Integration by Parts Academic Resource Center What Kind of Problems Can Be Applied - This technique can be applied to a wide variety of functions and is particularly useful for integrands involving products of algebraic and transcendental functions. General Theorem If u and v are function of x and have continuous derivatives, then ∫u dv = uv - ∫v du Example 1 Evaluate ∫sec3x dx Set u = sec x and dv = sec2x dx So du = secxtanx dx v = tan x then ∫sec3x dx = secxtanx - ∫secxtan2xdx = secxtanx - ∫secx(sec2x-1)dx = secxtanx - ∫sec3xdx + ∫secxdx So, 2∫sec3x dx = secxtanx + ln|secx + tanx| + C ∫sec3x dx = (1/2)(secxtanx + ln|secx + tanx| + C) Example 2 Evaluate ∫arcsinx dx Let u = arcsinx and So du = 1/√(1-x2)dx dv = dx v=x then ∫arcsinx dx = xarcsinx - ∫x/√(1–x2) dx = xarcsinx + √(1-x2) + C Guidelines for Integration by Parts 1. Let dv be the most complicated portion of the integrand that fits a basic integration rule. Then u will be the remaining factor(s) of the integrand. 2. Let u be the portion of the integrand whose derivative is a function simpler than u. Then dv will be the remaining factor(s) of the integrand. Common Integrals using Integration by Parts 1. For integrals of the form ∫xn eax dx ∫xn sin(ax) dx ∫xn cos(ax) dx Let u = xn and dv = eax dx, sin(ax) dx, cos(ax) dx 2. For integrals of the form ∫xn lnx dx ∫xn arcsin(ax) dx ∫xn arctan(ax) dx Let u = lnx, arcsin(ax), or arctan(ax) and dv = xn dx 3. For integrals of the form ∫eax sin(bx) dx ∫eax cos(bx) dx Let u = sin(bx) or cos(bx) and dv = eax dx Example 3 Evaluate ∫lnx dx Let u = lnx and dv = dx So du = 1/x dx v=x Then ∫lnx dx = xlnx - ∫x(1/x)dx = xlnx – x + C Example 4 Evaluate ∫exsinx dx Let u = sinx and So du = cosx dx dv = ex dx v = ex Then ∫ex sinx dx = exsinx - ∫excosx dx = exsinx - (excosx - ∫ex(-sinx) dx) = exsinx - excosx - ∫exsinx dx So, 2∫exsinx dx = exsinx – excosx ∫exsinx dx = (1/2)(exsinx - excosx) + C Example 5 Evaluate ∫x2sin(4x) dx Let u = x2 and So du = 2x dx dv = sin(4x) dx v = -cos(4x)/4 Then ∫x2sin(4x) dx = -(x2cos(4x))/4 - ∫(-cos(4x)/4)(2x) dx = -(x2cos(4x))/4 + (1/2)∫(xcos(4x) dx = -(x2cos(4x))/4 + (1/2)(xsin(4x)/4 - ∫sin(4x)/4 dx) = -(x2cos(4x))/4 + (1/2)(xsin(4x)/4 + cos(4x)/16) + C Tabular Method • www.matharticles.com • Tabular Integration by Parts • More on Tabular Integration by Parts
© Copyright 2026 Paperzz