01. 06. 2011 EAF-2011 Prague 197Au(n,γ)198Au cross-section in Maxwellian-like neutron spectrum A. Krása, A. Plompen, G. Georginis European Commission – JRC – IRMM, Geel, Belgium G. Feinberg, M. Friedman, A. Shor, Y. Eisen, D. Berkovits, M. Paul Nuclear Research Centre Soreq, Yavne, Israel & Hebrew University, Jerusalem Joint Research Centre (JRC) IRMM - Institute for Reference Materials and Measurements Geel - Belgium http://irmm.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Outline 01. 06. 2011 EAF-2011 Prague • Background and motivation • Experimental setup • Time of Flight • Activation • Summary 2/38 7Li(p,n)7Be 3/38 • Q = -1644.4 keV • Ethres = 1880.8 keV maximal neutron emission angle 01. 06. 2011 EAF-2011 Prague 90° 7Li(p,n)7Be 80° 70° 60° 50° 40° 30° 20° 10° 0° 1880 1890 1900 1910 Proton energy [keV] 1920 7Li(p,n)7Be 01. 06. 2011 EAF-2011 Prague 4/38 • for Ep = 1912 keV: - neutron spatial distribution: cone with the emission angle 60° - neutron energy distribution: similar to Maxwellian Φn ~ En exp(- En / kT) at kT = 25 keV (except En > 110 keV) • this temperature is close to that of outer shells of asymptotical giant branch stars, where heavier elements are created via s-process 7Li(p,n)7Be 5/38 01. 06. 2011 EAF-2011 Prague • widely used to activate nuclides involved in s-process ⇒ neutron capture Maxwellian-averaged cross-section (MACS) at kT = 25 keV • Au – standard neutron fluence monitor sample gold foil • Ratynski & Käppeler: σ (197Au(n,γ)) = (586 ±8) mb 7Li(p,n)7Be 01. 06. 2011 EAF-2011 Prague 6/38 • to measure MACS for special cases, higher proton beam (~ mA) intensities necessary • possible with RF accelerators, but broader proton energy distribution, which affects neutron spatial, energy distributions and yields ⇒ new standard for neutron fluence monitoring required Aim 01. 06. 2011 EAF-2011 Prague 7/38 • investigate effects of proton beam with broad-energy spread on emitted neutrons and σ (197Au(n,γ)) • two cases compared: - 1912 keV proton beam with σ = 1.5 keV - 1912 keV proton beam with σ = 15 keV 8/38 01. 06. 2011 EAF-2011 Prague Experimental setup Neutron source 01. 06. 2011 EAF-2011 Prague 9/38 • low-scatter target hall of VdG at IRMM Geel • 2 mg/cm2 LiF targets evaporated in 1 mm Cu backing LiF target 01. 06. 2011 EAF-2011 Prague 10/38 LiF target 01. 06. 2011 EAF-2011 Prague • autoradiography 11/38 Narrow-energy proton beam 01. 06. 2011 EAF-2011 Prague 12/38 • scanning of narrow (< 0.2 keV) resonance • measuring yield of 10.76 MeV γ-rays with NaI detector Broad-energy proton beam 01. 06. 2011 EAF-2011 Prague • 2.06 μm Au degrager in front of LiF target: 2097±0.3 keV protons with σ = 1.5 keV → 1912±3 keV protons with σ = 15 keV 13/38 14/38 01. 06. 2011 EAF-2011 Prague Time of Flight TOF setup 01. 06. 2011 EAF-2011 Prague 15/38 TOF results 01. 06. 2011 EAF-2011 Prague 16/38 TOF results 01. 06. 2011 EAF-2011 Prague 17/38 TOF results 01. 06. 2011 EAF-2011 Prague 18/38 19/38 01. 06. 2011 EAF-2011 Prague Activation Activation setup 20/38 01. 06. 2011 EAF-2011 Prague • two Au foils: 1 mm and 5 mm from LiF target • fresh LiF target for each irradiation • the same geometry for both narrow-energy proton beam broad-energy proton beam Activation setup 01. 06. 2011 EAF-2011 Prague Au foil 1 mm from LiF target 21/38 Au foil 5 mm from LiF target γ-spectrometry 01. 06. 2011 EAF-2011 Prague • activities of 198Au (411.8 keV) 7Be (477.6 keV) • HPGe detector - 100% rel. eff. • Pb+Cu shielding - 10 cm Pb - 1 mm Cu 22/38 Radiography 23/38 01. 06. 2011 EAF-2011 Prague 81 mm • Ra226 source 88 mm Data analysis 01. 06. 2011 EAF-2011 Prague 24/38 • three steps: a) number of 7Be = number of emitted neutrons (also number of protons useful to provide n/p ratio) b) number of 198Au c) σ (197Au(n,γ) 198Au) Correction factors 01. 06. 2011 EAF-2011 Prague 25/38 • angular acceptance – neutrons within the angular acceptance of Au foil • scattering – neutrons scattered in Cu backing • effective thickness - planar Au foil gives bigger weight to neutrons emitted at bigger angles Simulations 26/38 01. 06. 2011 EAF-2011 Prague • correction factors simulated with SimLiT and Geant4 • SimLiT – simulation of 7Li(p,n)7Be ⇒ differential energy-angular neutron distribution ⇒ input to Geant • Geant4 – simulation of neutron scattering in Cu backing and interactions in planar Au foils • final correction factor is ratio of 198Au nuclei using 4π spherical Au sample divided by 198Au nuclei using planar Au foils Narrow beam Au 1 1/1.25 Au 2 1/1.17 Broad beam 1/1.32 1/1.07 Results 27/38 01. 06. 2011 EAF-2011 Prague n/p Narrow beam Broad beam Experiment (1.10±0.02) x 10-6 (1.36±0.03) x 10-6 Simulated (SimLiT) (1.13±0.02) x 10-6 (1.20±0.14) x 10-6 Simulated (PINO) (0.90±0.02) x 10-6 (0.94±0.11) x 10-6 198Au activity Narrow beam Broad beam Au 1 (Bq) 6.92±0.14 10.63±0.21 Au 2 (Bq) 6.28±0.13 7.99±0.16 Results 28/38 01. 06. 2011 EAF-2011 Prague (197Au(n,γ)) Narrow beam Narrow beam FZK Broad beam Au 1 (mb) 596±12 586±8 652±24 Au 2 (mb) 582±11 Average (mb) 589±12 σ 607±24 586±8 630±32 Results 29/38 01. 06. 2011 EAF-2011 Prague σ ( E ) N ( E )dE ∫ σ= ∫ N ( E )dE Spectrum-averaged cross-section Narrow-energy proton beam (mb) Broad-energy average cross section(mb) N(E) – experimental neutron spectrum (TOF) Maxwellian Au(n,γ) Au(n,γ) Au(n,γ) spectrum at capture cross capture cross capture cross 25keV folded sections of sections of sections of with capture refs. 1+2 ref. 4 folded ref. 3 folded cross sections of folded with with N(E) with N(E) refs. 1+2 N(E) 618 ± 16 659 ± 18 640±12 595 ± 30 633 ± 30 616±30 1. ENDF/BVII 2. C. Lederer et al, Phys Rev C83(2011)034608 3. Kononov, Yad Fiz 26(1977)947 4. Yamamuro, Journal of NS&T 20(1983)797 595±16 Summary 01. 06. 2011 EAF-2011 Prague 30/38 • σ (197Au(n,γ)) = (589±12) mb for narrow-energy proton beam agrees with the standard value (586±8) mb • broad-energy proton beam – bigger angular acceptance (84°) results in 10% higher σ – smaller angular acceptance (66°) the capture cross section is similar to that obtained in narrow-energy proton beam ⇒ for experiments with RF accellerators it is preferable to use a planar Au foil covering a smaller angle • It is essential to incorporate Monte-Carlo simulations to take into account the full geometry of the target and neutron scattering in materials surrounding the target
© Copyright 2026 Paperzz