Trigonometric Integrals

Trigonometric Integrals
1. ∫ 𝑠𝑖𝑛3 π‘₯ π‘π‘œπ‘  2 π‘₯ 𝑑π‘₯
= ∫ sin π‘₯ 𝑠𝑖𝑛2 π‘₯ π‘π‘œπ‘  2 π‘₯ 𝑑π‘₯ split the odd trig power sin3x into sin x sin2x
= ∫ sin π‘₯ (1 βˆ’ π‘π‘œπ‘  2 π‘₯) π‘π‘œπ‘  2 π‘₯ 𝑑π‘₯
replace sin2x = 1 – cos2 x
2
2
= ∫ sin π‘₯ (1 βˆ’ π‘π‘œπ‘  π‘₯) π‘π‘œπ‘  π‘₯ 𝑑π‘₯
the integral now has a single sin x
2
2
= ∫(1 βˆ’ 𝑒 ) 𝑒 𝑑𝑒
Use the substitution u = cos x
2
4
= ∫ 𝑒 βˆ’ 𝑒 𝑑𝑒
du = sin x dx
1 3
1 5
= 3𝑒 βˆ’ 5𝑒 + 𝐢
1
=
3
πœ‹
1
𝑠𝑖𝑛3 π‘₯ βˆ’ 5 𝑠𝑖𝑛5 π‘₯ + 𝐢
replace the u with sin x
πœ‹
2. ∫02 𝑠𝑖𝑛5 π‘₯ π‘π‘œπ‘  7 π‘₯ 𝑑π‘₯
= ∫02 sin π‘₯ 𝑠𝑖𝑛4 π‘₯ π‘π‘œπ‘  7 π‘₯ 𝑑π‘₯
split the odd trig power sin5x into sin x sin4x
πœ‹
2
= ∫0 sin π‘₯ (1 βˆ’ π‘π‘œπ‘  2 π‘₯)2 π‘π‘œπ‘  7 π‘₯ 𝑑π‘₯
replace sin4x = (sin2x)2 = (1 – cos2 x)2
= ∫02 sin π‘₯ (1 βˆ’ π‘π‘œπ‘  2 π‘₯)2 π‘π‘œπ‘  7 π‘₯ 𝑑π‘₯
the integral now has a single sin x
πœ‹
0
= ∫1 (1 βˆ’ 𝑒2 )2 𝑒7 𝑑𝑒
Use the substitution u = cos x
du = sin x dx
when x = 0 u = cos (0) = 1
0
= ∫1 (1 βˆ’ 2𝑒2 + 𝑒4 ) 𝑒7 𝑑𝑒
1
= ∫0 𝑒7 βˆ’ 2𝑒9 + 𝑒11 𝑑𝑒
when x = πœ‹2 u = cos(πœ‹2) = 0
𝑒=0
𝑒=1
1
1
1
= (0) βˆ’ (8 (1)8 βˆ’ 5 (1)10 + 12 (1)12 )
1
=
8
1
1
𝑒8 βˆ’ 5 𝑒10 + 12 𝑒12 ]
1
= βˆ’ 120
1
3. ∫ 𝑠𝑖𝑛2 (πœ‹π‘₯) π‘π‘œπ‘  5 (πœ‹π‘₯) 𝑑π‘₯ = ∫ πœ‹ 𝑠𝑖𝑛2 𝑀 π‘π‘œπ‘  5 𝑀 𝑑𝑀
Use the substitution w
1
= ∫ πœ‹ 𝑠𝑖𝑛2 𝑀 π‘π‘œπ‘  4 𝑀 cos π‘₯ 𝑑𝑀
1
=
πœ‹
1
=
πœ‹
2
dw
4
= πœ‹π‘₯
= πœ‹π‘‘π‘₯
1
πœ‹
∫ 𝑠𝑖𝑛 𝑀 π‘π‘œπ‘  𝑀 cos π‘₯ 𝑑𝑀
dw = 𝑑π‘₯
∫ 𝑠𝑖𝑛2 𝑀 (1 βˆ’ 𝑠𝑖𝑛2 𝑀)2 cos π‘₯ 𝑑𝑀
We can now use the substitution u = sin w
πœ‹
4. ∫02 𝑠𝑖𝑛2 π‘₯ 𝑑π‘₯
πœ‹
1
= ∫02 2 (1 βˆ’ π‘π‘œπ‘ 2π‘₯) 𝑑π‘₯
replace sin2x = ½ (1 – cos (2x))
= ∫02 (2 βˆ’ 2 π‘π‘œπ‘ 2π‘₯) 𝑑π‘₯
You can now integrate
πœ‹
1
1
πœ‹
5. ∫02 𝑠𝑖𝑛4 π‘₯ 𝑑π‘₯
πœ‹
∫02 [𝑠𝑖𝑛2 π‘₯ ]2 𝑑π‘₯
replace sin4x = (sin2x)2
=
∫0 [2 (1 βˆ’ π‘π‘œπ‘ 2π‘₯)] 2 𝑑π‘₯
replace sin2x = ½ (1 – cos (2x))
=
∫02 4 [(1 βˆ’ π‘π‘œπ‘ 2π‘₯)] 2 𝑑π‘₯
=
∫02 4 (1 βˆ’ 2π‘π‘œπ‘ 2π‘₯ + π‘π‘œπ‘  2 2π‘₯)𝑑π‘₯
=
∫02 4 βˆ’ 2 π‘π‘œπ‘ 2π‘₯ + 4 π‘π‘œπ‘  2 2π‘₯ 𝑑π‘₯
=
∫02 4 βˆ’ 2 π‘π‘œπ‘ 2π‘₯ + 4 2 (1 + π‘π‘œπ‘ 4π‘₯) 𝑑π‘₯ replace cos22x = ½ (1 + cos (4x))
=
∫02 4 βˆ’ 2 π‘π‘œπ‘ 2π‘₯ + 8 + 8 π‘π‘œπ‘ 4π‘₯ 𝑑π‘₯
=
∫02 8 βˆ’ 2 π‘π‘œπ‘ 2π‘₯ + 8 π‘π‘œπ‘ 4π‘₯ 𝑑π‘₯
=
πœ‹
2
1
πœ‹
1
πœ‹
1
πœ‹
1
1
1
πœ‹
1
1
11
πœ‹
1
1
1
πœ‹
3
1
1
πœ‹
1
You can now integrate
πœ‹
6. ∫02 𝑠𝑖𝑛2 π‘₯ π‘π‘œπ‘  2 π‘₯ 𝑑π‘₯ = ∫02 (𝑠𝑖𝑛π‘₯ π‘π‘œπ‘ π‘₯)2 𝑑π‘₯
πœ‹
2
1
= ∫02 (2 𝑠𝑖𝑛2π‘₯) 𝑑π‘₯
πœ‹
2
1
𝑠𝑖𝑛2 2π‘₯ 𝑑π‘₯
4
πœ‹
11
∫02 4 2 (1 βˆ’ π‘π‘œπ‘ 4π‘₯)
πœ‹
1
1
∫02 8 βˆ’ 8 π‘π‘œπ‘ 4π‘₯ 𝑑π‘₯
= ∫0
=
=
replace sin x cos x = ½ sin (2x)
𝑑π‘₯
1
7. ∫ π‘₯π‘π‘œπ‘  2 π‘₯ 𝑑π‘₯ = ∫ π‘₯ (1 + π‘π‘œπ‘ 2π‘₯) 𝑑π‘₯
2
1
replace sin22x = ½ (1 - cos (4x))
You can now integrate
replace cos2x = ½ (1 + cos (2x))
1
= ∫(2 π‘₯ + 2 π‘₯ π‘π‘œπ‘ 2π‘₯) 𝑑π‘₯
1
1
= ∫ 2 π‘₯ 𝑑π‘₯ + ∫(2 π‘₯ π‘π‘œπ‘ 2π‘₯) 𝑑π‘₯
1
1
You can now integrate using integration by parts on ∫(2 π‘₯ π‘π‘œπ‘ 2π‘₯) 𝑑π‘₯ with f(x) = 2 π‘₯
𝑠𝑖𝑛5 π‘₯
8. ∫ π‘π‘œπ‘ π‘₯ 𝑑π‘₯ = ∫
√
𝑠𝑖𝑛4 π‘₯ sin π‘₯
𝑑π‘₯
βˆšπ‘π‘œπ‘ π‘₯
2
(𝑠𝑖𝑛2 π‘₯) sin π‘₯
= ∫
= ∫
= ∫
= ∫
split sin5x into sin4x sin x
𝑑π‘₯
βˆšπ‘π‘œπ‘ π‘₯
2
(1βˆ’π‘π‘œπ‘ 2 π‘₯) sin π‘₯
βˆšπ‘π‘œπ‘ π‘₯
2
(1βˆ’π‘’2 )
𝑑𝑒
βˆšπ‘’
1βˆ’2𝑒2 +𝑒4
= ∫ (𝑒
1
𝑒2
1
βˆ’
2
𝑑π‘₯
Use the substitution u = cos x
𝑑𝑒
3
`
7
βˆ’ 2𝑒2 + 𝑒2 ) 𝑑𝑒
You can now integrate – remember to replace the u = cos x
du = sinx dx
9. ∫ π‘π‘œπ‘  2 π‘₯ π‘‘π‘Žπ‘›5 π‘₯ 𝑑π‘₯
𝑠𝑖𝑛5 π‘₯
= ∫ π‘π‘œπ‘  2 π‘₯
= ∫
= ∫
= ∫
= ∫
= ∫
𝑑π‘₯
π‘π‘œπ‘ 5 π‘₯
𝑠𝑖𝑛4 π‘₯ 𝑠𝑖𝑛π‘₯
π‘π‘œπ‘ 3 π‘₯
𝑑π‘₯
(𝑠𝑖𝑛2 π‘₯)2 𝑠𝑖𝑛π‘₯
π‘π‘œπ‘ 3 π‘₯
𝑑π‘₯
(1βˆ’π‘π‘œπ‘ 2 π‘₯)2 𝑠𝑖𝑛π‘₯
π‘π‘œπ‘ 3 π‘₯
(1βˆ’π‘’2 )2
𝑒3
𝑑π‘₯
𝑑𝑒
1βˆ’2𝑒2 +𝑒4
𝑒3
𝑑𝑒
2
= ∫ (π‘’βˆ’3 βˆ’ 𝑒 + 𝑒) 𝑑𝑒
1
1
= βˆ’ 2 π‘’βˆ’2 βˆ’ 2 ln(𝑒) + 2 𝑒2
1
1
= βˆ’ 2𝑒2 βˆ’ 2 ln(𝑒) + 2 𝑒2
1
1
= βˆ’ 2π‘π‘œπ‘ 2 π‘₯ βˆ’ 2 ln(π‘π‘œπ‘ ) + 2 π‘π‘œπ‘  2 π‘₯
1
1
= βˆ’ 2 𝑠𝑒𝑐 2 π‘₯ βˆ’ 2 ln(π‘π‘œπ‘ ) + 2 π‘π‘œπ‘  2 π‘₯ + 𝐢
10.
∫ tan π‘₯ 𝑠𝑒𝑐 3 π‘₯ 𝑑π‘₯
= ∫ tan π‘₯ 𝑠𝑒𝑐 2 π‘₯ 𝑠𝑒𝑐π‘₯ 𝑑π‘₯
= ∫ 𝑒2 𝑑𝑒
1
= 3 𝑒3 + C
=
1
3
split the odd sec3x into sec x sec2x
Use the substitution u = 𝑠𝑒𝑐π‘₯
du = sec x tan x
𝑠𝑒𝑐 3 π‘₯ + C
11.
∫ π‘‘π‘Žπ‘›2 π‘₯ 𝑑π‘₯
= ∫(𝑠𝑒𝑐 2 π‘₯ βˆ’ 1) 𝑑π‘₯
= tan x – x + C
12.
∫ sec π‘₯ π‘‘π‘Žπ‘›3 π‘₯ 𝑑π‘₯
= ∫ sec π‘₯ tan π‘₯ π‘‘π‘Žπ‘›2 π‘₯ 𝑑π‘₯
= ∫ sec π‘₯ tan π‘₯ (𝑠𝑒𝑐 2 π‘₯ βˆ’ 1) 𝑑π‘₯
= ∫(𝑒2 βˆ’ 1) 𝑑𝑒
1
= 3 𝑒3 βˆ’ 𝑒
=
1
3
𝑠𝑒𝑐 3 π‘₯ βˆ’ 𝑠𝑒𝑐π‘₯ + 𝐢
replace tan2x = sec2x – 1
Use the substitution u = 𝑠𝑒𝑐π‘₯
du = sec x tan x