basket and bistratifl ed cells. Several other facto rs may have shaped the £PSP kinetics. among them variabili ty in the pro perties of AMPA receptors (Li vsey a nd Vi cini , 1992; Livsey et al ., 1993) and a differential d egree of electrotoni c attenuatio n (Thurbo n et al ., 1994; reviewed in Spruston et al. . 1994) . With respect to the fas t rise time ofbasket cell £ PSPs. the jimctional consequence, following the acti vatio n of excitatory synaptic affetents. will be that basket cell action potentials will generall y precede those of bistratifled cells. H ence basket cell-evoked IPSPs will presumably precede those mediated by bistratified cells in postsynaptic pyramidal cells, and it is perhaps no coincidence that bas ket cell- mediated unitary [PS Ps also have significantly faster kinetics when co mpared to bisttatifled cell effects (Buhl et aI. , 1994 a). It therefote appeats that two independent factots favor basket cells to be rather effi cient in rapidly prov iding a perisomatic increase in membrane conductance. In co ntrast. the tempo ral properties o fbistratifled cell-evoked lPSPs may render them mo re effective in shunting N MDA receptor-m ediated conductances (Staley and Mody, 1992). GABAergic Control of Basket and Bistratified Cells Previo us studies, using either dual recording techniques o r extracellular bulk stimulatio n of synaptic afferents, demonstrated t1ut physiologically and /o r anatomicalIy identified interneurons receive inhibitory input fro m other, as yet unidentified , local-circui t neurons (Misgeld and Frotscher, 1986; Lacaille et al ., 1987; Scharfma n et aI. , 1990 ; LacaiUe, 199 1; Buhl et al. 1994 b). In this respect. bas ket and bistratifled cells corres po nded well to this general pattern . sin ce Sch.ffer coll ateral /co mmissural flber acti vatio n elicited biphasic [PSPs which were pres um ably mediated by both G ABA A and GABA~ teceptors. Because basket (D eller et aI. , 1994) and bistratified cells are directl y targeted by excitatory extrinsic afferents and have been shown to target other intern euro ns synaptically (Buhl et aI. , 1994a; Sfk et al ., 1995; Halasy et aI. , 1996), they may not o nly have a key role in the feedfo rward co nrro l of principal cells (Buzsaki , 1984; Cobb et al ., 1995), but also parti cipate in shaping neuronal acti vity across the GABAergic network (Buzsa ki and C hrobak, 1995) . Acknowledgments The authors thank P. Jays, F.D . Kenn edy, D . Latawiec, and J .D .B. Roberts for expert techni cal support. L. Lyford for secretarial assistance, and S.c. C obb. S.V . Karnup . and V.V. Stezhka fo r contributing some of the experimental data. K.H . was suppo rted by the W ellcome T rust. REFERENCES Ashwood T] , Lancaster B. Wheal HV (1984) In vivo and in vitro studies on putati ve inrcrncurom:,s in me rat hippocam pus: possible mediato rs of feed- forward inhibition. Brai n Res 293:279- 29 1. BaudcA. N usser Z, Roberts ] DB. Mul vi hill E. Mcllhinney RA] , Somogyi P (1993) T he metabo tro pic glutamate receptor (mG luR 1(X) is concentrated at pcrisynapti c membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 11 :77 1-787. Bl asco-I ba ncz JM. he und TF (1995) Synaptic input of ho ri zontal interneuro ns in stratum oriens of rhe hippocampal CA l subfield : structural basis of feed-back activation. Eu r] Neurosci 7:2 170-2 180. Buhl EH. Halasy K. Somogyi P (l994a) Diverse sou rces of hi ppocampal unitary inhibitory posrsynaptic potentials and the Ilumber of synaptic rclease sites. Nature 368:823- 828. Buhl EH , Han Z-S. Lorinczi Z. Srczhk. VV, Karnllp SV, Somogyi P (1994b) Physiological pro perties of anatomically idenrified axoaxon ic cells in rhe rat hippocampus. J Neurophysiol 7 1: 1289- 1307. Buhl EH. Cobb SR, Halasy K, Somogyi P (1995) Properties of uni tary IPSPs evoked by anatomically identified bas ket cells in the ra t hippocampus. Eur ] Neurosci 7: 1989-2004. lluzsaki G (1984) Feed-forward inhibition in the hippoca mpal formarion . Prog Neurobiol 22: 13 1- 153. Buzsaki G. C hrobak JJ (1995) T emporal structure in spacially organized neuronal t:nsembles: a role for imerneufonal networks. Curr D pin Nellrobiol 5:504-5 10. Cobb SR. Buhl EH. Halasy K. Paulsen 0 , Somogyi P (1995) Synchroni7--ari on of neuronal aC[i viry in hippocampus by individual GABAergic interneurons. Nature 378:75-78. Connors BW. Gurnick MJ (1990) Intrinsic fi ring patterns of di verse neoco rtic.1l neurons. Trends Neurosci 13:99- 104. DeFelipe ] . Hendry SHC. ]ones EG (1989) Synapses of doublc bouquet cells in mon key ccrcbra1 cortex visualized by calbindin immunoreacrivity. Brain Res 503:49- 54. Deller T . Nirsch R. Frorscher M (1994) Associational and com missural afferenrs of parvalbumin -immun o reacri vc neurons in the ra t hippocampus: a combined immunocytochem ical and PHA-L srud y. J Comp Neurol 350:61 2-622. Deuchars J, Thomson AM (1995) Single axon f."r IPSPs el icited by a sparsely spiny interneuron in rat neocortex. Neuroscience 65:935942. Gulyas AI . T 6th K. Danos p. Freu nd T F (1 99 1) Subpopuiations of GABAe rgic neurons containin g parvalb umin , calbi nd in D28k, and cholecystokin in in the rat hippocampus. J Camp Ncurol 3 12:37 1378. Gulyas AI , Miles R. Slk A. T6rh K. Tamamaki N. Freund TF (l993a) Hippocampal pyramidal cells excite inhibitory neurons th rough a single release si te. Narure 366:683- 687. Gulyas AI, Miles R, Hajos N. Freund TF (1993b) Precision and variabiliry in postsynapric t. rger selection of inhibitory cells in the hi ppocampal CA3 region. Eur] Neurosci 5: 1729- 175 1. Halasy K. Somogyi P (1993) Subdi visions in the multiple GABAergic innervation of granule cel ls in th e den rate gyrus of rh c rat hip- pocampus. Eur J Neurosci 5:4 11 -429. Halasy K, Buhl EH. LorinC7.i Z. Tam;!s G. Somogyi I' (1 996) Synaptic ta rger selectivity and inpur of GABAergic basker and bimatified inte rncuro ns in the CA I area of the rat hippocampus. Hippocampus 6:306-329. Hami ll 0 1', H uguenard ]R. Prince DA (199 1) Patch-damp studies of voltage-ga tccl curn::nts in identified neuro ns o f the rat cerebral cor- tex. Cerebral COrtex 1:48-61 . Han ZS. Buhl EH. Larinczi Z. Somogyi P ( 1993) A high degree of spatial selecti vity in the axo nal and dend ri tic domains of physiologically ide ntified local-circuit neuro ns in th e dentate gyrus of the rat hip- pocam pus. Eur ] Neurosci 5:395-4 10. Kawaguchi Y (I993) Groupings of nonpyramidal and pyramidal cells with specific physiological and morphological characteristics in rat frontal cortex. ] Neurophysiol 69 :4 16-43 1. Kawaguchi Y. Ham" K (I988) Physiological heterogeneity of nonpyramidal cells in rat hippocampal CA 1 region. Exl' Brain Res 72:494502 . Kawaguchi Y (1995) Physiologica l subgro ups of non pyramidal cells with specific morphological characteristics in laye r 111111 of rar fro ntal cortex. ] Neurosci 15:2638-2655. INTERNEURON PROPERTIES IN RAT HIPPOCAMPUS Kawaguchi Y, Kubota Y (1993) Correlation of physiological subgroupings of nonpyram idal cel ls with parvalbumin- and calbindin D28k-immunoreactive neurons in layer V of rat frontal Cortex. J Neurophysio l 70:387-396. K1waguchi Y, Karsumaru H, Kosaka T , Heizmann CW, Hama K (1987) FaSt spiking cells in rat hippocampus (CAI region) contain the calcium-binding protein parvalbumin. Brain Res 4 16:369-374. Kosaka T , Kosaka K, T ateishi K, H amaoka Y, Yanaihara N , Wu J-Y, Hama K (1985) GABAergic neurons conraining CCK-8-like and/or VIP-like im,rnunoreacrivi ries in the rat hippocampus and dentate gyrus. J Comp Neurol 239:420--430. Kosaka T , Katsumaru H, Hama K, Wu J-Y, Heizmann CW (1987) GABAergic neurons containing the Ca2+ -binding protein parvalbumin in the rat hippocampus and dentate gytus. Brain Res 4 19: 119130. Lacaille J-C (1991 ) Postsynaptic potentials mediated by excitatory and inhibimry amino acids in inrerneurons of stratum pyramidale of the CAI region of rat hippocampal slices in vitro. J Neurophysiol 66: 1441-1454. b c.1ille J-C, Schwarrzkroin PA (1988) Srratum lacunosum-molecularc interneurons of hippocampal CAI region. I. Intracellular response characteristics, synapric res ponses, and morphology. ] Ne w·osci 8: 1400-1410. LacaiHe J-C, Williams S (1990) Membrane properties of interneurons in stratum o ri ens-alveus of the CA ! region of rat hippocampus in vitro. Neuroscience 36:349-359. Lacai lle J-C, MueHer AL, Kunkel DD, Schwartzkroin PA (1987) Local circuit interactions between oriens/alveus inrerneurons and CA I pyramidal ceHs in hippocampal slices: electrophysiology and morphology. J NellfOsci 7:1979-1993. Livsey cr, Vicini S (1992) Slower spontaneous excitatory postsynaptic currents in spiny ve rsus asp iny hilar neurons. Neuron 8:745-755. Livsey CT, Costa E, Vicini S (1993) Gluramare-acriv>fed currents in outside-out patches from spiny versus aspiny hilar neurons of rat hippocampal slices. J Neurosci 13:5324--5333. Maccaferri G , McBain Cj (1995) Passive propagation of LTD to stratum oriens-alveus inh ibitory neurons modulates the temporoam- monic input to the hippocampal CAI region. Neuron) 5: 137-145. McBain Cj , Dingledine R (1993) Heterogeneity of synaptic glutamate receprors on CA3 stratum-radiatum interneurones of rat hippocampus. J Physiol (Lond) 462:373-392 McBain Cj , DiChiara TJ , Kauer JA (1994) Activation of metabotropic glutamate receptors differentially affects twO classes of hippocampal interneurons and potentiates excitawry synaptic transmission. ] Neurosci 14:4433--4445. Misgeld U, Frotscher M (1986) Postsynaptic-GABAergic inhibition of non-pyramidaJ neu rons in the gu in ea-pig hippocampus. Neurosci- ence 19: 193- 206. Nitsch R, Soriano E, Frotscher M (1990) The parvalbumin-containing non pyramidal neurons in rhe rat hippocampus. Ana t Embryol (Berl) 181:413--4 25. Perouansky M, Yaari Y (1993) Kinetic properties of NMDA r«eptormediated synaptic currents in rat hippocampal pyramidal cells versus interneurones. J Physiol (Lond) 465:223- 244. Poncer J-C, Shinozaki H, Miles R (1995) Dual modulation of synaptic inhibition 305 by distinct metabo tropi c glutamate receptors in the rat hip- pocampus. J Physiol (Lond) 485:121 - 134. Sah P, H esrrin S, Nicoll RA (1990) Properties of excitatory postsynaptic currents recorded in vitro from rat hippoc1m pal interneurones. J Physiol (Lond) 430:605--616. Scharfman HE (1992) Differentiation of rat dentate neurons by morphology and electrophysiology in hippocampal slices: granule cells, spiny hilar cel ls and aspin y 'f.1sr-spiking' cells. In: The dentate gyrus and its ro le in seizures (Ribak CE, Gall CM, Mody 1, eds), pp 93- 109. Amsterdam: Elsevier. Scharfman H E, Kunkel DD, Schwarrzkroin PA (1990) Syna ptic connect ion s of dentate gra nule cells and hilar neurons: results of paired intracellu lar reco rdings and intracellu lar horseradish peroxida.'\e in- jections. Neuroscience 37:693- 707. Schwartzkroin PA, Kunkel DD (1985) Morphology of identified interneurons in the CAI regions of guinea pig hippocam pus. J Com p NeuroI232:205- 218. Schwarrzkroin PA, Mathers LH (1978) Physiological and morphological identification of a non pyramidal hippocampal cell rype. Brain Res 157: 1- 10. Sfk A, Penttonen M , Ylinen A, Buzs:iki G (1995) Hippocam pal CA ) interneurons: an 111 vivo intracellular labeling study. ] Neurosci 15: 6651--6665. Sloviter RS, N ilaver G (1987) Immunocytochemical loc.,lization of GABA-, cholecystokinin, vasoactive intestinal polypeptide-, and somarostarin-like immunoreact ivity in th e area denrat3 and hippocam- pus of the rat. J Comp Neurol 256:42--60. Somogyi P, Nu nzi MG , Gorio A, Smith AD (1983a) A new type of specific interneuron in the monkey hippocampus forming synapses exclusively with the axon initial segments of pyramidal cel ls. Brain Res 259:137- 142. Somogyi P, Sm ith AD , N unzi MG, Gorio A, Takagi H , W u J-Y (l983b) Glutamate dccarboxyla.l\c immunoreactivity in the hippocampus of the cat: distribution of immunoreactive synaptic terminals with special reference to the axon initial segment of pyramidal neurons. J Ne urosci 3: 1450-1468. Somogyi P, Hodgson Al , Smith AD, N unzi MG, Gorio A, Wu J-Y (1984) Different populations ofGABAergic neurons in the visual cortex and hippocampus of cat contain somatosta tin - or cholecystokinin - immunoreactive material. J Ne urosci 4:2590-2603. Somogyi P, Freund TF, Hodgson AJ , Somogyi J , Berollkas D, C hllbb IW (1985) Identified axo-axonic cells ate immunoteactive for GABA in the hippoc.'mpus and visual cortex of the C.1t. Brain Res 332:1 43-149. Soriano E, Frotscher M (1989) A GABAetgic axo-axonic cell in the fascia denrara contro ls rh e main excirarory hippocampal parh way. Brain Res 503: 170- 174. Spruston N , Jaffe DB, Johnsron D (1994) Dendritic attenuation of synap tic potentials and currents: the role of passive membrane prop- erties. Trends Neurosci 17:16 1- 166. Staley K), Mody I (J 992) Shunting of excit.rory input to dentate gyrus granule cells by a depolarizing GABAA receptor-mediated postsynaptic conductance. J Neurophysiol 68: 197-21 2. Thurbon D, Field A, Redman S (994) Electrotonic ptofiles of interneurons in stratum pyramidale of the CA 1 region of rat hippo- campus. J Neurophysiol 71: 1948-1958.
© Copyright 2026 Paperzz