Precalc.- Sums/Difference and Double Angles Practice Name: ---------------------- In Problems i-20, find the exact value of each expression. 5. cos-{- ~) . 9. tan[ sin-{- ( Jv3) v;)] 1L sec tan- 1 14. cos( sin- ( . 27T) 1 12. esc( sin-1 7 20. cos-{ cos ; ) 18. cos-{ tan : ) 1 . . If sin 8 = -3, 8 in quadrant II, find the exact value of: (a) cos 8 Find the exact value. Show all work clearly. Box your fmal answer. 23. tan15Y -tan20° 1+ tan15Y tan20° 25. cos[sin-• (-!)- tan-• ( 27. 29 .. If 1 2 a) sin2B . (2 Sill 7r cosB =-,with--~ B ~ 0 2 ~) ~) 3 17. sin-1 cos3 21. 4. sm. -!( - -21) 3. tan-1 1 2. cos-1 0 1. sin-1 1 COS -1 5) U 1 1r 4 2 and sin/}=-, withO ~ fJ ~- b) tan( e- /3) ~ )] then find: c) cos2/} Identities II - Verify each identity. Show all steps clearly. 1. '"> .) . sec8 1 +sec8 I • 1-Sill 2 = 1-cos8 sin 8 COS 8 8 =--'---tan8 2. sin(a+P) =tana+tanp cosacosp 4. _ l-4sin 2 8+4sin 4 8 _ 2 1 4 4 - 2 cos 8 cos 8-sin 8 Precalc.- Sums/Difference and Double Angles Practice In Problems j -20, find the exact value of each expression. 1. sin-1 1 -rl/;r s. cos-1( - ~) 9. tan[sin- 1 (- 2. CJfl((p . cos- 1 0 1\j)- -"'?) 6. tan-1 (-VJ) ~) J -D 10. tan[ cos-{-~)] ~ 0 ') J ,. 17. sin-1 1\jJ 21. -~ (a) . 2r.) (cos3 If sin 8 = .!_ 3' cosB ~ - IS. tan[sin-{ -i)J -$ 19. tan-r( tan 1r(L/ 7 ;) - Bin quadrant II, find the exact value of: ;> ,r;;_ (b) sin(o + ~) :: 3 Find the exact value. Show all work clearly. Box your final answer. 23. tan 155° -tan 20° 1 +tan155" tan20° +0-Y\ ( 0( - ~\' -h..y')( ~ S5~ bJo) +z._n ( , 3s) 27. sin(2cos- 1 2.) 12 ~11 , 1I 7 s·,n((}· ~) ,, 5 b) tan ( B- p) -= +c If', e - -tz,_.v, f; c) cos2P :: Identities II - Verify each identity. Show all steps clearly. 1.• sece 1-cose =-1+ sec e sin 2 e -L ~~- ~+ ..L. (oSt:r CoStJ :::: 2. sin(a + P) =tan a+ tan,B cosacosfJ I! \, \ ! I I b If \.._..,) I l I1 l j I l 'l Hl -----'44'- I -.: : : S ~ V!-t:T (OS -€J -----~-~-~- ---- -o,Jf 1-.p <L if\A~; f\ j (r;;s{j \ ''\; ll \V -:: cos-:.e (J \ j It '"'--.)
© Copyright 2025 Paperzz